Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

抗体-药物结合靶点,药物和连接物

卷 22, 期 6, 2022

发表于: 29 April, 2022

页: [463 - 529] 页: 67

弟呕挨: 10.2174/1568009622666220224110538

价格: $65

摘要

抗体-药物缀合物提供了一种可能,即在保护正常组织的同时,将强大的细胞毒性药物导向恶性肿瘤。目前面临的挑战是选择一种抗体靶点,要么在肿瘤细胞表面特异表达,要么在正常细胞表面高水平表达,要么在正常细胞表面低水平表达。目前的综述探讨了78个已被探索为抗体-药物结合靶点的靶点。其中一些靶点已经被放弃,9个或更多的靶点是FDA批准药物的靶点,其中大多数仍然是临床研究的热点。抗体-药物缀合物需要有效的细胞毒性药物载荷,我们讨论了这些小分子,以及蛋白质组分和缀合物小分子组分之间的连接物。最后,讨论了关于成功的抗体-药物缀合物的要素的结论。

关键词: 抗体-药物缀合物,ADCs,细胞表面靶点,乌司他汀,美登素,细胞毒性药物。

图形摘要

[1]
Shalini Makawita, S.; Funda Meric-Bernstam, F. Antibody-Drug Conjugates: Patient and Treatment Selection; American Society of Clinical Oncology: Alexandria, VA, USA, 2020, pp. 105-114.
[2]
Birrer, M.J.; Moore, K.N.; Betella, I.; Bates, R.C. Antibody-drug conjugate-based therapeutics: State of the science. J. Natl. Cancer Inst., 2019, 111(6), 538-549.
[http://dx.doi.org/10.1093/jnci/djz035] [PMID: 30859213]
[3]
Diamantis, N.; Banerji, U. Antibody-drug conjugates-An emerging class of cancer treatment. Br. J. Cancer, 2016, 114(4), 362-367.
[http://dx.doi.org/10.1038/bjc.2015.435] [PMID: 26742008]
[4]
Lambert, J.M.; Berkenblit, A. Antibody-drug conjugates for cancer treatment. Annu. Rev. Med., 2018, 69, 191-207.
[http://dx.doi.org/10.1146/annurev-med-061516-121357] [PMID: 29414262]
[5]
Deshaies, R.J. Multispecific drugs herald a new era of biopharmaceutical innovation. Nature, 2020, 580(7803), 329-338.
[http://dx.doi.org/10.1038/s41586-020-2168-1] [PMID: 32296187]
[6]
Yu, B.; Liu, D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J. Hematol. Oncol., 2019, 12(1), 94.
[http://dx.doi.org/10.1186/s13045-019-0786-6] [PMID: 31500657]
[7]
de la Torre, B.G.; Albericio, F. The pharmaceutical Industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. Molecules, 2020, 25(3), 745.
[http://dx.doi.org/10.3390/molecules25030745] [PMID: 32050446]
[8]
Andreev, J.; Thambi, N.; Perez Bay, A.E.; Delfino, F.; Martin, J.; Kelly, M.P.; Kirshner, J.R.; Rafique, A.; Kunz, A.; Nittoli, T.; MacDonald, D.; Daly, C.; Olson, W.; Thurston, G. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol. Cancer Ther., 2017, 16(4), 681-693.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0658] [PMID: 28108597]
[9]
Teicher, B.A. Antibody-drug conjugate targets. Curr. Cancer Drug Targets, 2009, 9(8), 982-1004.
[http://dx.doi.org/10.2174/156800909790192365] [PMID: 20025606]
[10]
Fu, Y.; Ho, M. DNA damaging agent-based antibody-drug conjugates for cancer therapy. Antib. Ther., 2018, 1(2), 33-43.
[http://dx.doi.org/10.1093/abt/tby007] [PMID: 30294716]
[11]
Esteva, F.J.; Miller, K.D.; Teicher, B.A. What Can We Learn About Antibody-Drug Conjugates from the T-DM1 Experience? Am. Soc. Clin. Oncol. Educ. Book, 2015, 2015, e117-e125.
[http://dx.doi.org/10.14694/EdBook_AM.2015.35.e117] [PMID: 25993162]
[12]
Gébleux, R.; Casi, G. Antibody-drug conjugates: Current status and future perspectives. Pharmacol. Ther., 2016, 167, 48-59.
[http://dx.doi.org/10.1016/j.pharmthera.2016.07.012] [PMID: 27492898]
[13]
Chau, C.H.; Steeg, P.S.; Figg, W.D. Antibody-drug conjugates for cancer. Lancet, 2019, 394(10200), 793-804.
[http://dx.doi.org/10.1016/S0140-6736(19)31774-X] [PMID: 31478503]
[14]
Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs, 2016, 8(4), 659-671.
[http://dx.doi.org/10.1080/19420862.2016.1156829] [PMID: 27045800]
[15]
Leal, A.D.; Krishnamurthy, A.; Head, L.; Messersmith, W.A. Antibody drug conjugates under investigation in phase I and phase II clinical trials for gastrointestinal cancer. Expert Opin. Investig. Drugs, 2018, 27(11), 901-916.
[http://dx.doi.org/10.1080/13543784.2018.1541085] [PMID: 30359534]
[16]
Thomas, A.; Teicher, B.A.; Hassan, R. Antibody-drug conjugates for cancer therapy. Lancet Oncol., 2016, 17(6), e254-e262.
[http://dx.doi.org/10.1016/S1470-2045(16)30030-4] [PMID: 27299281]
[17]
Wolska-Washer, A.; Robak, P.; Smolewski, P.; Robak, T. Emerging antibody-drug conjugates for treating lymphoid malignancies. Expert Opin. Emerg. Drugs, 2017, 22(3), 259-273.
[http://dx.doi.org/10.1080/14728214.2017.1366447] [PMID: 28792782]
[18]
Nasiri, H.; Valedkarimi, Z.; Aghebati-Maleki, L.; Majidi, J. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy. J. Cell. Physiol., 2018, 233(9), 6441-6457.
[http://dx.doi.org/10.1002/jcp.26435] [PMID: 29319167]
[19]
Abdollahpour-Alitappeh, M.; Lotfinia, M.; Gharibi, T.; Mardaneh, J.; Farhadihosseinabadi, B.; Larki, P.; Faghfourian, B.; Sepehr, K.S.; Abbaszadeh-Goudarzi, K.; Abbaszadeh-Goudarzi, G.; Johari, B.; Zali, M.R.; Bagheri, N. Antibody-drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J. Cell. Physiol., 2019, 234(5), 5628-5642.
[http://dx.doi.org/10.1002/jcp.27419] [PMID: 30478951]
[20]
Teicher, B.A.; Chari, R.V.J. Antibody conjugate therapeutics: challenges and potential. Clin. Cancer Res., 2011, 17(20), 6389-6397.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1417] [PMID: 22003066]
[21]
Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov., 2017, 16(5), 315-337.
[http://dx.doi.org/10.1038/nrd.2016.268] [PMID: 28303026]
[22]
Li, F.; Ulrich, M.L.; Shih, V.F.S.; Cochran, J.H.; Hunter, J.H.; Westendorf, L.; Neale, J.; Benjamin, D.R. Mouse strains influence clearance and efficacy of antibody and antibody-drug conjugate via FcFcγR interaction. Mol. Cancer Ther., 2019, 18(4), 780-787.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0977] [PMID: 30824607]
[23]
Li, F.; Ulrich, M.; Jonas, M.; Stone, I.J.; Linares, G.; Zhang, X.; Westendorf, L.; Benjamin, D.R.; Law, C.L. Tumor associated macrophages can contribute to antitumor activity through FcγR mediated processing of antibody-drug conjugates. Mol. Cancer Ther., 2017, 16(7), 1347-1354.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0019] [PMID: 28341790]
[24]
Gauzy-Lazo, L.; Sassoon, I.; Brun, M.P. Gauzy-Lazo1L, Sassoon I, Brun MP. Advances in antibody-drug conjugate design – current clinical landscape and future innovations. SLAS Discov., 2020, 25(8), 843-868.
[http://dx.doi.org/10.1177/2472555220912955] [PMID: 32192384]
[25]
García-Alonso, S.; Ocaña, A.; Pandiella, A. Resistance to antibody–drug conjugates. Cancer Res., 2018, 78(9), 2159-2165.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3671] [PMID: 29653942]
[26]
Loganzo, F.; Sung, M.; Gerber, H.P. Mechanisms of resistance to antibody-drug conjugates. Mol. Cancer Ther., 2016, 15(12), 2825-2834.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0408] [PMID: 27780876]
[27]
Haddish-Berhane, N.; Shah, D.K.; Ma, D.; Leal, M.; Gerber, H.P.; Sapra, P.; Barton, H.A.; Betts, A.M. On translation of antibody drug conjugates efficacy from mouse experimental tumors to the clinic: A PK/PD approach. J. Pharmacokinet. Pharmacodyn., 2013, 40(5), 557-571.
[http://dx.doi.org/10.1007/s10928-013-9329-x] [PMID: 23933716]
[28]
Saber, H.; Simpson, N.; Ricks, T.K.; Leighton, J.K. An FDA oncology analysis of toxicities associated with PBD-containing antibody-drug conjugates. Regul. Toxicol. Pharmacol., 2019, 107, 104429.
[http://dx.doi.org/10.1016/j.yrtph.2019.104429] [PMID: 31325532]
[29]
Matulonis, U.A.; Birrer, M.J.; O’Malley, D.M.; Moore, K.N.; Konner, J.; Gilbert, L.; Martin, L.P.; Bauer, T.M.; Oza, A.M.; Malek, K.; Pinkas, J.; Kim, S.K. Evaluation of prophylactic corticosteroid eye drop use in the management of corneal abnormalities induced by the antibody-drug conjugate mirvetuximab soravtansine. Clin. Cancer Res., 2019, 25(6), 1727-1736.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2474] [PMID: 30413525]
[30]
Lutz, R.J.; Chari, R.V.J. Methods for decreasing ocular toxicity of antibody drug conjugates. U.S. Patent 20120282282 A1, 2012.
[31]
Banerjee, S.; Wang, Z.; Mohammad, M.; Sarkar, F.H.; Mohammad, R.M. Efficacy of selected natural products as therapeutic agents against cancer. J. Nat. Prod., 2008, 71(3), 492-496.
[http://dx.doi.org/10.1021/np0705716] [PMID: 18302335]
[32]
Shnyder, S.D.; Cooper, P.A.; Millington, N.J.; Pettit, G.R.; Bibby, M.C. Auristatin PYE, a novel synthetic derivative of dolastatin 10, is highly effective in human colon tumour models. Int. J. Oncol., 2007, 31(2), 353-360.
[http://dx.doi.org/10.3892/ijo.31.2.353] [PMID: 17611692]
[33]
Akaiwa, M.; Dugal-Tessier, J.; Mendelsohn, B.A. Antibody-drug conjugate payloads; study of auristatin derivatives. Chem. Pharm. Bull. (Tokyo), 2020, 68(3), 201-211.
[http://dx.doi.org/10.1248/cpb.c19-00853] [PMID: 32115527]
[34]
Mohammad, R.M.; Al-Katib, A.; Pettit, G.R.; Vaitkevicius, V.K.; Joshi, U.; Adsay, V.; Majumdar, A.P.N.; Sarkar, F.H. An orthotopic model of human pancreatic cancer in severe combined immunodeficient mice: Potential application for preclinical studies. Clin. Cancer Res., 1998, 4(4), 887-894.
[PMID: 9563882]
[35]
Moquist, P.N.; Bovee, T.D.; Waight, A.B.; Mitchell, J.A.; Miyamoto, J.B.; Mason, M.L.; Emmerton, K.K.; Stevens, N.; Balasubramanian, C.; Simmons, J.K.; Lyon, R.P.; Senter, P.D.; Doronina, S.O. Novel auristatins with high bystander and cytotoxic activities in drug efflux positive tumor models. Mol. Cancer Ther., 2021, 20(2), 320-328.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0618] [PMID: 33288628]
[36]
Chari, R.V.J. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res., 2008, 41(1), 98-107.
[http://dx.doi.org/10.1021/ar700108g] [PMID: 17705444]
[37]
Chari, R.V.J.; Martell, B.A.; Gross, J.L.; Cook, S.B.; Shah, S.A.; Blättler, W.A.; McKenzie, S.J.; Goldmacher, V.S. Immunoconjugates containing novel maytansinoids: Promising anticancer drugs. Cancer Res., 1992, 52(1), 127-131.
[PMID: 1727373]
[38]
Lopus, M.; Oroudjev, E.; Wilson, L.; Wilhelm, S.; Widdison, W.; Chari, R.; Jordan, M.A. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol. Cancer Ther., 2010, 9(10), 2689-2699.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0644] [PMID: 20937594]
[39]
Erickson, H.K.; Park, P.U.; Widdison, W.C.; Kovtun, Y.V.; Garrett, L.M.; Hoffman, K.; Lutz, R.J.; Goldmacher, V.S.; Blättler, W.A. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res., 2006, 66(8), 4426-4433.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4489] [PMID: 16618769]
[40]
Hartley, J.A. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin. Investig. Drugs, 2011, 20(6), 733-744.
[http://dx.doi.org/10.1517/13543784.2011.573477] [PMID: 21457108]
[41]
Mantaj, J.; Jackson, P.J.M.; Rahman, K.M.; Thurston, D.E. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew. Chem. Int. Ed., 2016, 55, 2-29.
[PMID: 27862776]
[42]
Rios-Doria, J.; Harper, J.; Rothstein, R.; Wetzel, L.; Chesebrough, J.; Marrero, A.; Chen, C.; Strout, P.; Mulgrew, K.; McGlinchey, K.; Fleming, R.; Bezabeh, B.; Meekin, J.; Stewart, D.; Kennedy, M.; Martin, P.; Buchanan, A.; Dimasi, N.; Michelotti, E.; Hollingsworth, R. Antibody-drug conjugates bearing pyrrolobenzodiazepine or tubulysin payloads are immunomodulatory and synergize with multiple immunotherapies. Cancer Res., 2017, 77(10), 2686-2698.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2854] [PMID: 28283653]
[43]
Puzanov, I.; Lee, W.; Berlin, J.D.; Calcutt, M.W.; Hachey, D.L.; Vermeulen, W.L. Final results of phase I and pharmacokinetic trial of SJG-136 administered on a daily x 3 schedule. J Clin Cancer, 2008, 26(15), 2504.
[44]
Kadia, T.M.; Faderl, S.; Estrov, Z.; Konopleva, M.; George, S.; Lee, W. Final results of phase I and pharmacokinetic study of SJG-136 administered on a daily x 5 schedule. J. Clin. Oncol., 2009, 27(15)(Suppl.), e13506.
[45]
Miller, M.L.; Shizuka, M.; Wilhelm, A.; Salomon, P.; Reid, E.E.; Lanieri, L.; Sikka, S.; Maloney, E.K.; Harvey, L.; Qiu, Q.; Archer, K.E.; Bai, C.; Vitharana, D.; Harris, L.; Singh, R.; Ponte, J.F.; Yoder, N.C.; Kovtun, Y.; Lai, K.C.; Ab, O.; Pinkas, J.; Keating, T.A.; Chari, R.V.J.O.; Ab, O.; Pinkas, J.; Keating, T.A. Chari RVJ. A DNA-interacting payload designed to eliminate cross-linking improves the therapeutic index of Antibody-Drug Conjugates (ADCs). Mol. Cancer Ther., 2018, 17(3), 650-660.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0940] [PMID: 29440292]
[46]
Hartley, J.A.; Spanswick, V.J.; Brooks, N.; Clingen, P.H.; McHugh, P.J.; Hochhauser, D.; Pedley, R.B.; Kelland, L.R.; Alley, M.C.; Schultz, R.; Hollingshead, M.G.; Schweikart, K.M.; Tomaszewski, J.E.; Sausville, E.A.; Gregson, S.J.; Howard, P.W.; Thurston, D.E. SJG-136 (NSC 694501), a novel rationally designed DNA minor groove interstrand cross-linking agent with potent and broad spectrum antitumor activity: Part 1: Cellular pharmacology, in vitro and initial in vivo antitumor activity. Cancer Res., 2004, 64(18), 6693-6699.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2941] [PMID: 15374986]
[47]
Nicolaou, K.C.; Smith, A.L.; Yue, E.W. Chemistry and biology of natural and designed enediynes. Proc. Natl. Acad. Sci. USA, 1993, 90(13), 5881-5888.
[http://dx.doi.org/10.1073/pnas.90.13.5881] [PMID: 8327459]
[48]
Zein, N.; Sinha, A.M.; McGahren, W.J.; Ellestad, G.A. Calicheamicin γ 1I: An antitumor antibiotic that cleaves double-stranded DNA site specifically. Science, 1988, 240(4856), 1198-1201.
[http://dx.doi.org/10.1126/science.3240341] [PMID: 3240341]
[49]
Garcia-Carbonero, R.; Supko, J.G. Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin. Cancer Res., 2002, 8(3), 641-661.
[PMID: 11895891]
[50]
Garrison, M.A.; Hammond, L.A.; Geyer, C.E., Jr; Schwartz, G.; Tolcher, A.W.; Smetzer, L.; Figueroa, J.A.; Ducharme, M.; Coyle, J.; Takimoto, C.H.; De Jager, R.L.; Rowinsky, E.K. A Phase I and pharmocokinetic study of exatecan mesylate administered as a protracted 21-day infusion in patients with advanced solid malignancies. Clin. Cancer Res., 2003, 9(7), 2527-2537.
[PMID: 12855627]
[51]
Braybrooke, J.P.; Boven, E.; Bates, N.P.; Ruijter, R.; Dobbs, N.; Cheverton, P.D.; Pinedo, H.M.; Talbot, D.C. Phase I and pharmacokinetic study of the topoisomerase I inhibitor, exatecan mesylate (DX-8951f), using a weekly 30-minute intravenous infusion, in patients with advanced solid malignancies. Ann. Oncol., 2003, 14(6), 913-921.
[http://dx.doi.org/10.1093/annonc/mdg243] [PMID: 12796030]
[52]
Ajani, J.A.; Takimoto, C.; Becerra, C.R.; Silva, A.; Baez, L.; Cohn, A.; Major, P.; Kamida, M.; Feit, K.; De Jager, R. A phase II clinical and pharmacokinetic study of intravenous exatecan mesylate (DX-8951f) in patients with untreated metastatic gastric cancer. Invest. New Drugs, 2005, 23(5), 479-484.
[http://dx.doi.org/10.1007/s10637-005-2907-z] [PMID: 16133799]
[53]
Zangardi, M.L.; Spring, L.M.; Nagayama, A.; Bardia, A. Sacituzumab for the treatment of triple-negative breast cancer: The poster child of future therapy? Expert Opin. Investig. Drugs, 2019, 28(2), 107-112.
[http://dx.doi.org/10.1080/13543784.2019.1555239] [PMID: 30507322]
[54]
Lyons, T.G. Targeted therapies for triple-negative breast cancer. Curr. Treat. Options Oncol., 2019, 20(11), 82.
[http://dx.doi.org/10.1007/s11864-019-0682-x] [PMID: 31754897]
[55]
Nagayama, A.; Vidula, N.; Ellisen, L.; Bardia, A. Novel antibody-drug conjugates for triple negative breast cancer. Ther. Adv. Med. Oncol., 2020, 12, 1758835920915980.
[http://dx.doi.org/10.1177/1758835920915980] [PMID: 32426047]
[56]
Lyski, R.D.; Bou, L.B.; Lau, U.Y.; Meyer, D.W.; Cochran, J.H.; Okeley, N.M.; Emmerton, K.K.; Zapata, F.; Simmons, J.K.; Trueblood, E.S.; Ortiz, D.J.; Zaval, M.C.; Snead, K.M.; Jin, S.; Farr, L.M.; Ryan, M.C.; Senter, P.D.; Jeffrey, S.C. Development of novel antibody-camptothecin conjugates. Mol. Cancer Ther., 2021, 20(2), 329-339.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0526] [PMID: 33273058]
[57]
Hechler, T.; Muller, C.; Pahl, A.; Anderl, J. Amanitin-based ADCs with an improved therapeutic index. Cancer Res., 2015, 75(15)(Suppl.), 633.
[58]
Neumann, C.S.; Olivas, K.C.; Anderson, M.E.; Cochran, J.H.; Jin, S.; Li, F.; Loftus, L.V.; Meyer, D.W.; Neale, J.; Nix, J.C.; Pittman, P.G.; Simmons, J.K.; Ulrich, M.L.; Waight, A.B.; Wong, A.; Zaval, M.C.; Zeng, W.; Lyon, R.P.; Senter, P.D. Targeted delivery of cytotoxic NAMPT inhibitors using antibody-drug conjugates. Mol. Cancer Ther., 2018, 17(12), 2633-2642.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0643] [PMID: 30242091]
[59]
Aviles, P.M.; Guillen, M.J.J.; Gallardo, A.; Cespedes, M.V.; Mangues, R.; Fiebig, H.; Hartman, N.; Dominguez, J.M.; Garcia, L.F. MI130004, a new antibody-drug conjugate, induces strong, long-lasting antitumor effect in HER2 expressing breast tumor models. Proc AACR, 2015.
[60]
Anami, Y.; Yamazaki, C.M.; Xiong, W.; Gui, X.; Zhang, N.; An, Z.; Tsuchikama, K. Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice. Nat. Commun., 2018, 9(1), 2512.
[http://dx.doi.org/10.1038/s41467-018-04982-3] [PMID: 29955061]
[61]
Kellogg, B.A.; Garrett, L.; Kovtun, Y.; Lai, K.C.; Leece, B.; Miller, M.; Payne, G.; Steeves, R.; Whiteman, K.R.; Widdison, W.; Xie, H.; Singh, R.; Chari, R.V.; Lambert, J.M.; Lutz, R.J. Disulfide-linked antibody-maytansinoid conjugates: Optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug. Chem., 2011, 22(4), 717-727.
[http://dx.doi.org/10.1021/bc100480a] [PMID: 21425776]
[62]
Zhao, R.Y.; Wilhelm, S.D.; Audette, C.; Jones, G.; Leece, B.A.; Lazar, A.C.; Goldmacher, V.S.; Singh, R.; Kovtun, Y.; Widdison, W.C.; Lambert, J.M.; Chari, R.V. Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J. Med. Chem., 2011, 54(10), 3606-3623.
[http://dx.doi.org/10.1021/jm2002958] [PMID: 21517041]
[63]
Kovtun, Y.V.; Audette, C.A.; Mayo, M.F.; Jones, G.E.; Doherty, H.; Maloney, E.K.; Erickson, H.K.; Sun, X.; Wilhelm, S.; Ab, O.; Lai, K.C.; Widdison, W.C.; Kellogg, B.; Johnson, H.; Pinkas, J.; Lutz, R.J.; Singh, R.; Goldmacher, V.S.; Chari, R.V. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res., 2010, 70(6), 2528-2537.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3546] [PMID: 20197459]
[64]
Hamblett, K.J.; Senter, P.D.; Chace, D.F.; Sun, M.M.; Lenox, J.; Cerveny, C.G.; Kissler, K.M.; Bernhardt, S.X.; Kopcha, A.K.; Zabinski, R.F.; Meyer, D.L.; Francisco, J.A. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res., 2004, 10(20), 7063-7070.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0789] [PMID: 15501986]
[65]
Tian, F.; Lu, Y.; Manibusan, A.; Sellers, A.; Tran, H.; Sun, Y.; Phuong, T.; Barnett, R.; Hehli, B.; Song, F.; DeGuzman, M.J.; Ensari, S.; Pinkstaff, J.K.; Sullivan, L.M.; Biroc, S.L.; Cho, H.; Schultz, P.G.; DiJoseph, J.; Dougher, M.; Ma, D.; Dushin, R.; Leal, M.; Tchistiakova, L.; Feyfant, E.; Gerber, H.P.; Sapra, P. A general approach to site-specific antibody drug conjugates. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1766-1771.
[http://dx.doi.org/10.1073/pnas.1321237111] [PMID: 24443552]
[66]
Pillow, T.H.; Schutten, M.; Yu, S.F.; Ohri, R.; Sadowsky, J.; Poon, K.A.; Solis, W.; Zhong, F.; Del Rosario, G.; Go, M.A.T.; Lau, J.; Yee, S.; He, J.; Liu, L.; Ng, C.; Xu, K.; Leipold, D.D.; Kamath, A.V.; Zhang, D.; Masterson, L.; Gregson, S.J.; Howard, P.W.; Fang, F.; Chen, J.; Gunzner-Toste, J.; Kozak, K.K.; Spencer, S.; Polakis, P.; Polson, A.G.; Flygare, J.A.; Junutula, J.R. Modulating therapeutic activity and toxicity of pyrrolobenzodiazepine antibody-drug conjugates with self-immolative disulfide linkers. Mol. Cancer Ther., 2017, 16(5), 871-878.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0641] [PMID: 28223423]
[67]
Zhang, D.; Yu, S.F.; Khojasteh, S.C.; Ma, Y.; Pillow, T.H.; Sadowsky, J.D.; Su, D.; Kozak, K.R.; Xu, K.; Polson, A.G.; Dragovich, P.S.; Hop, C.E.C.A. Intratumoral payload concentration correlates with the activity of antibody- drug conjugates. Mol. Cancer Ther., 2018, 17(3), 677-685.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0697] [PMID: 29348271]
[68]
Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable linkers in antibody-drug conjugates. Chem. Soc. Rev., 2019, 48(16), 4361-4374.
[http://dx.doi.org/10.1039/C8CS00676H] [PMID: 31294429]
[69]
Tsuchikama, K.; An, Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell, 2018, 9(1), 33-46.
[http://dx.doi.org/10.1007/s13238-016-0323-0] [PMID: 27743348]
[70]
Burke, P.J.; Hamilton, J.Z.; Jeffrey, S.C.; Hunter, J.H.; Doronina, S.O.; Okeley, N.M.; Miyamoto, J.B.; Anderson, M.E.; Stone, I.J.; Ulrich, M.L.; Simmons, J.K.; McKinney, E.E.; Senter, P.D.; Lyon, R.P. Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody-drug conjugates. Mol. Cancer Ther., 2017, 16(1), 116-123.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0343] [PMID: 28062707]
[71]
Singh, R.; Setiady, Y.Y.; Ponte, J.; Kovtun, Y.V.; Lai, K.C.; Hong, E.E.; Fishkin, N.; Dong, L.; Jones, G.E.; Coccia, J.A.; Lanieri, L.; Veale, K.; Costoplus, J.A.; Skaletskaya, A.; Gabriel, R.; Salomon, P.; Wu, R.; Qiu, Q.; Erickson, H.K.; Lambert, J.M.; Chari, R.V.; Widdison, W.C. A new triglycyl peptide linker for Antibody-Drug Conjugates (ADCs) with improved targeted killing of cancer cells. Mol. Cancer Ther., 2016, 15(6), 1311-1320.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0021] [PMID: 27197308]
[72]
Burke, P.J.; Hamilton, J.Z.; Pires, T.A.; Setter, J.R.; Hunter, J.H.; Cochran, J.H.; Waight, A.B.; Gordon, K.A.; Toki, B.E.; Emmerton, K.K.; Zeng, W.; Stone, I.J.; Senter, P.D.; Lyon, R.P.; Jeffrey, S.C. Development of novel quaternary ammonium linkers for antibody-drug conjugates. Mol. Cancer Ther., 2016, 15(5), 938-945.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0038] [PMID: 26944920]
[73]
Sijbrandi, N.J.; Merkul, E.; Muns, J.A.; Waalboer, D.C.J.; Adamzek, K.; Bolijn, M.; Montserrat, V.; Somsen, G.W.; Haselberg, R.; Steverink, P.J.; Houthoff, H.J.; van Dongen, G.A. A novel platinum (II)-based bifunctional ADC linker benchmarked using 89Zr-desferal and auristatin F-conjugated trastuzumab. Cancer Res., 2017, 77(2), 257-267.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1900] [PMID: 27872093]
[74]
Zhu, X.; Huo, S.; Xue, C.; An, B.; Qu, J. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates. J. Pharm. Anal., 2020, 10(3), 209-220.
[http://dx.doi.org/10.1016/j.jpha.2020.05.008] [PMID: 32612867]
[75]
Todoroki, K.; Yamada, T.; Mizuno, H.; Toyo’oka, T. Current mass spectrometric tools for the bioanalyses of therapeutic monoclonal antibodies and antibody-drug conjugates. Anal. Sci., 2018, 34(4), 397-406.
[http://dx.doi.org/10.2116/analsci.17R003] [PMID: 29643301]
[76]
Melo, R.; Lemos, A.; Preto, A.J.; Almeida, J.G.; Correia, J.D.G.; Sensoy, O.; Moreira, I.S. Computational approaches in antibody-drug conjugate optimization for targeted cancer therapy. Curr. Top. Med. Chem., 2018, 18(13), 1091-1109.
[http://dx.doi.org/10.2174/1568026618666180731165222] [PMID: 30068276]
[77]
Buecheler, J.W.; Winzer, M.; Weber, C.; Gieseler, H. Alteration of physicochemical properties for antibody-drug conjugates and their impact on stability. J. Pharm. Sci., 2020, 109(1), 161-168.
[http://dx.doi.org/10.1016/j.xphs.2019.08.006] [PMID: 31408634]
[78]
Todoroki, K.; Mizuno, H.; Sugiyama, E.; Toyo’oka, T. Bioanalytical methods for therapeutic monoclonal antibodies and antibody-drug conjugates: A review of recent advances and future perspectives. J. Pharm. Biomed. Anal., 2020, 179, 112991.
[http://dx.doi.org/10.1016/j.jpba.2019.112991] [PMID: 31761377]
[79]
Stern, P.L.; Harrop, R. 5T4 oncofoetal antigen: An attractive target for immune intervention in cancer. Cancer Immunol. Immunother., 2017, 66(4), 415-426.
[http://dx.doi.org/10.1007/s00262-016-1917-3] [PMID: 27757559]
[80]
Harrop, R.; O’Neill, E.; Stern, P.L. Cancer stem cell mobilization and therapeutic targeting of the 5T4 oncofetal antigen. Ther. Adv. Vaccines Immunother., 2019, 7, 2515135518821623.
[http://dx.doi.org/10.1177/2515135518821623] [PMID: 30719508]
[81]
Boghaert, E.R.; Sridharan, L.; Khandke, K.M.; Armellino, D.; Ryan, M.G.; Myers, K.; Harrop, R.; Kunz, A.; Hamann, P.R.; Marquette, K.; Dougher, M.; DiJoseph, J.F.; Damle, N.K. The oncofetal protein, 5T4, is a suitable target for antibody-guided anti-cancer chemotherapy with calicheamicin. Int. J. Oncol., 2008, 32(1), 221-234.
[http://dx.doi.org/10.3892/ijo.32.1.221] [PMID: 18097562]
[82]
Shapiro, G.; LoRusso, P.; Vaishampayan, V.; Kittaneh, M.; Hilton, J.F.; Cleary, J.M.; Velastegui, K. First-in-human, dose-escalation, safety and PK study of a novel 5T4-ADC in patients with advanced solid tumors. J. Clin. Oncol., 2015, 33, TPS2603.
[83]
Leal, M.; Wentland, J.; Han, X.; Zhang, Y.; Rago, B.; Duriga, N.; Spriggs, F.; Kadar, E.; Song, W.; McNally, J.; Shakey, Q.; Lorello, L.; Lucas, J.; Sapra, P. Preclinical development of an anti-5T4 antibody-drug conjugate: pharmacokinetics in mice, rats and NHP and tumor/tissue distribution in mice. Bioconjug. Chem., 2015, 26(11), 2223-2232.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00205] [PMID: 26180901]
[84]
Sapra, P.; Shor, B.; Dougher, M.; Kahler, J.; Mack, M.; Xu, J.; Lu, S.; Melamud, E. Enhanced anti-tumor activity of an auristatin-based antibody-drug conjugate in combination with PI3K/mTOR inhibitors or taxanes: translational implications and mechanistic insights. Cancer Res., 2015, 75(15)(Suppl.), 2463.
[85]
Smith, R.A.; Damle, N.K.; Reddy, S.P.; Yurkovetskiy, A.; Bodyak, N.; Yin, M.; Gumerov, D. ASN004, a novel 5T4-targetetd Dolaflexin™ antibody drug conjugate, causes complete regression in multiple solid tumor models. Cancer Res., 2015, 75(15)(Suppl.), 1693.
[86]
Shor, B.; Kahler, J.; Dougher, M.; Xu, J.; Mack, M.; Rosfjord, E.; Wang, F.; Melamud, E.; Sapra, P. Enhanced antitumor activity of an anti-5T4 antibody-drug conjugate in combination with PI3K/mTOR inhibitors or taxanes. Clin. Cancer Res., 2016, 22(2), 383-394.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1166] [PMID: 26319086]
[87]
Kerk, S.A.; Finkel, K.A.; Pearson, A.T.; Warner, K.A.; Zhang, Z.; Nör, F.; Wagner, V.P.; Vargas, P.A.; Wicha, M.S.; Hurt, E.M.; Hollingsworth, R.E.; Tice, D.A.; Nör, J.E. 5T4-targeted therapy ablates cancer stem cells and prevents recurrence of head and neck squamous cell carcinoma. Clin. Cancer Res., 2017, 23(10), 2516-2527.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1834] [PMID: 27780858]
[88]
Harper, J.; Lloyd, C.; Dimasi, N.; Toader, D.; Marwood, R.; Lewis, L.; Bannister, D.; Jovanovic, J.; Fleming, R.; D’Hooge, F.; Mao, S.; Marrero, A.M.; Korade, M., III; Strout, P.; Xu, L.; Chen, C.; Wetzel, L.; Breen, S.; van Vlerken-Ysla, L.; Jalla, S.; Rebelatto, M.; Zhong, H.; Hurt, E.M.; Hinrichs, M.J.; Huang, K.; Howard, P.W.; Tice, D.A.; Hollingsworth, R.E.; Herbst, R.; Kamal, A. Preclinical evaluation of MEDI0641, a pyrrolobenzodiazepine-conjugated antibody-drug conjugate targeting 5T4. Mol. Cancer Ther., 2017, 16(8), 1576-1587.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0825] [PMID: 28522587]
[89]
Giddabasappa, A.; Gupta, V.R.; Norberg, R.; Gupta, P.; Spilker, M.E.; Wentland, J.; Rago, B.; Eswaraka, J.; Leal, M.; Sapra, P. Biodistribution and targeting of anti-5T4 antibody-drug conjugate using fluorescence molecular tomography. Mol. Cancer Ther., 2016, 15(10), 2530-2540.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-1012] [PMID: 27466353]
[90]
Sano, R.; Krytska, K.; Larmour, C.E.; Raman, P.; Martinez, D.; Ligon, G.F.; Lillquist, J.S.; Cucchi, U.; Orsini, P.; Rizzi, S.; Pawel, B.R.; Alvarado, D.; Mossé, Y.P. An antibody-drug conjugate directed to the ALK receptor demonstrates efficacy in preclinical models of neuroblastoma. Sci. Transl. Med., 2019, 11(483), eaau9732.
[http://dx.doi.org/10.1126/scitranslmed.aau9732] [PMID: 30867324]
[91]
Breij, ECW; Verploegen, S; Lingnau, A; van den Brink, EN; Janmaat, M; Houtkamp, M; Bleeker, WK Preclinical efficacy studies using HuMax-Axl-ADC, a novel antibody-drug conjugate targeting Axl-expressing solid cancers. J Clin Oncol, 2015, 33 suppl, 3066.
[92]
Boshuizen, J.; Koopman, L.A.; Krijgsman, O.; Shahrabi, A.; van den Heuvel, E.G.; Ligtenberg, M.A.; Vredevoogd, D.W.; Kemper, K.; Kuilman, T.; Song, J.Y.; Pencheva, N.; Mortensen, J.T.; Foppen, M.G.; Rozeman, E.A.; Blank, C.U.; Janmaat, M.L.; Satijn, D.; Breij, E.C.W.; Peeper, D.S.; Parren, P.W.H.I. Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat. Med., 2018, 24(2), 203-212.
[http://dx.doi.org/10.1038/nm.4472] [PMID: 29334371]
[93]
Koopman, L.A.; Terp, M.G.; Zom, G.G.; Janmaat, M.L.; Jacobsen, K.; Gresnigt-van den Heuvel, E.; Brandhorst, M.; Forssmann, U.; de Bree, F.; Pencheva, N.; Lingnau, A.; Zipeto, M.A.; Parren, P.W.H.I.; Breij, E.C.W.; Ditzel, H.J. Enapotamab vedotin, an AXL-specific antibody-drug conjugate, shows preclinical antitumor activity in non-small cell lung cancer. JCI Insight, 2019, 4(21), e128199.
[http://dx.doi.org/10.1172/jci.insight.128199] [PMID: 31600169]
[94]
Ameratunga, M.; Harvey, R.D.; Mau-Sørensen, M.; Thistlethwaite, F.; Forssmann, U.; Gupta, M. First-in-human, dose-escalation, phase (ph) I trial to evaluate safety of anti-Axl Antibody-Drug Conjugate (ADC) Enapotamab Vedotin (EnaV) in solid tumors. J. Clin. Oncol., 2019, 2525.
[95]
Seaman, S.; Zhu, Z.; Saha, S.; Zhang, X.M.; Yang, M.Y.; Hilton, M.B.; Morris, K.; Szot, C.; Morris, H.; Swing, D.A.; Tessarollo, L.; Smith, S.W.; Degrado, S.; Borkin, D.; Jain, N.; Scheiermann, J.; Feng, Y.; Wang, Y.; Li, J.; Welsch, D.; DeCrescenzo, G.; Chaudhary, A.; Zudaire, E.; Klarmann, K.D.; Keller, J.R.; Dimitrov, D.S.; St Croix, B. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell, 2017, 31(4), 501-515.e8.
[http://dx.doi.org/10.1016/j.ccell.2017.03.005] [PMID: 28399408]
[96]
Ogitani, Y.; Abe, Y.; Iguchi, T.; Yamaguchi, J.; Terauchi, T.; Kitamura, M.; Goto, K.; Goto, M.; Oitate, M.; Yukinaga, H.; Yabe, Y.; Nakada, T.; Masuda, T.; Morita, K.; Agatsuma, T. Wide application of a novel topoisomerase I inhibitor-based drug conjugation technology. Bioorg. Med. Chem. Lett., 2016, 26(20), 5069-5072.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.082] [PMID: 27599744]
[97]
Scribner, J.A.; Brown, J.G.; Son, T.; Chiechi, M.; Li, P.; Sharma, S.; Li, H.; De Costa, A.; Li, Y.; Chen, Y.; Easton, A.; Yee-Toy, N.C.; Chen, F.Z.; Gorlatov, S.; Barat, B.; Huang, L.; Wolff, C.R.; Hooley, J.; Hotaling, T.E.; Gaynutdinov, T.; Ciccarone, V.; Tamura, J.; Koenig, S.; Moore, P.A.; Bonvini, E.; Loo, D. Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7-H3 for solid cancer. Mol. Cancer Ther., 2020, 19(11), 2235-2244.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0116] [PMID: 32967924]
[98]
Powderly, J.D.; Jang, S.; Lohr, J.; Spira, A.I.; Bohac, G.C.; Sharma, M. Preliminary dose escalation results from a phase I/II, first-in-human study of MGC018 (anti-B7-H3 antibody-drug conjugate) in patients with advanced solid tumors. J. Clin. Oncol., 2020, 3071.
[99]
Leong, S.R.; Liang, W.C.; Wu, Y.; Crocker, L.; Cheng, E.; Sampath, D.; Ohri, R.; Raab, H.; Hass, P.E.; Pham, T.; Firestein, R.; Li, D.; Schutten, M.; Stagg, N.J.; Ogasawara, A.; Koppada, N.; Roth, L.; Williams, S.P.; Lee, B.C.; Chalouni, C.; Peng, I.; DeVoss, J.; Tremayne, J.; Polakis, P.; Polson, A.G. An anti-B7-H4 antibody-drug conjugate for the treatment of breast cancer. Mol. Pharm., 2015, 12(6), 1717-1729.
[http://dx.doi.org/10.1021/mp5007745] [PMID: 25853436]
[100]
Yurkovetskiy, A.V.; Bodyak, N.D.; Yin, M.; Thomas, J.D.; Clardy, S.M.; Conlon, P.R.; Stevenson, C.A.; Uttard, A.; Qin, L.; Gumerov, D.R.; Ter-Ovanesyan, E.; Bu, C.; Johnson, A.J.; Gurijala, V.R.; McGillicuddy, D.; DeVit, M.J.; Poling, L.L.; Protopopova, M.; Xu, L.; Zhang, Q.; Park, P.U.; Bergstrom, D.A.; Lowinger, T.B. Dolaflexin: A novel antibody-drug conjugate platform featuring high drug loading and a controlled bystander effect. Mol. Cancer Ther., 2021, 20(5), 885-895.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0166] [PMID: 33722857]
[101]
Tai, Y.T.; Mayes, P.A.; Acharya, C.; Zhong, M.Y.; Cea, M.; Cagnetta, A.; Craigen, J.; Yates, J.; Gliddon, L.; Fieles, W.; Hoang, B.; Tunstead, J.; Christie, A.L.; Kung, A.L.; Richardson, P.; Munshi, N.C.; Anderson, K.C. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood, 2014, 123(20), 3128-3138.
[http://dx.doi.org/10.1182/blood-2013-10-535088] [PMID: 24569262]
[102]
Cho, S.F.; Lin, L.; Xing, L.; Li, Y.; Yu, T.; Anderson, K.C.; Tai, Y.T. BCMA-targeting therapy: Driving a new era of immunotherapy in multiple myeloma. Cancers (Basel), 2020, 12(6), 1473.
[http://dx.doi.org/10.3390/cancers12061473] [PMID: 32516895]
[103]
Cohen, A.D.; Popat, R.; Trudel, S.; Richardson, P.G.; Libby, E.N.; Lendvai, N.; Anderson, L.D.; Sutherland, H.J.; DeWall, S.; Ellis, C.E.; He, Z.; Mazumdar, J.; Wang, C.; Opalinska, J.B.; Voorhees, P.M. First in human study with GSK2857916, an antibody-drug conjugated to microtubule-disrupting agent directed against B-Cell Maturation Antigen (BCMA) in patients with relapsed/refractory Multiple Myeloma (MM): Results from study BMA117159 Part 1 dose escalation. Blood, 2016, 128(22), 1148.
[104]
Figueroa-Vazquez, V.; Ko, J.; Breunig, C.; Baumann, A.; Giesen, N.; Pálfi, A.; Müller, C.; Lutz, C.; Hechler, T.; Kulke, M.; Müller-Tidow, C.; Krämer, A.; Goldschmidt, H.; Pahl, A.; Raab, M.S. HDP-101, an anti-BCMA antibody-drug conjugate, safely delivers amanitin to induce cell death in proliferating and resting multiple myeloma cells. Mol. Cancer Ther., 2021, 20(2), 367-378.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0287] [PMID: 33298585]
[105]
Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Hoos, A.; Gupta, I.; Bragulat, V.; He, Z.; Opalinska, J.B.; Cohen, A.D. Antibody-drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: An update on safety and efficacy from dose expansion phase I study. Blood Cancer J., 2019, 9(4), 37.
[http://dx.doi.org/10.1038/s41408-019-0196-6] [PMID: 30894515]
[106]
Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.O.; Callander, N.; Lendvai, N.; Sborov, D.; Suvannasankha, A.; Weisel, K.; Karlin, L.; Libby, E.; Arnulf, B.; Facon, T.; Hulin, C.; Kortüm, K.M.; Rodríguez-Otero, P.; Usmani, S.Z.; Hari, P.; Baz, R.; Quach, H.; Moreau, P.; Voorhees, P.M.; Gupta, I.; Hoos, A.; Zhi, E.; Baron, J.; Piontek, T.; Lewis, E.; Jewell, R.C.; Dettman, E.J.; Popat, R.; Esposti, S.D.; Opalinska, J.; Richardson, P.; Cohen, A.D. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol., 2020, 21(2), 207-221.
[http://dx.doi.org/10.1016/S1470-2045(19)30788-0] [PMID: 31859245]
[107]
Markham, A. Belantamab mafodotin: First approval. Drugs, 2020, 80, 1607-1613.
[http://dx.doi.org/10.1007/s40265-020-01404-x]
[108]
Guo, H.; Cruz-Munoz, M.E.; Wu, N.; Robbins, M.; Veillette, A. Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring SRC kinases, CD45, and SHIP-1 that is defective in multiple myeloma cells. Mol. Cell. Biol., 2015, 35(1), 41-51.
[http://dx.doi.org/10.1128/MCB.01107-14] [PMID: 25312647]
[109]
Vij, R.; Nath, R.; Afar, D.E.H.; Mateos, M.V.; Berdeja, J.G.; Raab, M.S.; Guenther, A.; Martínez-López, J.; Jakubowiak, A.J.; Leleu, X.; Weisel, K.; Wong, S.; Gulbranson, S.; Sheridan, J.P.; Reddy, A.; Paiva, B.; Singhal, A.; San-Miguel, J.F.; Moreau, P. First-in-human phase I study of ABBV-838, an antibody–drug conjugate targeting SLAMF7/CS1 in patients with relapsed and refractory multiple myeloma. Clin. Cancer Res., 2020, 26(10), 2308-2317.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1431] [PMID: 31969330]
[110]
Arumugam, T.; Deng, D.; Bover, L.; Wang, H.; Logsdon, C.D.; Ramachandran, V. New blocking antibodies against Novel AGR2–C4.4A pathway reduce growth and metastasis of pancreatic tumors and increase survival in mice. Mol. Cancer Ther., 2015, 14(4), 941-951.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0470] [PMID: 25646014]
[111]
Willuda, J.; Linden, L.; Lerchen, H.G.; Kopitz, C.; Stelte-Ludwig, B.; Pena, C.; Lange, C.; Golfier, S.; Kneip, C.; Carrigan, P.E.; Mclean, K.; Schuhmacher, J.; von Ahsen, O.; Müller, J.; Dittmer, F.; Beier, R.; El Sheikh, S.; Tebbe, J.; Leder, G.; Apeler, H.; Jautelat, R.; Ziegelbauer, K.; Kreft, B. Preclinical anti-tumor efficacy of BAY 1129980 - a novel auristatin-based anti-C4.4A (LYPD3) antibody-drug conjugate for the treatment of non-small cell lung cancer. Mol. Cancer Ther., 2017, 16(5), 893-904.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0474] [PMID: 28292941]
[112]
Chen, Y.; Clark, S.; Wong, T.; Chen, Y.; Chen, Y.; Dennis, M.S.; Luis, E.; Zhong, F.; Bheddah, S.; Koeppen, H.; Gogineni, A.; Ross, S.; Polakis, P.; Mallet, W. Armed antibodies targeting the mucin repeats of the ovarian cancer antigen, MUC16, are highly efficacious in animal tumor models. Cancer Res., 2007, 67(10), 4924-4932.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4512] [PMID: 17510422]
[113]
Das, S.; Batra, S.K. Understanding the unique attributes of MUC16 (CA125): potential implications in targeted therapy. Cancer Res., 2015, 75(22), 4669-4674.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1050] [PMID: 26527287]
[114]
Liu, J.F.; Moore, K.N.; Birrer, M.J.; Berlin, S.; Matulonis, U.A.; Infante, J.R.; Wolpin, B.; Poon, K.A.; Firestein, R.; Xu, J.; Kahn, R.; Wang, Y.; Wood, K.; Darbonne, W.C.; Lackner, M.R.; Kelley, S.K.; Lu, X.; Choi, Y.J.; Maslyar, D.; Humke, E.W.; Burris, H.A. Phase I study of safety and pharmacokinetics of the anti-MUC16 antibody-drug conjugate DMUC5754A in patients with platinum-resistant ovarian cancer or unresectable pancreatic cancer. Ann. Oncol., 2016, 27(11), 2124-2130.
[http://dx.doi.org/10.1093/annonc/mdw401] [PMID: 27793850]
[115]
Liu, J.F.; Moore, K.N.; Wang, J.S.; Patel, M.; Birrer, M.J.; Hamilton, E.; Barroilhet, L.; Flanagan, W.M.; Wang, Y.; Garg, A.; Lu, X.; Vaze, A.; Amin, D.; Leipold, D.; Commerford, S.R.; Humke, E.W.; Burris, H.A. Targeting MUC16 with the THIOMABTM-drug conjugate DMUC4064A in patients with platinum-resistant ovarian cancer: A Phase I escalation study. Cancer Res., 2017, 77(13)(Suppl.), CT009.
[116]
Lee, E.K.; Liu, J.F. Antibody-drug conjugates in gynecologic malignancies. Gynecol. Oncol., 2019, 153(3), 694-702.
[http://dx.doi.org/10.1016/j.ygyno.2019.03.245] [PMID: 30929824]
[117]
Menezes, D.; Abrams, T.J.; Karim, C.; Tang, Y.; Ying, C.; Miller, K.; Fanton, C.; Ghoddusi, M. Development and activity of a novel antibody-drug conjugate for the treatment of P-cadherin expressing cancers. Proc AACR, 2015, 1682.
[118]
Funase, Y.; Nakamura, E.; Kajita, M.; Saito, Y.; Oshikiri, S.; Kitano, M.; Tokura, M.; Hino, A.; Uehara, T. Preclinical characterization of radioimmunoconjugate 111In/90Y-FF-21101 against P-cadherin expressing tumor in mouse xenograft model and non-human primate. J. Nucl. Med., 2021, 62(2), 232-239.
[http://dx.doi.org/10.2967/jnumed.120.245837] [PMID: 32737245]
[119]
Bialucha, C.U.; Collins, S.D.; Li, X.; Saxena, P.; Zhang, X.; Dürr, C.; Lafont, B.; Prieur, P.; Shim, Y.; Mosher, R.; Lee, D.; Ostrom, L.; Hu, T.; Bilic, S.; Rajlic, I.L.; Capka, V.; Jiang, W.; Wagner, J.P.; Elliott, G.; Veloso, A.; Piel, J.C.; Flaherty, M.M.; Mansfield, K.G.; Meseck, E.K.; Rubic-Schneider, T.; London, A.S.; Tschantz, W.R.; Kurz, M.; Nguyen, D.; Bourret, A.; Meyer, M.J.; Faris, J.E.; Janatpour, M.J.; Chan, V.W.; Yoder, N.C.; Catcott, K.C.; McShea, M.A.; Sun, X.; Gao, H.; Williams, J.; Hofmann, F.; Engelman, J.A.; Ettenberg, S.A.; Sellers, W.R.; Lees, E. Discovery and optimization of HKT288, a cadherin-6 targeting ADC for the treatment of ovarian and renal cancers. Cancer Discov., 2017, 7(9), 1030-1045.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1414] [PMID: 28526733]
[120]
Tam, A.; Zambrowski, M.; Seiss, K.; Liu, S.Q.; Abrams, T.; Caponigro, G.; Tschantz, W.; Campbell, J. Using genome-wide CRISPR screen to understand resistance mechanisms to PCA062, a P-cadherin targeting antibody-drug conjugate. Cancer Res., 2019, 79(13)(Suppl.), 4743.
[121]
Petrul, H.M.; Schatz, C.A.; Kopitz, C.C.; Adnane, L.; McCabe, T.J.; Trail, P.; Ha, S.; Chang, Y.S.; Voznesensky, A.; Ranges, G.; Tamburini, P.P. Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79-4620 targeting human carbonic anhydrase 9. Mol. Cancer Ther., 2012, 11(2), 340-349.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0523] [PMID: 22147747]
[122]
Ziffels, B.; Stringhini, M.; Probst, P.; Fugmann, T.; Sturm, T.; Neri, D. Antibody-based delivery of cytokine payloads to carbonic anhydrase IX leads to cancer cures in immunocompetent tumor-bearing mice. Mol. Cancer Ther., 2019, 18(9), 1544-1554.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1301] [PMID: 31213507]
[123]
Cazzamalli, S.; Dal Corso, A.; Widmayer, F.; Neri, D. Chemically defined antibody- and small molecule-drug conjugates for in vivo tumor targeting applications: A comparative analysis. J. Am. Chem. Soc., 2018, 140(5), 1617-1621.
[http://dx.doi.org/10.1021/jacs.7b13361] [PMID: 29342352]
[124]
Rao, C.; Pan, C.; Huber, M.; Sattari, P.; Chong, C.; Dai, R.; Soderberg, C.; Chen, L.; Guerlavais, V.; Horgan, K.; Zhang, A.; Sufi, B.; Huang, H.; Chen, H.; Gangwar, S.; Cardarelli, P.; King, D. Efficacy study of anti-CD19 antibody drug-conjugates in Raji tumor xenograft and systemic model. Cancer Res., 2007, 67(9), 4104.
[125]
Gerber, H.P.; Morris-Tilden, C.; Stone, I.; Jonas, M.; Kung-Sutherland, M.; Miyamoto, J.; Brown, L.; Westendorf, L.; Meyer, D.; Sussman, D.; Carter, P.; Law, C.L.; Grewal, I. Humanized anti-CD19 auristatin antibody-drug conjugates display potent antitumor activity in preclinical models of B-cell malignancies. Mol. Cell. Ther., 2007, 6(11), B60.
[126]
Ingle, G.S.; Chan, P.; Elliott, J.M.; Chang, W.S.; Koeppen, H.; Stephan, J.P.; Scales, S.J. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br. J. Haematol., 2008, 140(1), 46-58.
[PMID: 17991300]
[127]
Wang, K.; Wei, G.; Liu, D. CD19: A biomarker for B cell development, lymphoma diagnosis and therapy. Exp. Hematol. Oncol., 2012, 1(1), 36.
[http://dx.doi.org/10.1186/2162-3619-1-36] [PMID: 23210908]
[128]
Jones, L.; McCalmont, H.; Evans, K.; Mayoh, C.; Kurmasheva, R.T.; Billups, C.A.; Houghton, P.J.; Smith, M.A.; Lock, R.B. Preclinical activity of the antibody-drug conjugate denintuzumab mafodotin (SGN-CD19A) against pediatric ALL xenografts. Pediatr. Blood Cancer, 2019, 66, e27765.
[http://dx.doi.org/10.1002/pbc.27765] [PMID: 31012549]
[129]
Van Epps, H.A.; Klussman, K.; Anderson, M.; Zeng, W.; Olson, D.; Ryan, M.; Albertson, T.; Law, C.L. Preclinical results of SGN-CD19A in combination with R-ICE or CHOP in non-Hodgkin lymphoma models. Cancer Res., 2015, 75(15)(Suppl.), 2541.
[130]
Law, C.L.; Cerveny, C.G.; Gordon, K.A.; Klussman, K.; Mixan, B.J.; Chace, D.F.; Meyer, D.L.; Doronina, S.O.; Siegall, C.B.; Francisco, J.A.; Senter, P.D.; Wahl, A.F. Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates. Clin. Cancer Res., 2004, 10(23), 7842-7851.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1028] [PMID: 15585616]
[131]
Dijoseph, J.F.; Dougher, M.M.; Armellino, D.C.; Kalyandrug, L.; Kunz, A.; Boghaert, E.R.; Hamann, P.R.; Damle, N.K. CD20-specific antibody-targeted chemotherapy of non-Hodgkin’s B-cell lymphoma using calicheamicin-conjugated rituximab. Cancer Immunol. Immunother., 2007, 56(7), 1107-1117.
[http://dx.doi.org/10.1007/s00262-006-0260-5] [PMID: 17160682]
[132]
Sharkey, R.; Karacay, H.; Rossi, E.; McBride, W.; Chang, C.H.; Goldenberg, D. Pretargeted radioimmunotherapy of non-Hodgkin’s lymphoma (NHL): Improved efficacy with less toxicity than 90Y-anti-CD20 IgG. Proc AACR, 2008.
[133]
Mehta, A.; Forero-Torres, A. Development and integration of antibody-drug conjugates in non-Hodgkin lymphoma. Curr. Oncol. Rep., 2015, 17(9), 41.
[http://dx.doi.org/10.1007/s11912-015-0466-9] [PMID: 26194424]
[134]
Sullivan-Chang, L.; O’Donnell, R.T.; Tuscano, J.M. Targeting CD22 in B-cell malignancies: Current status and clinical outlook. BioDrugs, 2013, 27(4), 293-304.
[http://dx.doi.org/10.1007/s40259-013-0016-7] [PMID: 23696252]
[135]
Shor, B.; Gerber, H-P.; Sapra, P. Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. Mol. Immunol., 2015, 67(2 Pt A), 107-116.
[http://dx.doi.org/10.1016/j.molimm.2014.09.014] [PMID: 25304309]
[136]
Ogura, M.; Tobinai, K.; Hatake, K.; Davies, A.; Crump, M.; Ananthakrishnan, R.; Ishibashi, T.; Paccagnella, M.L.; Boni, J.; Vandendries, E.; MacDonald, D. Phase 1 study of inotuzumab ozogamicin combined with R-CVP for relapsed/refractory CD22+ B-cell non-Hodgkin lymphoma. Clin. Cancer Res., 2016, 22(19), 4807-4816.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2488] [PMID: 27154915]
[137]
Li, D.; Poon, K.A.; Yu, S.F.; Dere, R.; Go, M.; Lau, J.; Zheng, B.; Elkins, K.; Danilenko, D.; Kozak, K.R.; Chan, P.; Chuh, J.; Shi, X.; Nazzal, D.; Fuh, F.; McBride, J.; Ramakrishnan, V.; de Tute, R.; Rawstron, A.; Jack, A.S.; Deng, R.; Chu, Y.W.; Dornan, D.; Williams, M.; Ho, W.; Ebens, A.; Prabhu, S.; Polson, A.G. DCDT2980S, an anti-CD22-monomethyl auristatin E antibody-drug conjugate, is a potential treatment for non-Hodgkin lymphoma. Mol. Cancer Ther., 2013, 12(7), 1255-1265.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1173] [PMID: 23598530]
[138]
Yurkiewicz, I.R.; Muffly, L.; Liedtke, M. Inotuzumab ozogamicin: A CD22 mAb-drug conjugate for adult relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Drug Des. Devel. Ther., 2018, 12, 2293-2300.
[http://dx.doi.org/10.2147/DDDT.S150317] [PMID: 30087554]
[139]
Aujla, A.; Aujla, R.; Liu, D. Inotuzumab ozogamicin in clinical development for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Biomark. Res., 2019, 7, 9.
[http://dx.doi.org/10.1186/s40364-019-0160-4] [PMID: 31011424]
[140]
Al-Salama, Z.T. Inotuzumab ozogamicin: A review in relapsed/refractory B-cell acute lymphoblastic leukemia. Target. Oncol., 2018, 13(4), 525-532.
[http://dx.doi.org/10.1007/s11523-018-0584-z] [PMID: 30090971]
[141]
Uy, N.; Nadeau, M.; Stahl, M.; Zeidan, A.M. Inotuzumab ozogamicin in the treatment of relapsed/refractory acute B cell lymphoblastic leukemia. J. Blood Med., 2018, 9, 67-74.
[http://dx.doi.org/10.2147/JBM.S136575] [PMID: 29713210]
[142]
Advani, A.; Coiffier, B.; Czuczman, M.S.; Dreyling, M.; Foran, J.; Gine, E.; Gisselbrecht, C.; Ketterer, N.; Nasta, S.; Rohatiner, A.; Schmidt-Wolf, I.G.; Schuler, M.; Sierra, J.; Smith, M.R.; Verhoef, G.; Winter, J.N.; Boni, J.; Vandendries, E.; Shapiro, M.; Fayad, L. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: Results of a phase I study. J. Clin. Oncol., 2010, 28(12), 2085-2093.
[http://dx.doi.org/10.1200/JCO.2009.25.1900] [PMID: 20308665]
[143]
Dijoseph, J.F.; Dougher, M.M.; Armellino, D.C.; Evans, D.Y.; Damle, N.K. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia, 2007, 21(11), 2240-2245.
[http://dx.doi.org/10.1038/sj.leu.2404866] [PMID: 17657218]
[144]
Advani, R.H.; Lebovic, D.; Chen, A.; Brunvand, M.; Goy, A.; Chang, J.E.; Hochberg, E.; Yalamanchili, S.; Kahn, R.; Lu, D.; Agarwal, P.; Dere, R.C.; Hsieh, H.J.; Jones, S.; Chu, Y.W.; Cheson, B.D. Phase I study of the anti-CD22 antibody-drug conjugate pinatuzumab vedotin with/without rituximab in patients with relapsed/refractory B-cell non-Hodgkin’s lymphoma. Clin. Cancer Res., 2017, 23(5), 1167-1176.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0772] [PMID: 27601593]
[145]
Yu, S.F.; Zheng, B.; Go, M.; Lau, J.; Spencer, S.; Raab, H.; Soriano, R.; Jhunjhunwala, S.; Cohen, R.; Caruso, M.; Polakis, P.; Flygare, J.; Polson, A.G. A novel anti-CD22 anthracycline-based Antibody-Drug Conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin. Cancer Res., 2015, 21(14), 3298-3306.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2035] [PMID: 25840969]
[146]
Drake, P.M.; Carlson, A.; McFarland, J.M.; Bañas, S.; Barfield, R.M.; Zmolek, W.; Kim, Y.C.; Huang, B.C.B.; Kudirka, R.; Rabuka, D. CAT-02-106, a site-specifically conjugated anti-CD22 antibody bearing an MDR1-resistant maytansine payload yields excellent efficacy and safety in preclinical models. Mol. Cancer Ther., 2018, 17(1), 161-168.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0776] [PMID: 29142069]
[147]
Yu, S.F.; Lee, D.W.; Zheng, B.; Del Rosario, G.; Leipold, D.; Booler, H.; Zhong, F.; Carrasco-Triguero, M.; Hong, K.; Yan, P.; Rowntree, R.K.; Schutten, M.M.; Pillow, T.; Sadowsky, J.D.; Dragovich, P.S.; Polson, A.G.; Polson, A.G. An anti-CD22-seco-CBI-Dimer antibody-drug conjugate (ADC) for the treatment of non-Hodgkin lymphoma that provides a longer duration of response than auristatin based ADCs in preclinical models. Mol. Cancer Ther., 2021, 20(2), 340-346.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0046] [PMID: 33273056]
[148]
Flynn, M.J.; Zammarchi, F.; Tyrer, P.C.; Akarca, A.U.; Janghra, N.; Britten, C.E.; Havenith, C.E.G.; Levy, J.N.; Tiberghien, A.; Masterson, L.A.; Barry, C.; D’Hooge, F.; Marafioti, T.; Parren, P.W.; Williams, D.G.; Howard, P.W.; van Berkel, P.H.; Hartley, J.A. ADCT-301, a Pyrrolobenzodiazepine (PBD) dimer-containing Antibody-Drug Conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol. Cancer Ther., 2016, 15(11), 2709-2721.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0233] [PMID: 27535974]
[149]
Hayashi, M.; Madokoro, H.; Yamada, K.; Nishida, H.; Morimoto, C.; Sakamoto, M.; Yanagawa, H.; Yamada, T. Novel antibody-drug conjugate with anti-CD26 humanized monoclonal antibody and TFIIH inhibitor, triptolide, inhibits tumor growth via impairing mRNA synthesis. Cancers (Basel), 2019, 11, 1138.
[http://dx.doi.org/10.3390/cancers11081138] [PMID: 31398954]
[150]
Shea, L.; Mehta-Shah, N. Brentuximab vedotin in the treatment of peripheral T cell lymphoma and cutaneous T cell lymphoma. Curr. Hematol. Malig. Rep., 2020, 15(1), 9-19.
[http://dx.doi.org/10.1007/s11899-020-00561-w] [PMID: 32016790]
[151]
Viviani, S.; Guidetti, A. Efficacy of antibody-drug conjugate brentuximab vedotin in treating Hodgkin’s lymphoma. Expert Opin. Biol. Ther., 2018, 18(8), 841-849.
[http://dx.doi.org/10.1080/14712598.2018.1499723] [PMID: 29999431]
[152]
Van Der Weyden, C.; Dickinson, M.; Whisstock, J.; Prince, H.M. Brentuximab vedotin in T-cell lymphoma. Expert Rev. Hematol., 2019, 12(1), 5-19.
[http://dx.doi.org/10.1080/17474086.2019.1558399] [PMID: 30526166]
[153]
Makita, S.; Maruyama, D.; Tobinai, K. Safety and efficacy of brentuximab vedotin in the treatment of classic Hodgkin lymphoma. OncoTargets Ther., 2020, 13, 5993-6009.
[http://dx.doi.org/10.1093/jnci/93.2.121] [PMID: 32606807]
[154]
Donato, E.M.; Fernández-Zarzoso, M.; Hueso, J.A.; de la Rubia, J. Brentuximab vedotin in Hodgkin lymphoma and anaplastic large-cell lymphoma: An evidence-based review. OncoTargets Ther., 2018, 11, 4583-4590.
[http://dx.doi.org/10.2147/OTT.S141053] [PMID: 30122950]
[155]
O’Connor, O.; Pro, B.; Illidge, T.; Trumper, L.H.; Larsen, E.K.; Manley, T.J. Phase III trial of brentuximab vedotin and CHP versus CHOP in the frontline treatment of patients (pts) with CD30+ mature T-cell lymphomas (MTCL). J. Clin. Oncol., 2015, 33, TPS8605.
[156]
Diefenbach, C.S.M.; Li, H.; Kahl, B.S.; Robertson, M.J.; Cohen, J.; Advani, R.H.; Ambinder, R. A phase I study with an expansion cohort of the combination of ipilimumab and brentuximab vedotin in patients with relapsed/refractory Hodgkin lymphoma: A trial of the ECOG-ACRIN Cancer Research Group (E4412). J.U. Clin. Oncol., 2015, 33, TPS8602.
[157]
Tactildiz, N.; Unal, E.; Yavuz, G.; Dincaslan, H.; Tanyildiz, G.; Pekpak, E. A targeted salvage therapy with brentuximab vedotin in heavily treated refractory or relapsed pediatric Hodgkin lymphoma patients who received autologous stem cell transplantation (ASCT). J. Clin. Oncol., 2015, 33, e21002.
[158]
Lhospice, F.; Brégeon, D.; Belmant, C.; Dennler, P.; Chiotellis, A.; Fischer, E.; Gauthier, L.; Boëdec, A.; Rispaud, H.; Savard-Chambard, S.; Represa, A.; Schneider, N.; Paturel, C.; Sapet, M.; Delcambre, C.; Ingoure, S.; Viaud, N.; Bonnafous, C.; Schibli, R.; Romagné, F. Site-specific conjugation of monomethyl auristatin E to anti-CD30 antibodies improves their pharmacokinetics and therapeutic index in rodent models. Mol. Pharm., 2015, 12(6), 1863-1871.
[http://dx.doi.org/10.1021/mp500666j] [PMID: 25625323]
[159]
Gardai, S.J.; Epp, A.; Law, C.L. Brentuximab vedotin-mediated immunogenic cell death. Cancer Res., 2015, 75(15)(Suppl.), 2469.
[160]
Locatelli, S.L.; Careddu, G.; Viswanadha, S.; Vakkalanka, S.; Castagna, L.; Santoro, A.; Carlo-Stella, C. The dual PI3K d/g inhibitor RP6530 in combination with brentuimab vedotin (SGN- 35) synergistically induces cell death via inhibition of tubulin polymerization in Hodgkin lymphoma cell lines. Proc AACR, 2015, p. 2420.
[161]
Ansell, S.M. Brentuximab vedotin. Blood, 2014, 124(22), 3197-3200.
[http://dx.doi.org/10.1182/blood-2014-06-537514] [PMID: 25293772]
[162]
Horwitz, S.; O’Connor, O.A.; Pro, B.; Illidge, T.; Fanale, M.; Advani, R.; Bartlett, N.L.; Christensen, J.H.; Morschhauser, F.; Domingo-Domenech, E.; Rossi, G.; Kim, W.S.; Feldman, T.; Lennard, A.; Belada, D.; Illés, Á.; Tobinai, K.; Tsukasaki, K.; Yeh, S.P.; Shustov, A.; Hüttmann, A.; Savage, K.J.; Yuen, S.; Iyer, S.; Zinzani, P.L.; Hua, Z.; Little, M.; Rao, S.; Woolery, J.; Manley, T.; Trümper, L. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet, 2019, 393(10168), 229-240.
[http://dx.doi.org/10.1016/S0140-6736(18)32984-2] [PMID: 30522922]
[163]
Younes, A.; Bartlett, N.L.; Leonard, J.P.; Kennedy, D.A.; Lynch, C.M.; Sievers, E.L.; Forero-Torres, A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med., 2010, 363(19), 1812-1821.
[http://dx.doi.org/10.1056/NEJMoa1002965] [PMID: 21047225]
[164]
Zinzani, P.L.; Sasse, S.; Radford, J.; Shonukan, O.; Bonthapally, V. Experience of brentuximab vedotin in relapsed/refractory Hodgkin lymphoma in the Named Patient Program: Review of the literature. Crit. Rev. Oncol. Hematol., 2015, 95, 359-369.
[http://dx.doi.org/10.1016/j.critrevonc.2015.03.011] [PMID: 25964164]
[165]
Li, F.; Emmerton, K.K.; Jonas, M.; Zhang, X.; Miyamoto, J.B.; Setter, J.R.; Nicholas, N.D.; Okeley, N.M.; Lyon, R.P.; Benjamin, D.R.; Law, C.L. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res., 2016, 76(9), 2710-2719.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1795] [PMID: 26921341]
[166]
Tarlock, K.; Alonzo, T.A.; Gerbing, R.B.; Raimondi, S.C.; Hirsch, B.A.; Sung, L.; Pollard, J.A.; Aplenc, R.; Loken, M.R.; Gamis, A.S.; Meshinchi, S. Gemtuzumab ozogamicin reduces relapse risk in FLT3/ITD acute myeloid leukemia: A report from the Children’s Oncology Group. Clin. Cancer Res., 2016, 22(8), 1951-1957.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1349] [PMID: 26644412]
[167]
Kung Sutherland, M.S.; Walter, R.B.; Jeffrey, S.C.; Burke, P.J.; Yu, C.; Kostner, H.; Stone, I.; Ryan, M.C.; Sussman, D.; Lyon, R.P.; Zeng, W.; Harrington, K.H.; Klussman, K.; Westendorf, L.; Meyer, D.; Bernstein, I.D.; Senter, P.D.; Benjamin, D.R.; Drachman, J.G.; McEarchern, J.A. SGN-CD33A: A novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood, 2013, 122(8), 1455-1463.
[http://dx.doi.org/10.1182/blood-2013-03-491506] [PMID: 23770776]
[168]
Baron, J.; Wang, E.S. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev. Clin. Pharmacol., 2018, 11(6), 549-559.
[http://dx.doi.org/10.1080/17512433.2018.1478725] [PMID: 29787320]
[169]
Yu, B.; Liu, D. Gemtuzumab ozogamicin and novel antibody-drug conjugates in clinical trials for acute myeloid leukemia. Biomark. Res., 2019, 7, 24.
[http://dx.doi.org/10.1186/s40364-019-0175-x] [PMID: 31695916]
[170]
Egan, P.C.; Reagan, J.L. The return of gemtuzumab ozogamicin: A humanized anti-CD33 monoclonal antibody-drug conjugate for the treatment of newly diagnosed acute myeloid leukemia. OncoTargets Ther., 2018, 11, 8265-8272.
[http://dx.doi.org/10.2147/OTT.S150807] [PMID: 30538495]
[171]
Lai, K.C.; Shah, P.; Sikka, S.; Sun, X.X.; LaLeau, R.; Whiteman, K.R.; Johnson-Modafferi, H.; Wilhelm, A. Plasma pharmacokinetics and tumor accumulation in mice of IMGN779, an antibody-drug conjugate for acute myeloid leukemia. Cancer Res., 2015, 75(15)(Suppl.), 4504.
[172]
Kennedy, D.A.; Alley, S.C.; Zhao, B.; Feldman, E.J. O’Meara, Sutherland M. SGN-CD33A: Preclinical and phase 1 interim clinical trial results of a CD33A-directed PBD dimer antibody-drug conjugate for the treatment of acute myeloid leukemia (AML). Cancer Res., 2015, 75(15)(Suppl.), DDT02-DDT04.
[173]
Hagemann, U.B.; Borrebaek, J.; O’Shea, A.; Wang, E.; Wickstrom, K.; Bjerke, R.M.; Karlsson, J. In vivo efficacy of a novel anti-CD33 targeted conjugate (TTC) in mouse models of acute myeloid leukemia (AML). Cancer Res., 2015, 75(15)(Suppl.), 2462.
[174]
Ricart, A.D. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin. Cancer Res., 2011, 17(20), 6417-6427.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0486] [PMID: 22003069]
[175]
Miller, M.L.; Fishkin, N.E.; Li, W.; Whiteman, K.R.; Kovtun, Y.; Reid, E.E.; Archer, K.E.; Maloney, E.K.; Audette, C.A.; Mayo, M.F.; Wilhelm, A.; Modafferi, H.A.; Singh, R.; Pinkas, J.; Goldmacher, V.; Lambert, J.M.; Chari, R.V. A new class of antibody-drug conjugates with potent DNA alkylating activity. Mol. Cancer Ther., 2016, 15(8), 1870-1878.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0184] [PMID: 27216304]
[176]
Stein, E.M.; Walter, R.B.; Erba, H.P.; Fathi, A.T.; Advani, A.S.; Lancet, J.E.; Ravandi, F.; Kovacsovics, T.; DeAngelo, D.J.; Bixby, D.; Faderl, S.; Jillella, A.P.; Ho, P.A.; O’Meara, M.M.; Zhao, B.; Biddle-Snead, C.; Stein, A.S. A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33-positive acute myeloid leukemia. Blood, 2018, 131(4), 387-396.
[http://dx.doi.org/10.1182/blood-2017-06-789800] [PMID: 29196412]
[177]
Walter, R.B. Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin. Investig. Drugs, 2018, 27(4), 339-348.
[http://dx.doi.org/10.1080/13543784.2018.1452911] [PMID: 29534618]
[178]
Kovtun, Y.; Noordhuis, P.; Whiteman, K.R.; Watkins, K.; Jones, G.E.; Harvey, L.; Lai, K.C.; Portwood, S.; Adams, S.; Sloss, C.M.; Schuurhuis, G.J.; Ossenkoppele, G.; Wang, E.S.; Pinkas, J. IMGN779, a novel CD33-targeting antibody– drug conjugate with DNA-alkylating activity, exhibits potent antitumor activity in models of AML. Mol. Cancer Ther., 2018, 17(6), 1271-1279.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1077] [PMID: 29588393]
[179]
Guffroy, M.; Falahatpisheh, H.; Biddle, K.; Kreeger, J.; Obert, L.; Walters, K.; Goldstein, R.; Boucher, G.; Coskran, T.; Reagan, W.; Sullivan, D.; Huang, C.; Sokolowski, S.; Giovanelli, R.; Gerber, H.P.; Finkelstein, M.; Khan, N. Liver microvascular injury and thrombocytopenia of antibody-calicheamicin conjugates in cynomolgus monkeys-mechanism and monitoring. Clin. Cancer Res., 2017, 23(7), 1760-1770.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0939] [PMID: 27683177]
[180]
Han, Y.C.; Kahler, J.; Piché-Nicholas, N.; Hu, W.; Thibault, S.; Jiang, F.; Leal, M.; Katragadda, M.; Maderna, A.; Dushin, R.; Prashad, N.; Charati, M.B.; Clark, T.; Tumey, L.N.; Tan, X.; Giannakou, A.; Rosfjord, E.; Gerber, H.P.; Tchistiakova, L.; Loganzo, F.; O’Donnell, C.J.; Sapra, P. Development of highly optimized Antibody-Drug Conjugates (ADC) against CD33 and CD123 for acute myeloid leukemia. Clin. Cancer Res., 2021, 27(2), 622-631.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2149] [PMID: 33148666]
[181]
Pereira, D.S.; Guevara, C.I.; Jin, L.; Mbong, N.; Verlinsky, A.; Hsu, S.J.; Aviña, H.; Karki, S.; Abad, J.D.; Yang, P.; Moon, S.J.; Malik, F.; Choi, M.Y.; An, Z.; Morrison, K.; Challita-Eid, P.M.; Doñate, F.; Joseph, I.B.; Kipps, T.J.; Dick, J.E.; Stover, D.R. AGS67E, an anti-CD37 monomethyl auristatin E antibody-drug conjugate as a potential therapeutic for B/T-cell malignancies and AML: A new role for CD37 in AML. Mol. Cancer Ther., 2015, 14(7), 1650-1660.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0067] [PMID: 25934707]
[182]
Hicks, S.W.; Lai, K.C.; Gavrilescu, L.C.; Yi, Y.; Sikka, S.; Shah, P.; Kelly, M.E.; Lee, J.; Lanieri, L.; Ponte, J.F.; Sloss, C.M.; Romanelli, A. The antitumor activity of IMGN529, a CD37-targeting antibody-drug conjugate, is potentiated by rituximab in non-Hodgkin lymphoma models. Neoplasia, 2017, 19(9), 661-671.
[http://dx.doi.org/10.1016/j.neo.2017.06.001] [PMID: 28753442]
[183]
Prident, J.R.; Marshall, D.J.; Murphy, J.; Malavasi, F. An anti-CD38 antibody drug conjugate for treatment of diverse hematologic malignancies. Proc AACR, 2015.
[http://dx.doi.org/10.1158/1538-7445.AM2015-953]
[184]
Li, L.; Tong, W.; Lau, M.; Fells, K.; Zhu, T.; Sun, Y.; Kovacs, E.; Khasanov, A.; Yan, Z.; Deng, D.; Takeshita, K.; Kaufmann, G.F.; Ji, H.; Li, H.; Zhang, H. Preclinical development of an anti-CD38 antibody-drug conjugate for treatment of hematological malignancies. Blood, 2019, 134(Suppl. 1), 5621.
[http://dx.doi.org/10.1182/blood-2019-132062]
[185]
Irenaeus, S.M.M.; Nielsen, D.; Ellmark, P.; Yachnin, J.; Deronic, A.; Nilsson, A.; Norlén, P.; Veitonmäki, N.; Wennersten, C.S.; Ullenhag, G.J. First-in-human study with intratumoral administration of a CD40 agonistic antibody, ADC-1013, in advanced solid malignancies. Int. J. Cancer, 2019, 145(5), 1189-1199.
[http://dx.doi.org/10.1002/ijc.32141] [PMID: 30664811]
[186]
Neff-LaFord, H; Grilley-Olson, JE; Smith, DC; Curti, B; Goel, S; Kuzel, TM; Markovic, SV; Rixe, O; Bajor, DL; Gajewski, TF; Gutierrez, M; Heath, EI; Thompson, J; Ansari, S; Gardai, S; Jacquemont, C; Schmitt, M; Coveler, AL SEA-CD40 is a non-fucosylated anti-CD40 antibody with potent pharmacodynamic activity in preclinical models and patients with advanced solid tumors. Cancer Res., 2020, 80(16)(Suppl.), 5535.
[187]
Sherbenou, D.W.; Aftab, B.T.; Su, Y.; Behrens, C.R.; Wiita, A.; Logan, A.C.; Acosta-Alvear, D.; Hann, B.C.; Walter, P.; Shuman, M.A.; Wu, X.; Atkinson, J.P.; Wolf, J.L.; Martin, T.G.; Liu, B. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. J. Clin. Invest., 2016, 126(12), 4640-4653.
[http://dx.doi.org/10.1172/JCI85856] [PMID: 27841764]
[188]
Su, Y.; Liu, Y.; Behrens, C.R.; Bidlingmaier, S.; Lee, N.K.; Aggarwal, R.; Sherbenou, D.W.; Burlingame, A.L.; Hann, B.C.; Simko, J.P.; Premasekharan, G.; Paris, P.L.; Shuman, M.A.; Seo, Y.; Small, E.J.; Liu, B. Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer. JCI Insight, 2018, 3(17), e121497.
[http://dx.doi.org/10.1172/jci.insight.121497] [PMID: 30185663]
[189]
Sherbenou, D.W.; Su, Y.; Behrens, C.R.; Aftab, B.T.; Perez de Acha, O.; Murnane, M.; Bearrows, S.C.; Hann, B.C.; Wolf, J.L.; Martin, T.G.; Liu, B. Potent activity of an anti-ICAM1 antibody-drug conjugate against multiple myeloma. Clin. Cancer Res., 2020, 26(22), 6028-6038.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0400] [PMID: 32917735]
[190]
Tassone, P.; Gozzini, A.; Goldmacher, V.; Shammas, M.A.; Whiteman, K.R.; Carrasco, D.R.; Li, C.; Allam, C.K.; Venuta, S.; Anderson, K.C.; Munshi, N.C. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2'-deacetyl-N2'-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res., 2004, 64(13), 4629-4636.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0142] [PMID: 15231675]
[191]
Ishitsuka, K.; Jimi, S.; Goldmacher, V.S.; Ab, O.; Tamura, K. Targeting CD56 by the maytansinoid immunoconjugate IMGN901 (huN901-DM1): A potential therapeutic modality implication against natural killer/T cell malignancy. Br. J. Haematol., 2008, 141(1), 129-131.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07000.x] [PMID: 18279455]
[192]
Whiteman, K.; Ab, O.; Bartle, L.; Foley, K.; Goldmacher, V.; Lutz, R. Efficacy of IMGN901 (huN901-DM1) in combination with bortezomib and lenalidomide against multiple myeloma cells in preclinical studies. Cancer Res., 2015, 68(9)(Suppl.), 2146.
[193]
Lutz, R.; Ab, O.; Foley, K.; Goldmacher, V.; Whiteman, K.; Xie, H.; Fram, R. Efficacy of the huN901-DM1 conjugate in combination with antineoplastic agents against multiple myeloma cells in preclinical studies. Cancer Res., 2015, 67(9)(Suppl.), 5577.
[194]
McCann, J.; Fossella, F.V.; Villalona-Calero, M.A.; Tolcher, A.W.; Fidias, P.; Raju, R.; Zildjian, S.; Guild, R.; Fram, R. Phase II trial of huN901-DM1 in patients with relapsed small cell lung cancer (SCLC) and CD56-positive small cell carcinoma. J. Clin. Oncol., 2007, 25(Suppl. 18), 18084.
[195]
Feng, Y.; Wang, Y.; Zhu, Z.; Li, W.; Sussman, R.T.; Randall, M.; Bosse, K.R.; Maris, J.M.; Dimitrov, D.S. Differential killing of CD56-expressing cells by drug-conjugated human antibodies targeting membrane-distal and membrane-proximal non-overlapping epitopes. MAbs, 2016, 8(4), 799-810.
[http://dx.doi.org/10.1080/19420862.2016.1155014] [PMID: 26910291]
[196]
Shah, M.H.; Lorigan, P.; O’Brien, M.E.R.; Fossella, F.V.; Moore, K.N.; Bhatia, S.; Kirby, M.; Woll, P.J. Phase I study of IMGN901, a CD56-targeting antibody-drug conjugate, in patients with CD56-positive solid tumors. Invest. New Drugs, 2016, 34(3), 290-299.
[http://dx.doi.org/10.1007/s10637-016-0336-9] [PMID: 26961907]
[197]
Ailawadhi, S.; Kelly, K.R.; Vescio, R.A.; Jagannath, S.; Wolf, J.; Gharibo, M.; Sher, T.; Bojanini, L.; Kirby, M.; Chanan-Khan, A. A phase I study to assess the safety and pharmacokinetics of single-agent lorvotuzumab mertansine (IMGN901) in patients with relapsed and/or refractory CD56-positive multiple myeloma. Clin. Lymphoma Myeloma Leuk., 2019, 19(1), 29-34.
[http://dx.doi.org/10.1016/j.clml.2018.08.018] [PMID: 30340993]
[198]
Wood, A.C.; Maris, J.M.; Gorlick, R.; Kolb, E.A.; Keir, S.T.; Reynolds, C.P.; Kang, M.H.; Wu, J.; Kurmasheva, R.T.; Whiteman, K.; Houghton, P.J.; Smith, M.A. Initial testing (Stage 1) of the antibody-maytansinoid conjugate, IMGN901 (Lorvotuzumab mertansine), by the pediatric preclinical testing program. Pediatr. Blood Cancer, 2013, 60(11), 1860-1867.
[http://dx.doi.org/10.1002/pbc.24647] [PMID: 23798344]
[199]
Yu, L.; Lu, Y.; Yao, Y.; Liu, Y.; Wang, Y.; Lai, Q.; Zhang, R.; Li, W.; Wang, R.; Fu, Y.; Tao, Y.; Yi, S.; Gou, L.; Chen, L.; Yang, J. Promiximab-duocarmycin, a new CD56 antibody-drug conjugates, is highly efficacious in small cell lung cancer xenograft models. Oncotarget, 2017, 9(4), 5197-5207.
[http://dx.doi.org/10.18632/oncotarget.23708] [PMID: 29435172]
[200]
Sandall, S.L.; McCormick, R.; Miyamoto, J. SGN-CD70A, a pyrrolobenzodiazepine (PBD) dimer linked ADC, mediates DNA damage pathway activation and G2 cell cycle arrest leading to cell death. Cancer Res., 2015, 75(15 suppl), p. Abs. 946.
[201]
Law, C.L.; Gordon, K.A.; Toki, B.E.; Yamane, A.K.; Hering, M.A.; Cerveny, C.G.; Petroziello, J.M.; Ryan, M.C.; Smith, L.; Simon, R.; Sauter, G.; Oflazoglu, E.; Doronina, S.O.; Meyer, D.L.; Francisco, J.A.; Carter, P.; Senter, P.D.; Copland, J.A.; Wood, C.G.; Wahl, A.F. Lymphocyte activation antigen CD70 expressed by renal cell carcinoma is a potential therapeutic target for anti-CD70 antibody-drug conjugates. Cancer Res., 2006, 66(4), 2328-2337.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2883] [PMID: 16489038]
[202]
Oflazoglu, E.; Stone, I.J.; Gordon, K.; Wood, C.G.; Repasky, E.A.; Grewal, I.S.; Law, C.L.; Gerber, H.P. Potent anticarcinoma activity of the humanized anti-CD70 antibody H1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin. Cancer Res., 2008, 14(19), 6171-6180.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0916] [PMID: 18809969]
[203]
McDonagh, C.F.; Kim, K.M.; Turcott, E.; Brown, L.L.; Westendorf, L.; Feist, T.; Sussman, D.; Stone, I.; Anderson, M.; Miyamoto, J.; Lyon, R.; Alley, S.C.; Gerber, H.P.; Carter, P.J. Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol. Cancer Ther., 2008, 7(9), 2913-2923.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0295] [PMID: 18790772]
[204]
Tannir, N.M.; Forero-Torres, A.; Ramchandren, R.; Pal, S.K.; Ansell, S.M.; Infante, J.R.; de Vos, S.; Hamlin, P.A.; Kim, S.K.; Whiting, N.C.; Gartner, E.M.; Zhao, B.; Thompson, J.A. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma. Invest. New Drugs, 2014, 32(6), 1246-1257.
[http://dx.doi.org/10.1007/s10637-014-0151-0] [PMID: 25142258]
[205]
Owonikoko, T.K.; Hussain, A.; Stadler, W.M.; Smith, D.C.; Kluger, H.; Molina, A.M.; Gulati, P.; Shah, A.; Ahlers, C.M.; Cardarelli, P.M.; Cohen, L.J. First-in-human multicenter phase I study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70. Cancer Chemother. Pharmacol., 2016, 77(1), 155-162.
[http://dx.doi.org/10.1007/s00280-015-2909-2] [PMID: 26576779]
[206]
Phillips, T.; Barr, P.M.; Park, S.I.; Kolibaba, K.; Caimi, P.F.; Chhabra, S.; Kingsley, E.C.; Boyd, T.; Chen, R.; Carret, A.S.; Gartner, E.M.; Li, H.; Yu, C.; Smith, D.C. A phase 1 trial of SGN-CD70A in patients with CD70-positive diffuse large B cell lymphoma and mantle cell lymphoma. Invest. New Drugs, 2019, 37(2), 297-306.
[http://dx.doi.org/10.1007/s10637-018-0655-0] [PMID: 30132271]
[207]
Pal, S.K.; Forero-Torres, A.; Thompson, J.A.; Morris, J.C.; Chhabra, S.; Hoimes, C.J.; Vogelzang, N.J.; Boyd, T.; Bergerot, P.G.; Adashek, J.J.; Li, H.; Yu, X.; Gartner, E.M.; Carret, A.S.; Smith, D.C. A phase 1 trial of SGN-CD70A in patients with CD70-positive, metastatic renal cell carcinoma. Cancer, 2019, 125(7), 1124-1132.
[http://dx.doi.org/10.1002/cncr.31912] [PMID: 30624766]
[208]
Jin, R.; Liu, L.; Xing, Y.; Meng, T.; Ma, L.; Pei, J.; Cong, Y.; Zhang, X.; Ren, Z.; Wang, X.; Shen, J.; Yu, K. Dual mechanisms of novel CD73-targeted antibody and antibody-drug conjugate in inhibiting lung tumor growth and promoting antitumor immune-effector function. Mol. Cancer Ther., 2020, 19(11), 2340-2352.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0076] [PMID: 32943546]
[209]
Griffiths, G.L.; Mattes, M.J.; Stein, R.; Govindan, S.V.; Horak, I.D.; Hansen, H.J.; Goldenberg, D.M. Cure of SCID mice bearing human B-lymphoma xenografts by an anti-CD74 antibody-anthracycline drug conjugate. Clin. Cancer Res., 2003, 9(17), 6567-6571.
[PMID: 14695162]
[210]
Sapra, P.; Stein, R.; Pickett, J.; Qu, Z.; Govindan, S.V.; Cardillo, T.M.; Hansen, H.J.; Horak, I.D.; Griffiths, G.L.; Goldenberg, D.M. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin. Cancer Res., 2005, 11(14), 5257-5264.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0204] [PMID: 16033844]
[211]
Govindan, S.V.; Cardillo, T.M.; Sharkey, R.M.; Tat, F.; Gold, D.V.; Goldenberg, D.M. Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers. Mol. Cancer Ther., 2013, 12(6), 968-978.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1170] [PMID: 23427296]
[212]
Shah, N.N.; Krishnan, A.Y.; Shah, N.D.; Burke, J.M.; Melear, J.M.; Spira, A.I.; Popplewell, L.L.; Andreadis, C.B.; Chhabra, S.; Sharman, J.P.; Kaufman, J.L.; Cohen, J.B.; Niesvizky, R.; Martin, T.G.; DiLea, C.; Kuriakose, J.; Matheny, S.L.; Leonard, J.P.; Molina, A. Preliminary results of a phase 1 dose escalation study of the first-in-class anti-CD74 antibody drug conjugate (ADC), STRO-001, in patients with advanced B-cell malignancies. Blood, 2019, 134(Suppl. 1), 5329.
[213]
Choi, Y.; Diefenbach, C.S. Polatuzumab vedotin: A new target for B cell malignancies. Curr. Hematol. Malig. Rep., 2020, 15(2), 125-129.
[http://dx.doi.org/10.1007/s11899-020-00572-7] [PMID: 32172360]
[214]
Advani, R.H.; Flinn, I.; Sharman, J.P.; Diefenbach, C.S.M.; Kolobaba, K.S.; Press, O.W.; Sehn, L.H. Two doses of polatuzumab vedotin (PoV, anti-CD79b antibody-drug conjugate) in patients (pts) with relapsed/refractory (RR) follicular lymphoma (FL): Durable responses at lower dose level. J. Clin. Oncol., 2015, 33 suppl, 8503.
[215]
Sawalha, Y.; Maddocks, K. Profile of polatuzumab vedotin in the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: A brief report on the emerging clinical data. OncoTargets Ther., 2020, 13, 5123-5133.
[http://dx.doi.org/10.2147/OTT.S219449] [PMID: 32606733]
[216]
Deeks, E.D. Polatuzumab vedotin: First global approval. Drugs, 2019, 79(13), 1467-1475.
[http://dx.doi.org/10.1007/s40265-019-01175-0] [PMID: 31352604]
[217]
Tilly, H.; Morschhauser, F.; Bartlett, N.L.; Mehta, A.; Salles, G.; Haioun, C.; Munoz, J.; Chen, A.I.; Kolibaba, K.; Lu, D.; Yan, M.; Penuel, E.; Hirata, J.; Lee, C.; Sharman, J.P. Polatuzumab vedotin in combination with immunochemotherapy in patients with previously untreated diffuse large B-cell lymphoma: An open-label, non-randomised, phase 1b-2 study. Lancet Oncol., 2019, 20(7), 998-1010.
[http://dx.doi.org/10.1016/S1470-2045(19)30091-9] [PMID: 31101489]
[218]
Sehn, L.H.; Herrera, A.F.; Flowers, C.R.; Kamdar, M.K.; McMillan, A.; Hertzberg, M.; Assouline, S.; Kim, T.M.; Kim, W.S.; Ozcan, M.; Hirata, J.; Penuel, E.; Paulson, J.N.; Cheng, J.; Ku, G.; Matasar, M.J. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J. Clin. Oncol., 2020, 38(2), 155-165.
[http://dx.doi.org/10.1200/JCO.19.00172] [PMID: 31693429]
[219]
Shingleton, J.R.; Dave, S.S. Polatuzumab Vedotin: Honing in on Relapsed or Refractory Diffuse Large B-Cell Lymphoma. J. Clin. Oncol., 2020, 38(2), 166-168.
[http://dx.doi.org/10.1200/JCO.19.02587] [PMID: 31770050]
[220]
Morschhauser, F.; Flinn, I.W.; Advani, R.; Sehn, L.H.; Diefenbach, C.; Kolibaba, K.; Press, O.W.; Salles, G.; Tilly, H.; Chen, A.I.; Assouline, S.; Cheson, B.D.; Dreyling, M.; Hagenbeek, A.; Zinzani, P.L.; Jones, S.; Cheng, J.; Lu, D.; Penuel, E.; Hirata, J.; Wenger, M.; Chu, Y.W.; Sharman, J. Polatuzumab vedotin or pinatuzumab vedotin plus rituximab in patients with relapsed or refractory non-Hodgkin lymphoma: Final results from a phase 2 randomised study (ROMULUS). Lancet Haematol., 2019, 6(5), e254-e265.
[http://dx.doi.org/10.1016/S2352-3026(19)30026-2] [PMID: 30935953]
[221]
Han, L.; Jorgensen, J.L.; Brooks, C.; Shi, C.; Zhang, Q.; Nogueras González, G.M.; Cavazos, A.; Pan, R.; Mu, H.; Wang, S.A.; Zhou, J.; Ai-Atrash, G.; Ciurea, S.O.; Rettig, M.; DiPersio, J.F.; Cortes, J.; Huang, X.; Kantarjian, H.M.; Andreeff, M.; Ravandi, F.; Konopleva, M. Anti-leukemia efficacy and mechanisms of action of SL-101, a novel anti-CD123 antibody-conjugate, in acute myeloid leukemia. Clin. Cancer Res., 2017, 23(13), 3385-3395.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1904] [PMID: 28096272]
[222]
Li, F.; Sutherland, M.K.; Yu, C.; Walter, R.B.; Westendorf, L.; Valliere-Douglass, J.; Pan, L.; Cronkite, A.; Sussman, D.; Klussman, K.; Ulrich, M.; Anderson, M.E.; Stone, I.J.; Zeng, W.; Jonas, M.; Lewis, T.S.; Goswami, M.; Wang, S.A.; Senter, P.D.; Law, C.L.; Feldman, E.J.; Benjamin, D.R. Weiping Zeng1, Jonas M, Lewis TS, Goswami M, Wang SA, Senter PD, Law CL, Feldman EJ, Benjamin DR. Characterization of SGN-CD123A, a potent CD123 directed antibody-drug conjugate for acute myeloid leukemia. Mol. Cancer Ther., 2018, 17(2), 554-564.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0742] [PMID: 29142066]
[223]
Ikeda, H.; Hideshima, T.; Fulciniti, M.; Lutz, R.J.; Yasui, H.; Okawa, Y.; Kiziltepe, T.; Vallet, S.; Pozzi, S.; Santo, L.; Perrone, G.; Tai, Y.T.; Cirstea, D.; Raje, N.S.; Uherek, C.; Dälken, B.; Aigner, S.; Osterroth, F.; Munshi, N.; Richardson, P.; Anderson, K.C. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin. Cancer Res., 2009, 15(12), 4028-4037.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2867] [PMID: 19509164]
[224]
Schönfeld, K.; Zuber, C.; Pinkas, J.; Häder, T.; Bernöster, K.; Uherek, C. Indatuximab ravtansine (BT062) combination treatment in multiple myeloma: Pre-clinical studies. J. Hematol. Oncol., 2017, 10(1), 13.
[http://dx.doi.org/10.1186/s13045-016-0380-0] [PMID: 28077160]
[225]
Schönfeld, K.; Herbener, P.; Zuber, C.; Häder, T.; Bernöster, K.; Uherek, C.; Schüttrumpf, J. Activity of indatuximab ravtansine against triple-negative breast cancer in preclinical tumor models. Pharm. Res., 2018, 35(6), 118.
[http://dx.doi.org/10.1007/s11095-018-2400-y] [PMID: 29666962]
[226]
Jagannath, S.; Heffner, L.T., Jr; Ailawadhi, S.; Munshi, N.C.; Zimmerman, T.M.; Rosenblatt, J.; Lonial, S.; Chanan-Khan, A.; Ruehle, M.; Rharbaoui, F.; Haeder, T.; Wartenberg-Demand, A.; Anderson, K.C. Indatuximab ravtansine (BT062) monotherapy in patients with relapsed and/or refractory multiple myeloma. Clin. Lymphoma Myeloma Leuk., 2019, 19(6), 372-380.
[http://dx.doi.org/10.1016/j.clml.2019.02.006] [PMID: 30930134]
[227]
Iftikhar, A.; Hassan, H.; Iftikhar, N.; Mushtaq, A.; Sohail, A.; Rosko, N.; Chakraborty, R.; Razzaq, F.; Sandeep, S.; Valent, J.N.; Kanate, A.S.; Anwer, F. Investigational monoclonal in the treatment of multiple myeloma: A systematic review of agents under clinical development. Antibodies (Basel), 2019, 8(2), 34.
[http://dx.doi.org/10.3390/antib8020034] [PMID: 31544840]
[228]
Musto, P.; La Rocca, F. Monoclonal antibodies in relapsed/refractory myeloma: updated evidence from clinical trials, real-life studies, and meta-analyses. Expert Rev. Hematol., 2020, 13(4), 331-349.
[http://dx.doi.org/10.1080/17474086.2020.1740084] [PMID: 32153224]
[229]
Merlino, G.; Fiascarelli, A.; Bigioni, M.; Bressan, A.; Carrisi, C.; Bellarosa, D.; Salerno, M.; Bugianesi, R.; Manno, R.; Bernadó Morales, C.; Arribas, J.; Dusek, R.L.; Ackroyd, J.E.; Pham, P.H.; Awdew, R.; Aud, D.; Trang, M.; Lynch, C.M.; Terrett, J.; Wilson, K.E.; Rohlff, C.; Manzini, S.; Pellacani, A.; Binaschi, M. MEN1309/OBT076, a first-in-class antibody-drug conjugate targeting CD205 in solid tumors. Mol. Cancer Ther., 2019, 18(9), 1533-1543.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0624] [PMID: 31227646]
[230]
Garralda, E.; Tabernero, J.; Garcia, V.M.; De Miguel, M.J.; Plummer, E.R.; Jerusalem, G.H.M.; Spina, M.; Rohlff, C.; Fandi, A.; Buontempo, S.; Matera, M.; Cioce, M.; Paola, D.; Binaschi, M.; Merlino, G.; Mazzei, P.; Rossi, C.; Tonini, G.; Simonelli, C.; Pellacani, A.U.E. CD205-shuttle study: A first-in-human trial of MEN1309/OBT076 an ADC targeting CD205 in solid tumor and NHL. J. Clin. Oncol., 2018, 36(15)(Suppl.), TPS2606.
[231]
Gaudio, E.; Tarantelli, C.; Spriano, F.; Guidetti, F.; Sartori, G.; Bordone, R.; Arribas, A.J.; Cascione, L.; Bigioni, M.; Merlino, G.; Fiascarelli, A.; Bressan, A.; Adjeiwaa Mensah, A.; Golino, G.; Lucchini, R.; Bernasconi, E.; Rossi, D.; Zucca, E.; Stussi, G.; Stathis, A.; Boyd, R.S.; Dusek, R.L.; Bisht, A.; Attanasio, N.; Rohlff, C.; Pellacani, A.; Binaschi, M.; Bertoni, F. Targeting CD205 with the antibody drug conjugate MEN1309/OBT076 is an active new therapeutic strategy in lymphoma models. Haematologica, 2020, 105(11), 2584-2591.
[http://dx.doi.org/10.3324/haematol.2019.227215] [PMID: 33131247]
[232]
Rouleau, C.; Curiel, M.; Weber, W.; Smale, R.; Kurtzberg, L.; Mascarello, J.; Berger, C.; Wallar, G.; Bagley, R.; Honma, N.; Hasegawa, K.; Ishida, I.; Kataoka, S.; Thurberg, B.L.; Mehraein, K.; Horten, B.; Miller, G.; Teicher, B.A. Endosialin protein expression and therapeutic target potential in human solid tumors: Sarcoma versus carcinoma. Clin. Cancer Res., 2008, 14(22), 7223-7236.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0499] [PMID: 19010839]
[233]
Rouleau, C.; Gianolio, D.A.; Smale, R.; Roth, S.D.; Krumbholz, R.; Harper, J.; Munroe, K.J.; Green, T.L.; Horten, B.C.; Schmid, S.M.; Teicher, B.A. Anti-endosialin antibody-drug conjugate: Potential in sarcoma and other malignancies. Mol. Cancer Ther., 2015, 14(9), 2081-2089.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0312] [PMID: 26184481]
[234]
Diaz, L.A., Jr; Coughlin, C.M.; Weil, S.C.; Fishel, J.; Gounder, M.M.; Lawrence, S.; Azad, N.; O’Shannessy, D.J.; Grasso, L.; Wustner, J.; Ebel, W.; Carvajal, R.D. A first-in-human phase I study of MORAb-004, a monoclonal antibody to endosialin in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(6), 1281-1288.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1829] [PMID: 25398449]
[235]
O’Shannessy, D.J.; Smith, M.F.; Somers, E.B.; Jackson, S.M.; Albone, E.; Tomkowicz, B.; Cheng, X.; Park, Y.; Fernando, D.; Milinichik, A.; Kline, B.; Fulton, R.; Oberoi, P.; Nicolaides, N.C. Novel antibody probes for the characterization of endosialin/TEM-1. Oncotarget, 2016, 7(43), 69420-69435.
[http://dx.doi.org/10.18632/oncotarget.11018] [PMID: 27494870]
[236]
Thway, K.; Robertson, D.; Jones, R.L.; Selfe, J.; Shipley, J.; Fisher, C.; Isacke, C.M. Endosialin expression in soft tissue sarcoma as a potential marker of undifferentiated mesenchymal cells. Br. J. Cancer, 2016, 115(4), 473-479.
[http://dx.doi.org/10.1038/bjc.2016.214] [PMID: 27434038]
[237]
Lange, S.E.; Zheleznyak, A.; Studer, M.; O’Shannessy, D.J.; Lapi, S.E.; Van Tine, B.A. Development of 89Zr-Ontuxizumab for in vivo TEM-1/endosialin PET applications. Oncotarget, 2016, 7(11), 13082-13092.
[http://dx.doi.org/10.18632/oncotarget.7552] [PMID: 26909615]
[238]
Rybinski, K.; Imtiyaz, H.Z.; Mittica, B.; Drozdowski, B.; Fulmer, J.; Furuuchi, K.; Fernando, S.; Henry, M.; Chao, Q.; Kline, B.; Albone, E.; Wustner, J.; Lin, J.; Nicolaides, N.C.; Grasso, L.; Zhou, Y. Targeting endosialin/CD248 through antibody-mediated internalization results in impaired pericyte maturation and dysfunctional tumor microvasculature. Oncotarget, 2015, 6(28), 25429-25440.
[http://dx.doi.org/10.18632/oncotarget.4559] [PMID: 26327620]
[239]
Kiyohara, E.; Donovan, N.; Takeshima, L.; Huang, S.; Wilmott, J.S.; Scolyer, R.A.; Jones, P.; Somers, E.B.; O’Shannessy, D.J.; Hoon, D.S. Endosialin expression in metastatic melanoma tumor microenvironment vasculature: Potential therapeutic implications. Cancer Microenviron., 2015, 8(2), 111-118.
[http://dx.doi.org/10.1007/s12307-015-0168-8] [PMID: 26085332]
[240]
Capone, E.; Piccolo, E.; Fichera, I.; Ciufici, P.; Barcaroli, D.; Sala, A.; De Laurenzi, V.; Iacobelli, V.; Iacobelli, S.; Sala, G. Generation of a novel Antibody-Drug Conjugate targeting endosialin: Potent and durable antitumor response in sarcoma. Oncotarget, 2017, 8(36), 60368-60377.
[http://dx.doi.org/10.18632/oncotarget.19499] [PMID: 28947977]
[241]
Knutson, S.; Raja, E.; Bomgarden, R.; Nlend, M.; Chen, A.; Kalyanasundaram, R.; Desai, S. Development and evaluation of a fluorescent anti-body drug conjugate for molecular imaging and targeted therapy of pancreatic cancer. PLoS One, 2016, 11(6), e0157762.
[242]
Decary, S.; Berne, P.F.; Nicolazzi, C.; Lefebvre, A.M.; Dabdoubi, T.; Cameron, B.; Rival, P.; Devaud, C.; Prades, C.; Bouchard, H.; Cassé, A.; Henry, C.; Amara, C.; Brillac, C.; Ferrari, P.; Maçon, L.; Lacoste, E.; Combeau, C.; Beys, E.; Naimi, S.; García-Echeverría, C.; Mayaux, J.F.; Blanc, V. Preclinical activity of SAR408701, a novel anti-CEACAM5–maytansinoid antibody-drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin. Cancer Res., 2020, 26(24), 6589-6599.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-4051] [PMID: 33046521]
[243]
Dotan, E.; Starodub, A.; Berlin, J.; Lieu, C.H.; Guarino, M.J.; Marshall, J.; Hecht, J.R.; Cohen, S.J. A new anti-CEA-SN-38 antibody-drug conjugate (ADC), IMMU-130, is active in controlling metastatic colorectal cancer (mCRC) in patients (pts) refractory or relapsing after irinotecan-containing chemotherapies. Initial results of a phase I/II study. J. Clin. Oncol., 2015, 33(Suppl.), 2505.
[244]
DeLucia, D.C.; Cardillo, T.M.; Ang, L.; Labrecque, M.P.; Zhang, A.; Hopkins, J.E.; De Sarkar, N.; Coleman, I.; da Costa, R.M.G.; Corey, E.; True, L.D.; Haffner, M.C.; Schweizer, M.T.; Morrissey, C.; Nelson, P.S.; Lee, J.K. Regulation of CEACAM5 and therapeutic efficacy of an anti-CEACAM5-SN38 antibody-drug conjugate in neuroendocrine prostate cancer. Clin. Cancer Res., 2021, 27(3), 759-774.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3396] [PMID: 33199493]
[245]
Gazzah, A.; Cousin, S.; Boni, V.; Ricordel, C.; Kim, T.M.; Kim, J.S.; Helissey, C.; Gardeazabal, I.; Chadjaa, M.; Allard, A.; Yoruk, S.; Barlesi, F. First-in-human phase 1 study of the antibody-drug conjugate (ADC) SAR408701 in advanced solid tumors: Dose-expansion cohort of patients (pts) with non-squamous non-small cell lung cancer (NSQ NSCLC). J. Clin. Oncol., 2019, 37(Suppl. 15), 9072.
[246]
Abrams, T.J.; Niu, X.; Embry, M.; Kline, J.; Patawaran, M.; Fanton, C.; Ison-Dugenny, M.; Schneider, T. Development of a novel antibody-drug conjugate for the treatment of c-Kit expressing solid tumors and AML. Proc AACR, 2015, 1695.
[247]
Hong, E.; Qiu, Q.; Wu, R.; Wilhelm, A.; Whiteman, K.; Pinkas, J.; Erickson, H.; Abrams, T.; Schleyer, S. A c-Kit targeting antibody-drug conjugate is efficiently metabolized and activated inside cancer cell lines and xenograft tumors. Proc AACR, 2015.
[248]
Abrams, T.; Connor, A.; Fanton, C.; Cohen, S.B.; Huber, T.; Miller, K.; Hong, E.E.; Niu, X.; Kline, J.; Ison-Dugenny, M.; Harris, S.; Walker, D.; Krauser, K.; Galimi, F.; Wang, Z.; Ghoddusi, M.; Mansfield, K.; Lee-Hoeflich, S.T.; Holash, J.; Pryer, N.; Kluwe, W.; Ettenberg, S.A.; Sellers, W.R.; Lees, E.; Kwon, P.; Abraham, J.A.; Schleyer, S.C. Preclinical antitumor activity of a novel anti–c-KIT antibody–drug conjugate against mutant and wild-type c-KIT–positive solid tumors. Clin. Cancer Res., 2018, 24(17), 4297-4308.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3795] [PMID: 29764854]
[249]
Zheng, B.; Yu, S.F.; Del Rosario, G.; Leong, S.R.; Lee, G.Y.; Vij, R.; Chiu, C.; Liang, W.C.; Wu, Y.; Chalouni, C.; Sadowsky, J.; Clark, V.; Hendricks, A.; Poon, K.A.; Chu, W.; Pillow, T.; Schutten, M.M.; Flygare, J.; Polson, A.G. An anti-CLL-1 antibody-drug conjugate for the treatment of acute myeloid leukemia. Clin. Cancer Res., 2019, 25(4), 1358-1368.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0333] [PMID: 29959143]
[250]
Wang, J.; Anderson, M.G.; Oleksijew, A.; Vaidya, K.S.; Boghaert, E.R.; Tucker, L.; Zhang, Q.; Han, E.K.; Palma, J.P.; Naumovski, L.; Reilly, E.B. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence. Clin. Cancer Res., 2017, 23(4), 992-1000.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1568] [PMID: 27573171]
[251]
Strickler, J.H.; Weekes, C.D.; Nemunaitis, J.; Ramanathan, R.K.; Heist, R.S.; Morgensztern, D.; Angevin, E.; Bauer, T.M.; Yue, H.; Motwani, M.; Parikh, A.; Reilly, E.B.; Afar, D.; Naumovski, L.; Kelly, K. First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody–drug conjugate targeting c-Met, in patients with advanced solid tumors. J. Clin. Oncol., 2018, 36(33), 3298-3306.
[http://dx.doi.org/10.1200/JCO.2018.78.7697] [PMID: 30285518]
[252]
Camidge, D.R.; Barlesi, F.; Goldman, J.W.; Morgensztern, D.; Heist, R.S.; Vokes, E.E. Results of the phase 1b study of ABBV-399 (telisotuzumab vedotin; teliso-v) in combination with erlotinib in patients with c-Met+ non-small cell lung cancer by EGFR mutation status. J. Clin. Oncol., 2019, 37(15)(Suppl.), 3011.
[253]
Goldman, J.; Angevin, E.; Strickler, J.; Camidge, D.R.; Heist, R.; Morgensztern, D.; Barve, M.; Yue, H.; Beaulieu, J.; Motwani, M.; Afar, D.; Naumovski, L.; Kelly, K. Phase I study of ABBV-399 (telisotuzumab vedotin) as monotherapy and in combination with erlotinib in NSCLC. J. Thorac. Oncol., 2019, 12, pS1805-pS1806.
[254]
Cazes, A.; Betancourt, O.; Esparza, E.; Mose, E.S.; Jaquish, D.; Wong, E.; Wascher, A.A.; Tiriac, H.; Gymnopoulos, M.; Lowy, A.M. A MET Targeting Antibody-Drug Conjugate Overcomes Gemcitabine Resistance in Pancreatic Cancer. Clin. Cancer Res., 2021, 27(7), 2100-2110.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3210] [PMID: 33451980]
[255]
Nguyen, M.; Miyakawa, S.; Kato, J.; Mori, T.; Arai, T.; Armanini, M.; Gelmon, K.; Yerushalmi, R.; Leung, S.; Gao, D.; Landes, G.; Haak-Frendscho, M.; Elias, K.; Simmons, A.D. Preclinical efficacy and safety assessment of an antibody-drug conjugate targeting the c-RET proto-oncogene for breast cancer. Clin. Cancer Res., 2015, 21(24), 5552-5562.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0468] [PMID: 26240273]
[256]
Kelly, R.K.; Olson, D.L.; Sun, Y.; Wen, D.; Wortham, K.A.; Antognetti, G.; Cheung, A.E.; Orozco, O.E.; Yang, L.; Bailly, V.; Sanicola, M. An antibody-cytotoxic conjugate, BIIB015, is a new targeted therapy for Cripto positive tumours. Eur. J. Cancer, 2011, 47(11), 1736-1746.
[http://dx.doi.org/10.1016/j.ejca.2011.02.023] [PMID: 21458984]
[257]
Bianco, C.; Salomon, D.S. Targeting the embryonic gene Cripto-1 in cancer and beyond. Expert Opin. Ther. Pat., 2010, 20(12), 1739-1749.
[http://dx.doi.org/10.1517/13543776.2010.530659] [PMID: 21073352]
[258]
Zammarchi, F.; Williams, D.; Havenith, K.; D’Hooge, F.; Howard, P.W.; Hartley, J.A.; van Berkel, P. Preclinical activity of hLL2- PBD, a novel anti-CD-22 antibody-pyrrolobenodiazepine (PBD) conjugate in models of non-Hodgkin lymphoma. Proc AACR, 2015, p. Abs 637.
[259]
Saunders, L.R.; Bankovich, A.J.; Anderson, W.C.; Aujay, M.A.; Bheddah, S.; Black, K.; Desai, R.; Escarpe, P.A.; Hampl, J.; Laysang, A.; Liu, D.; Lopez-Molina, J.; Milton, M.; Park, A.; Pysz, M.A.; Shao, H.; Slingerland, B.; Torgov, M.; Williams, S.A.; Foord, O.; Howard, P.; Jassem, J.; Badzio, A.; Czapiewski, P.; Harpole, D.H.; Dowlati, A.; Massion, P.P.; Travis, W.D.; Pietanza, M.C.; Poirier, J.T.; Rudin, C.M.; Stull, R.A.; Dylla, S.J.A. DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci. Transl. Med., 2015, 7(302), 302ra136.
[http://dx.doi.org/10.1126/scitranslmed.aac9459] [PMID: 26311731]
[260]
Lu, H.; Jiang, Z. Advances in antibody therapeutics targeting small-cell lung cancer. Adv. Clin. Exp. Med., 2018, 27(9), 1317-1323.
[http://dx.doi.org/10.17219/acem/70159] [PMID: 29790694]
[261]
Pacheco, J.M.; Camidge, D.R. Antibody drug conjugates in thoracic malignancies. Lung Cancer, 2018, 124, 260-269.
[http://dx.doi.org/10.1016/j.lungcan.2018.07.001] [PMID: 30268471]
[262]
Saunders, L.R.W.S.; Bheddah, S.; Isse, K.; Fong, S.; Pysz, M.A. Expression of DLL3 in metastatic melanoma, glioblastoma and high-grade extrapulmonary neuroendocrine carcinomas as potential indications for rovalpituzumab tesirine (Rova-T; SC16LD6.5), a delta-like protein 3 (DLL3)-targeted Antibody Drug Conjugate (ADC). Cancer Res., 2017, 77(13)(Suppl.), 3093.
[263]
Rudin, C.M.; Pietanza, M.C.; Bauer, T.M.; Ready, N.; Morgensztern, D.; Glisson, B.S.; Byers, L.A.; Johnson, M.L.; Burris, H.A., III; Robert, F.; Han, T.H.; Bheddah, S.; Theiss, N.; Watson, S.; Mathur, D.; Vennapusa, B.; Zayed, H.; Lally, S.; Strickland, D.K.; Govindan, R.; Dylla, S.J.; Peng, S.L.; Spigel, D.R. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol., 2017, 18(1), 42-51.
[http://dx.doi.org/10.1016/S1470-2045(16)30565-4] [PMID: 27932068]
[264]
Morgensztern, D.; Besse, B.; Greillier, L.; Santana-Davila, R.; Ready, N.; Hann, C.L.; Glisson, B.S.; Farago, A.F.; Dowlati, A.; Rudin, C.M.; Le Moulec, S.; Lally, S.; Yalamanchili, S.; Wolf, J.; Govindan, R.; Carbone, D.P. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the Phase II TRINITY study. Clin. Cancer Res., 2019, 25(23), 6958-6966.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1133] [PMID: 31506387]
[265]
Lashari, B.H.; Vallatharasu, Y.; Kolandra, L.; Hamid, M.; Uprety, D. Rovalpituzumab tesirine: A novel DLL3-targeting antibody-drug conjugate. Drugs R D., 2018, 18(4), 255-258.
[http://dx.doi.org/10.1007/s40268-018-0247-7] [PMID: 30232719]
[266]
Owen, D.H.; Giffin, M.J.; Bailis, J.M.; Smit, M.D.; Carbone, D.P.; He, K. DLL3: An emerging target in small cell lung cancer. J. Hematol. Oncol., 2019, 12(1), 61.
[http://dx.doi.org/10.1186/s13045-019-0745-2] [PMID: 31215500]
[267]
Marcucci, F.; Caserta, C.A.; Romeo, E.; Rumio, C. Antibody-Drug Conjugates (ADC) against Cancer Stem-Like Cells (CSC)-is there still room for optimism? Front. Oncol., 2019, 9, 167.
[http://dx.doi.org/10.3389/fonc.2019.00167] [PMID: 30984612]
[268]
Puca, L.; Gavyert, K.; Sailer, V.; Conteduca, V.; Dardenne, E.; Sigouros, M.; Isse, K.; Kearney, M.; Vosoughi, A.; Fernandez, L.; Pan, H.; Motanagh, S.; Hess, J.; Donoghue, A.J.; Sboner, A.; Wang, Y.; Dittamore, R.; Rickman, D.; Nanus, D.M.; Tagawa, S.T.; Elemento, O.; Mosquera, J.M.; Saunders, L.; Beltran, H. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci. Transl. Med., 2019, 11(484), eaav0891.
[http://dx.doi.org/10.1126/scitranslmed.aav0891] [PMID: 30894499]
[269]
Ricciuti, B.; Lamberti, G.; Andrini, E.; Genova, C.; De Giglio, A.; Bianconi, V.; Sahebkar, A.; Chiari, R.; Pirro, M. Antibody-drug conjugates for lung cancer in the era of personalized oncology. Semin. Cancer Biol., 2021, 69, 268-278.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.024] [PMID: 31899248]
[270]
Gan, H.K.; Papadopoulos, K.P.; Fichtel, L.; Lassman, A.B.; Merrell, R.; Van Den Bent, M.J.; Kumthekar, P. Phase I study of ABT-414 mono- or combination therapy with temozolomide (TMZ) in recurrent glioblastoma (GBM). J. Clin. Oncol., 2015, 33 suppl, 2016.
[271]
Phillips, A.C.; Boghaert, E.R.; Vaidya, K.S.; Mitten, M.J.; Norvell, S.; Falls, H.D.; DeVries, P.J.; Cheng, D.; Meulbroek, J.A.; Buchanan, F.G.; McKay, L.M.; Goodwin, N.C.; Reilly, E.B. ABT-414, an antibody-drug conjugate targeting a tumor-selective EGFR epitope. Mol. Cancer Ther., 2016, 15(4), 661-669.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0901] [PMID: 26846818]
[272]
van den Bent, M.; Gan, H.K.; Lassman, A.B.; Kumthekar, P.; Merrell, R.; Butowski, N.; Lwin, Z.; Mikkelsen, T.; Nabors, L.B.; Papadopoulos, K.P.; Penas-Prado, M.; Simes, J.; Wheeler, H.; Walbert, T.; Scott, A.M.; Gomez, E.; Lee, H.J.; Roberts-Rapp, L.; Xiong, H.; Bain, E.; Ansell, P.J.; Holen, K.D.; Maag, D.; Reardon, D.A. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: Results from a multi-center, international study. Cancer Chemother. Pharmacol., 2017, 80(6), 1209-1217.
[http://dx.doi.org/10.1007/s00280-017-3451-1] [PMID: 29075855]
[273]
Narita, Y.; Muragaki, Y.; Maruyama, T.; Kagawa, N.; Asai, K.; Kuroda, J. Phase I/II study of depatuxizumab mafodotin (ABT-414) monotherapy or combination with temozolomide in Japanese patients with/without EGFR-amplified recurrent glioblastoma. J. Clin. Oncol., 2019, 2065.
[274]
He, K.; Xu, J.; Liang, J.; Jiang, J.; Tang, M.; Ye, X.; Zhang, Z.; Zhang, L.; Fu, B.; Li, Y.; Bai, C.; Zhang, L.; Tao, W. Discovery of a novel EGFR-targeting antibody– drug conjugate, SHR-A1307, for the treatment of solid tumors resistant or refractory to anti-EGFR therapies. Mol. Cancer Ther., 2019, 18(6), 1104-1114.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0854] [PMID: 30962319]
[275]
Anderson, M.G.; Falls, H.D.; Mitten, M.J.; Oleksijew, A.; Vaidya, K.S.; Boghaert, E.R.; Gao, W.; Palma, J.P.; Cao, D.; Chia, P.L.; John, T.; Gan, H.K.; Scott, A.M.; Reilly, E.B. Targeting multiple EGFR-expressing tumors with a highly potent tumor-selective antibody-drug conjugate. Mol. Cancer Ther., 2020, 19(10), 2117-2125.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0149] [PMID: 32847977]
[276]
Carneiro, BA; Bestvina, CM; Shmueli, ES; Gan, HK; Beck, JT; Robinson, R Phase I study of the antibody-drug conjugate ABBV- 321 in patients with non-small cell lung cancer and squamous head and neck cancer with overexpression of the epidermal growth factor receptor. J. Clin. Oncol., 2020, TPS3649.
[277]
Greene, M.K.; Chen, T.; Robinson, E.; Straubinger, N.L.; Minx, C.; Chan, D.K.W.; Wang, J.; Burrows, J.F.; Van Schaeybroeck, S.; Baker, J.R.; Caddick, S.; Longley, D.B.; Mager, D.E.; Straubinger, R.M.; Chudasama, V.; Scott, C.J. Controlled coupling of an ultrapotent auristatin warhead to cetuximab yields a next-generation antibody-drug conjugate for EGFR-targeted therapy of KRAS mutant pancreatic cancer. Br. J. Cancer, 2020, 123(10), 1502-1512.
[http://dx.doi.org/10.1038/s41416-020-01046-6] [PMID: 32913288]
[278]
Wu, R.; Gavrilescu, C.; Liu, Y.; Santos, V.C.; Lai, K.C.; Harris, L.; Shah, P.; Donahue, K.; Chari, R.; Gregory, R.; Chittenden, T.; Guidi, C.; Keating, T.A. Evaluation of endoglin/CD105 as a tumor vasculature target with antibody drug conjugates. Cancer Res., 2018, 78(13)(Suppl.), 2900.
[279]
Puerto-Camacho, P.; Amaral, A.T.; Lamhamedi-Cherradi, S.E.; Menegaz, B.A.; Castillo-Ecija, H.; Ordóñez, J.L.; Domínguez, S.; Jordan-Perez, C.; Diaz-Martin, J.; Romero-Pérez, L.; Lopez-Alvarez, M.; Civantos-Jubera, G.; Robles-Frías, M.J.; Biscuola, M.; Ferrer, C.; Mora, J.; Cuglievan, B.; Schadler, K.; Seifert, O.; Kontermann, R.; Pfizenmaier, K.; Simón, L.; Fabre, M.; Carcaboso, Á.M.; Ludwig, J.A.; de Álava, E. Preclinical efficacy of endoglin-targeting antibody-drug conjugates for the treatment of ewing sarcoma. Clin. Cancer Res., 2019, 25(7), 2228-2240.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0936] [PMID: 30420447]
[280]
Doñate, F.; Raitano, A.; Morrison, K.; An, Z.; Capo, L.; Aviña, H.; Karki, S.; Morrison, K.; Yang, P.; Ou, J.; Moriya, R.; Shostak, Y.; Malik, F.; Nadell, R.; Liu, W.; Satpayev, D.; Atkinson, J.; Joseph, I.B.; Pereira, D.S.; Challita-Eid, P.M.; Stover, D.R. AGS16F is a novel antibody drug conjugate directed against ENPP3 for the treatment of renal cell carcinoma. Clin. Cancer Res., 2016, 22(8), 1989-1999.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1542] [PMID: 26589436]
[281]
Thompson, J.A.; Motzer, R.J.; Molina, A.M.; Choueiri, T.K.; Heath, E.I.; Redman, B.G.; Sangha, R.S.; Ernst, D.S.; Pili, R.; Kim, S.K.; Reyno, L.; Wiseman, A.; Trave, F.; Anand, B.; Morrison, K.; Doñate, F.; Kollmannsberger, C.K. Phase I trials of anti-ENPP3 antibody–drug conjugates in advanced refractory renal cell carcinomas. Clin. Cancer Res., 2018, 24(18), 4399-4406.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0481] [PMID: 29848572]
[282]
Moldenhauer, G.; Salnikov, A.V.; Lüttgau, S.; Herr, I.; Anderl, J.; Faulstich, H. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J. Natl. Cancer Inst., 2012, 104(8), 622-634.
[http://dx.doi.org/10.1093/jnci/djs140] [PMID: 22457476]
[283]
Salomon, P.L.; Singh, R. Sensitive ELISA method for the measurement of catabolites of antibody-drug conjugates (ADCs) in target cancer cells. Mol. Pharm., 2015, 12(6), 1752-1761.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00028] [PMID: 25738394]
[284]
Kowalski, M.; Brazas, L.; Zaretsky, R.; Rasamoelisolo, M.; MacDonald, G.; Cuthbert, W.; Glover, N. A phase I study of VB6-845, an anti-EpCAM fusion protein targeting advanced solid tumors of epithelial origin: preliminary results. J. Clin. Oncol. Proc. ASCO, 2008, 26, 14663.
[285]
Marlin, C.; Brown, J.; Rasamoelisolo, M.; Cizeau, J.; Bose, D.; Entwistle, J.; Glover, N.; MacDonald, G. Pre-clinical safety assessment of VB6-845, an EpCAM binding immunoconjugate. Proc AACR, 2008, p. Abstr 2136.
[286]
Amann, M.; Friedrich, M.; Lutterbuese, R.; Lutterbuese, P.; Kischel, R.; Baeuerle, P.; Kufer, P.; Schlereth, B. Long-term treatment of mice with an EpCAM (CD326)-specific BiTE antibody reveals a therapeutic window and sustained activity of T cells. Cancer Res., 2008, 68(9 Suupl), p. 2130.
[287]
Schlereth, B.; Lorenczewski, G.; Friedrich, M.; Lutterbuese, P.; Lutterbuese, R.; Kischel, R.; Kufer, P.; Baeuerle, P.; Wolf, A. Feasibility of repeated subcutaneous delivery supports a new route of administration for treating cancer patients with EpCAM-specific BiTE antibody MT110. Cancer Res., 2008, 68(9 Suupl), p. 2403.
[288]
Liu, Y.; Wu, R.; Gavrilescu, C.; Sagert, J.; Tipton, K.; Liu, S.; Chan, C.; Boulé, S.; Wilhelm, A.; Lucas, J.; Matin, B.; Lecerf, J.M.; Themeles, M.; Morneault, A.; Drake, T.; Yancey, S.; Kohli, N.; Espelin, C.; Follit, J.; Donahue, K.A.; Chittenden, T.; Guidi, C.; Hicks, S.W. Development of a probody-drug conjugate targeting EpCAM for the treatment of solid tumors. Cancer Res., 2019, 79(13)(Suppl.), 213.
[http://dx.doi.org/10.1158/1538-7445.AM2019-213]
[289]
Jackson, D.; Gooya, J.; Mao, S.; Kinneer, K.; Xu, L.; Camara, M.; Fazenbaker, C.; Fleming, R.; Swamynathan, S.; Meyer, D.; Senter, P.D.; Gao, C.; Wu, H.; Kinch, M.; Coats, S.; Kiener, P.A.; Tice, D.A. A human antibody-drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res., 2008, 68(22), 9367-9374.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1933] [PMID: 19010911]
[290]
Hong, D.S.; Garrido-Laguna, I.; Krop, I.E.; Subbiah, V.; Werner, T.L.; Cotter, C.M.; Hamilton, E.P. First-in-human dose escalation, safety and PK study of a novel EFNA4-ADC in patients with advanced solid tumors. J. Clin. Oncol., 2015, 33(Suppl.), 2520.
[291]
Damelin, M.; Bankovich, A.; Park, A.; Aguilar, J.; Anderson, W.; Santaguida, M.; Aujay, M.; Fong, S.; Khandke, K.; Pulito, V.; Ernstoff, E.; Escarpe, P.; Bernstein, J.; Pysz, M.; Zhong, W.; Upeslacis, E.; Lucas, J.; Lucas, J.; Nichols, T.; Loving, K.; Foord, O.; Hampl, J.; Stull, R.; Barletta, F.; Falahatpisheh, H.; Sapra, P.; Gerber, H.P.; Dylla, S.J. Anti-EFNA5 calicheamicin conjugates effectively target triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clin. Cancer Res., 2015, 21(18), 4165-4173.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0695] [PMID: 26015513]
[292]
Damelin, M.; Bankovich, A.; Park, A.; Aguilar, J.; Anderson, W.; Santaguida, M.; Fong, S. An anti-Ephrin-A4 calicheamicin conjugate effectively targets triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regression. Cancer Res., 2015, 75(15)(Suppl.), 5425.
[293]
Lee, J.W.; Stone, R.L.; Lee, S.J.; Nam, E.J.; Roh, J.W.; Nick, A.M.; Han, H.D.; Shahzad, M.M.K.; Kim, H.S.; Mangala, L.S.; Jennings, N.B.; Mao, S.; Gooya, J.; Jackson, D.; Coleman, R.L.; Sood, A.K. EphA2 targeted chemotherapy using an antibody drug conjugate in endometrial carcinoma. Clin. Cancer Res., 2010, 16(9), 2562-2570.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0017] [PMID: 20388851]
[294]
Annunziata, C.M.; Kohn, E.C.; LoRusso, P.; Houston, N.D.; Coleman, R.L.; Buzoianu, M.; Robbie, G.; Lechleider, R. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest. New Drugs, 2013, 31(1), 77-84.
[http://dx.doi.org/10.1007/s10637-012-9801-2] [PMID: 22370972]
[295]
Bennett, G.; Brown, A.; Mudd, G.; Huxley, P.; Van Rietschoten, K.; Pavan, S.; Chen, L.; Watcham, S.; Lahdenranta, J.; Keen, N. MMAE delivery using the bicycle toxin conjugate BT5528. Mol. Cancer Ther., 2020, 19(7), 1385-1394.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-1092] [PMID: 32398269]
[296]
Offenhäuser, C.; Al-Ejeh, F.; Puttick, S.; Ensbey, K.S.; Bruce, Z.C.; Jamieson, P.R.; Smith, F.M.; Stringer, B.W.; Carrington, B.; Fuchs, A.V.; Bell, C.A.; Jeffree, R.; Rose, S.; Thurecht, K.J.; Andrew, W. Boyd AW, Day BW. EphA3 pay-loaded antibody therapeutics for the treatment of glioblastoma. Cancers (Basel), 2018, 10, 519.
[http://dx.doi.org/10.3390/cancers10120519]
[297]
Fabre, M.; Ferrer, C.; Domínguez-Hormaetxe, S.; Bockorny, B.; Murias, L.; Seifert, O.; Eisler, S.A.; Kontermann, R.E.; Pfizenmaier, K.; Lee, S.Y.; Vivanco, M.D.; López-Casas, P.P.; Perea, S.; Abbas, M.; Richter, W.; Simon, L.; Hidalgo, M. OMTX705, a novel FAP-targeting ADC demonstrates activity in chemotherapy and PD1-resistant solid tumors models. Clin. Cancer Res., 2020, 26(13), 3420-3430.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2238] [PMID: 32161121]
[298]
Sommer, A.; Kopitz, C.; Schatz, C.A.; Nising, C.F.; Mahlert, C.; Lerchen, H.G.; Stelte-Ludwig, B.; Hammer, S.; Greven, S.; Schuhmacher, J.; Braun, M.; Zierz, R.; Wittemer-Rump, S.; Harrenga, A.; Dittmer, F.; Reetz, F.; Apeler, H.; Jautelat, R.; Huynh, H.; Ziegelbauer, K.; Kreft, B. Preclinical efficacy of the auristatin-based antibody-drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Res., 2016, 76(21), 6331-6339.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0180] [PMID: 27543601]
[299]
Wittemer-Rump, S.; Sommer, A.; Kopitz, C.; Huynh, H.; Schatz, C.; Zierz, R.; Braun, M. Pharmacokinetic/pharmacodynamic (PK/PD) and toxicokinetic/toxicodynamic (TK/TD) modeling of preclinical data of FGFR2-ADC (Bay 118982) to guide dosing in phase I. Proc AACR, 2015, 1683.
[300]
Kim, S.B.; Meric-Bernstam, F.; Berlin, J.; Wittemer-Rump, S.; Osada, M.; Valencia, R.; Babich, A.; Liu, R.; Hwang, A.; Tanigawa, T.; Reetz, F.; Laurent, D.; Kalyan, A. Phase I study of fibroblast growth factor receptor 2 antibody-drug conjugate (FGFR2-ADC) BAY 1187982 in patients with advanced cancer. Cancer Res., 2017, 77(13)(Suppl.), CT094.
[301]
Kim, S.B.; Meric-Bernstam, F.; Kalyan, A.; Babich, A.; Liu, R.; Tanigawa, T.; Sommer, A.; Osada, M.; Reetz, F.; Laurent, D.; Wittemer-Rump, S.; Berlin, J. First-in-human phase I study of aprutumab ixadotin, a fibroblast growth factor receptor 2 antibody–drug conjugate (BAY 1187982) in patients with advanced cancer. Target. Oncol., 2019, 14(5), 591-601.
[http://dx.doi.org/10.1007/s11523-019-00670-4] [PMID: 31502117]
[302]
Rudra-Ganguly, N.; Challita-Eid, P.M.; Lowe, C.; Mattie, M.; Moon, S.J.; Mendelsohn, B.A.; Leavitt, M.; Virata, C.; Verlinsky, A.; Capo, L. AGS62P1, a novel site-specific antibody drug conjugate targeting FLT3 exhibits potent antitumor activity regardless of FLT3 kinase activation status. Cancer Res., 2015, 76(14)(Suppl.), 574.
[303]
Snyder, J.T.; Malinao, M.C.; Dugal-Tessier, J.; Atkinson, J.E.; Anand, B.S.; Okada, A.; Mendelsohn, B.A. Metabolism of an oxime-linked antibody drug conjugate, AGS62P1, and characterization of its identified metabolite. Mol. Pharm., 2018, 15(6), 2384-2390.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00225] [PMID: 29757653]
[304]
Cheng, X.; Li, J.; Tanaka, K.; Majumder, U.; Milinichik, A.Z.; Verdi, A.C.; Maddage, C.J.; Rybinski, K.A.; Fernando, S.; Fernando, D.; Kuc, M.; Furuuchi, K.; Fang, F.; Uenaka, T.; Grasso, L.; Albone, E.F. MORAb-202, an antibody–drug conjugate utilizing humanized anti-human FR farletuzumab and the microtubule-targeting agent erubulin, has potent antitumor activity. Mol. Cancer Ther., 2018, 17(12), 2665-2675.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1215] [PMID: 30262588]
[305]
Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. (Camb.), 2017, 9(4), 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[306]
Borghaei, H.; O’Malley, D.M.; Seward, S.M.; Bauer, T.M.; Perez, R.P.; Oza, A.M.; Jeong, W. -targeting antibody-drug conjugate (ADC) in patients (pts) with Epithelial Ovarian Cancer (EOC) and other FRA-positive solid tumors.aPhase 1 study of IMGN853, a Folate Receptor alpha (FR. J. Clin. Oncol., 2015, 33(Suppl.), 5558.
[307]
Altwerger, G.; Bonazzoli, E.; Bellone, S.; Egawa-Takata, T.; Menderes, G.; Pettinella, F.; Bianchi, A.; Riccio, F.; Feinberg, J.; Zammataro, L.; Han, C.; Yadav, G.; Dugan, K.; Morneault, A.; Ponte, J.F.; Buza, N.; Hui, P.; Wong, S.; Litkouhi, B.; Ratner, E.; Silasi, D.A.; Huang, G.S.; Azodi, M.; Schwartz, P.E.; Santin, A.D. In vitro and in vivo activity of IMGN853, an antibody-drug conjugate targeting folate receptor alpha linked to DM4, in biologically aggressive endometrial cancers. Mol. Cancer Ther., 2018, 17(5), 1003-1011.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0930] [PMID: 29440294]
[308]
Ponte, J.F.; Lanieri, L.; Khera, E.; Laleau, R.; Ab, O.; Espelin, C.; Kohli, N.; Matin, B.; Setiady, Y.; Miller, M.L.; Keating, T.A.; Chari, R.; Pinkas, J.; Gregory, R.; Thurber, G.M. Antibody co-administration can improve systemic and local distribution of antibody drug conjugates to increase in vivo efficacy. Mol. Cancer Ther., 2021, 20(1), 203-212.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0451] [PMID: 33177153]
[309]
O’Malley, D.M.; Matulonis, U.A.; Birrer, M.J.; Castro, C.M.; Gilbert, L.; Vergote, I.; Martin, L.P.; Mantia-Smaldone, G.M.; Martin, A.G.; Bratos, R.; Penson, R.T.; Malek, K.; Moore, K.N. Phase Ib study of mirvetuximab soravtansine, a Folate Receptor alpha (FRα)-targeting Antibody-Drug Conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol. Oncol., 2020, 157(2), 379-385.
[http://dx.doi.org/10.1016/j.ygyno.2020.01.037] [PMID: 32081463]
[310]
Moore, K.N.; Martin, L.P.; O’Malley, D.M.; Matulonis, U.A.; Konner, J.A.; Vergote, I.; Ponte, J.F.; Birrer, M.J. A review of mirvetuximab soravtansine in the treatment of platinum-resistant ovarian cancer. Future Oncol., 2018, 14(2), 123-136.
[http://dx.doi.org/10.2217/fon-2017-0379] [PMID: 29098867]
[311]
Gilbert, L.; Oaknin, A.; Matulonis, U.A.; Mantia-Smaldone, G.M.; Lim, P.; Castro, C.; Provencher, D.; Memarzadeh, S.; Zweidler-McKay, P.; Wang, J.; Esteves, B.; Kathleen, N. Mirvetuximab soravtansine (MIRV), a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab (BEV) in patients (pts) with platinum-agnostic ovarian cancer. J. Clin. Oncol., 2020, 38(Suppl.), 6004.
[312]
Bhakta, S.; Crocker, L.M.; Chen, Y.; Hazen, M.; Schutten, M.M.; Li, D.; Kuijl, C.; Ohri, R.; Zhong, F.; Poon, K.A.; Go, M.A.T.; Cheng, E.; Piskol, R.; Firestein, R.; Fourie-O’Donohue, A.; Kozak, K.R.; Raab, H.; Hongo, J.A.; Sampath, D.; Dennis, M.S.; Scheller, R.H.; Polakis, P.; Junutula, J.R. An anti-GDNF family receptor alpha 1(GFRA1) antibody-drug conjugate for the treatment of hormone receptor-positive breast cancer. Mol. Cancer Ther., 2018, 17(3), 638-649.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0813] [PMID: 29282299]
[313]
Bosco, E.E.; Christie, R.J.; Carrasco, R.; Sabol, D.; Zha, J.; DaCosta, K.; Brown, L.; Kennedy, M.; Meekin, J.; Phipps, S.; Ayriss, J.; Du, Q.; Bezabeh, B.; Chowdhury, P.; Breen, S.; Chen, C.; Reed, M.; Hinrichs, M.; Zhong, H.; Xiao, Z.; Dixit, R.; Herbst, R.; Tice, D.A. Preclinical evaluation of a GFRA1 targeted antibody-drug conjugate in breast cancer. Oncotarget, 2018, 9(33), 22960-22975.
[http://dx.doi.org/10.18632/oncotarget.25160] [PMID: 29796165]
[314]
Bosse, K.R.; Raman, P.; Zhu, Z.; Lane, M.; Martinez, D.; Heitzeneder, S.; Rathi, K.S.; Kendsersky, N.M.; Randall, M.; Donovan, L.; Morrissy, S.; Sussman, R.T.; Zhelev, D.V.; Feng, Y.; Wang, Y.; Hwang, J.; Lopez, G.; Harenza, J.L.; Wei, J.S.; Pawel, B.; Bhatti, T.; Santi, M.; Ganguly, A.; Khan, J.; Marra, M.A.; Taylor, M.D.; Dimitrov, D.S.; Mackall, C.L.; Maris, J.M. Identification of GPC2 as an oncoprotein and candidate immunotherapeutic target in high-risk neuroblastoma. Cancer Cell, 2017, 32(3), 295-309.e12.
[http://dx.doi.org/10.1016/j.ccell.2017.08.003] [PMID: 28898695]
[315]
Malone, C.F.; Stegmaier, K. Scratching the surface of immunotherapeutic targets in neuroblastoma. Cancer Cell, 2017, 32(3), 271-273.
[http://dx.doi.org/10.1016/j.ccell.2017.08.011] [PMID: 28898689]
[316]
Vaklavas, C.; Forero, A. Management of metastatic breast cancer with second-generation antibody-drug conjugates: Focus on glembatumumab vedotin (CDX-011, CR011-vcMMAE). BioDrugs, 2014, 28(3), 253-263.
[http://dx.doi.org/10.1007/s40259-014-0085-2] [PMID: 24496926]
[317]
Kolb, E.A.; Gorlick, R.; Billups, C.A.; Hawthorne, T.; Kurmasheva, R.T.; Houghton, P.J.; Smith, M.A. Initial testing (stage 1) of glembatumumab vedotin (CDX-011) by the pediatric preclinical testing program. Pediatr. Blood Cancer, 2014, 61(10), 1816-1821.
[http://dx.doi.org/10.1002/pbc.25099] [PMID: 24912408]
[318]
Tse, K.F.; Jeffers, M.; Pollack, V.A.; McCabe, D.A.; Shadish, M.L.; Khramtsov, N.V.; Hackett, C.S.; Shenoy, S.G.; Kuang, B.; Boldog, F.L.; MacDougall, J.R.; Rastelli, L.; Herrmann, J.; Gallo, M.; Gazit-Bornstein, G.; Senter, P.D.; Meyer, D.L.; Lichenstein, H.S.; LaRochelle, W.J. CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. Clin. Cancer Res., 2006, 12(4), 1373-1382.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2018] [PMID: 16489096]
[319]
Pollack, V.A.; Alvarez, E.; Tse, K.F.; Torgov, M.Y.; Xie, S.; Shenoy, S.G.; MacDougall, J.R.; Arrol, S.; Zhong, H.; Gerwien, R.W.; Hahne, W.F.; Senter, P.D.; Jeffers, M.E.; Lichenstein, H.S.; LaRochelle, W.J. Treatment parameters modulating regression of human melanoma xenografts by an antibody-drug conjugate (CR011-vcMMAE) targeting GPNMB. Cancer Chemother. Pharmacol., 2007, 60(3), 423-435.
[http://dx.doi.org/10.1007/s00280-007-0490-z] [PMID: 17541593]
[320]
Hwu, P.; Sznol, H.; Kluger, L.; Rink, L.; Kim, K.B.; Papadopoulos, N.E.; Sanders, D.; Boasberg, P.; Ool, C.E.; Hamid, O. A phase I/II study of CR011-vcMMAE, an antibody toxin conjugate drug, in patients with unresectable stage III/IV melanoma. J. Clin. Oncol., 2008, 26, 9029.
[321]
Ott, P.A.; Hamid, O.; Pavlick, A.C.; Kluger, H.; Kim, K.B.; Boasberg, P.D.; Simantov, R.; Crowley, E.; Green, J.A.; Hawthorne, T.; Davis, T.A.; Sznol, M.; Hwu, P. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J. Clin. Oncol., 2014, 32(32), 3659-3666.
[http://dx.doi.org/10.1200/JCO.2013.54.8115] [PMID: 25267741]
[322]
Yardley, D.A.; Melisko, M.E.; Forero, A.; Daniel, B.R.; Montero, A.J.; Guthrie, T.H.; Canfield, V.A.; Oakman, A.; Chew, H.K.; Ferrario, C. METRIC: A randomized international study of the antibody-drug conjugate glembatumumab vedotin (GV or CDX-011) in patients (pts) with metastatic GPNMB-overexpressing triple-negative breast cancer (TNBC). J. Clin. Oncol., 2015, 33(Suppl.), TPS1110.
[323]
Yardley, D.A.; Weaver, R.; Melisko, M.E.; Saleh, M.N.; Arena, F.P.; Forero, A.; Cigler, T.; Stopeck, A.; Citrin, D.; Oliff, I.; Bechhold, R.; Loutfi, R.; Garcia, A.A.; Cruickshank, S.; Crowley, E.; Green, J.; Hawthorne, T.; Yellin, M.J.; Davis, T.A.; Vahdat, L.T. EMERGE: A randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer. J. Clin. Oncol., 2015, 33(14), 1609-1619.
[http://dx.doi.org/10.1200/JCO.2014.56.2959] [PMID: 25847941]
[324]
Rose, A.A.N.; Annis, M.G.; Frederick, D.T.; Biondini, M.; Dong, Z.; Kwong, L.; Chin, L.; Keler, T.; Hawthorne, T.; Watson, I.R.; Flaherty, K.T.; Siegel, P.M. MAPK pathway inhibitors sensitize BRAF-mutant melanoma to an antibody-drug conjugate targeting GPNMB. Clin. Cancer Res., 2016, 22(24), 6088-6098.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1192] [PMID: 27515299]
[325]
Rose, A.A.N.; Biondini, M.; Curiel, R.; Siegel, P.M. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol. Ther., 2017, 179, 127-141.
[http://dx.doi.org/10.1016/j.pharmthera.2017.05.010] [PMID: 28546082]
[326]
Hanemaaijer, S.H.; van Gijn, S.E.; Oosting, S.F.; Plaat, B.E.C.; Moek, K.L.; Schuuring, E.M.; van der Laan, B.F.A.M.; Roodenburg, J.L.N.; van Vugt, M.A.T.M.; van der Vegt, B.; Fehrmann, R.S.N. Data-Driven prioritisation of antibody-drug conjugate targets in head and neck squamous cell carcinoma. Oral Oncol., 2018, 80, 33-39.
[http://dx.doi.org/10.1016/j.oraloncology.2018.03.005] [PMID: 29706186]
[327]
Kopp, L.M.; Malempati, S.; Krailo, M.; Gao, Y.; Buxton, A.; Weigel, B.J.; Hawthorne, T.; Crowley, E.; Moscow, J.A.; Reid, J.M.; Villalobos, V.; Randall, R.L.; Gorlick, R.; Janeway, K.A. Phase II trial of the glycoprotein non-metastatic B-targeted antibody-drug conjugate, glembatumumab vedotin (CDX-011), in recurrent osteosarcoma AOST1521: A report from the Children’s Oncology Group. Eur. J. Cancer, 2019, 121, 177-183.
[http://dx.doi.org/10.1016/j.ejca.2019.08.015] [PMID: 31586757]
[328]
Hasanov, M.; Rioth, M.J.; Kendra, K.; Hernandez-Aya, L.; Joseph, R.W.; Williamson, S.; Chandra, S.; Shirai, K.; Turner, C.D.; Lewis, K.; Crowley, E.; Moscow, J.; Carter, B.; Patel, S. A phase II study of glembatumumab vedotin for metastatic uveal melanoma. Cancers (Basel), 2020, 12(8), 2270.
[http://dx.doi.org/10.3390/cancers12082270] [PMID: 32823698]
[329]
Almhanna, K.; Kalebic, T.; Cruz, C.; Faris, J.E.; Ryan, D.P.; Jung, J.; Wyant, T.; Fasanmade, A.A.; Messersmith, W.; Rodon, J. Phase I study of the investigational anti-guanylyl cyclase antibody-drug conjugate TAK-264 (MLN0264) in adult patients with advanced gastrointestinal malignancies. Clin. Cancer Res., 2016, 22(20), 5049-5057.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2474] [PMID: 27178743]
[330]
Almhanna, K.; Prithviraj, G.K.; Veiby, P.; Kalebic, T. Antibody-drug conjugate directed against the guanylyl cyclase antigen for the treatment of gastrointestinal malignancies. Pharmacol. Ther., 2017, 170, 8-13.
[http://dx.doi.org/10.1016/j.pharmthera.2016.10.007] [PMID: 27765652]
[331]
Schreiber, A.R.; Nguyen, A.; Bagby, S.M.; Arcaroli, J.J.; Yacob, B.W.; Quackenbush, K.; Guy, J.L.; Crowell, T.; Stringer, B.; Danaee, H.; Kalebic, T.; Messersmith, W.A.; Pitts, T.M. Evaluation of TAK-264, an antibody-drug conjugate in pancreatic cancer cell lines and patient-derived xenograft models. Clin. Cancer Drugs, 2018, 5(1), 42-49.
[http://dx.doi.org/10.2174/2212697X05666180516120907] [PMID: 30631747]
[332]
Almhanna, K.; Wright, D.; Mercade, T.M.; Van Laethem, J.L.; Gracian, A.C.; Guillen-Ponce, C.; Faris, J.; Lopez, C.M.; Hubner, R.A.; Bendell, J.; Bols, A.; Feliu, J.; Starling, N.; Enzinger, P.; Mahalingham, D.; Messersmith, W.; Yang, H.; Fasanmade, A.; Danaee, H.; Kalebic, T. A phase II study of antibody-drug conjugate, TAK-264 (MLN0264) in previously treated patients with advanced or metastatic pancreatic adenocarcinoma expressing guanylyl cyclase C. Invest. New Drugs, 2017, 35(5), 634-641.
[http://dx.doi.org/10.1007/s10637-017-0473-9] [PMID: 28527133]
[333]
Abu-Yousif, A.O.; Cvet, D.; Gallery, M.; Bannerman, B.M.; Ganno, M.L.; Smith, M.D.; Lai, K.C.; Keating, T.A.; Stringer, B.; Kamali, A.; Eng, K.; Koseoglu, S.; Zhu, A.; Xia, C.Q.; Landen, M.S.; Borland, M.; Robertson, R.; Bolleddula, J.; Qian, M.G.; Fretland, J.; Veiby, O.P. Preclinical antitumor activity and biodistribution of a novel anti–GCC antibody–drug conjugate in patient-derived xenografts. Mol. Cancer Ther., 2020, 19(10), 2079-2088.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-1102] [PMID: 32788205]
[334]
Müller, P.; Kreuzaler, M.; Khan, T.; Thommen, D.S.; Martin, K.; Glatz, K.; Savic, S.; Harbeck, N.; Nitz, U.; Gluz, O.; von Bergwelt-Baildon, M.; Kreipe, H.; Reddy, S.; Christgen, M.; Zippelius, A. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci. Transl. Med., 2015, 7(315), 315ra188.
[http://dx.doi.org/10.1126/scitranslmed.aac4925] [PMID: 26606967]
[335]
Yan, H.; Endo, Y.; Shen, Y.; Rotstein, D.; Dokmanovic, M.; Mohan, N.; Mukhopadhyay, P.; Gao, B.; Pacher, P.; Wu, W.J. Ado-trastuzumab emtansine targets hepatocytes via human epidermal growth factor receptor 2 to induce hepatotoxicity. Mol. Cancer Ther., 2016, 15(3), 480-490.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0580] [PMID: 26712117]
[336]
Baselga, J.; Lewis Phillips, G.D.; Verma, S.; Ro, J.; Huober, J.; Guardino, A.E.; Samant, M.K.; Olsen, S.; de Haas, S.L.; Pegram, M.D. Relationship between tumor biomarkers and efficacy in EMILIA, a phase III study of trastuzumab emtansine in HER2-positive metastatic breast cancer. Clin. Cancer Res., 2016, 22(15), 3755-3763.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2499] [PMID: 26920887]
[337]
Li, G.; Guo, J.; Shen, B.Q.; Yadav, D.B.; Sliwkowski, M.X.; Crocker, L.M.; Lacap, J.A.; Phillips, G.D.L. Lewis Phillips GD. Mechanisms of acquired resistance to trastuzumab emtansine in breast cancer cells. Mol. Cancer Ther., 2018, 17(7), 1441-1453.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0296] [PMID: 29695635]
[338]
Martínez, M.T.; Pérez-Fidalgo, J.A.; Martín-Martorell, P.; Cejalvo, J.M.; Pons, V.; Bermejo, B.; Martín, M.; Albanell, J.; Lluch, A. Treatment of HER2 positive advanced breast cancer with T-DM1: A review of the literature. Crit. Rev. Oncol. Hematol., 2016, 97, 96-106.
[http://dx.doi.org/10.1016/j.critrevonc.2015.08.011] [PMID: 26318092]
[339]
Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; Hirai, T.; Atsumi, R.; Nakada, T.; Hayakawa, I.; Abe, Y.; Agatsuma, T. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res., 2016, 22(20), 5097-5108.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2822] [PMID: 27026201]
[340]
Ocaña, A.; Amir, E.; Pandiella, A. Dual targeting of HER2-positive breast cancer with trastuzumab emtansine and pertuzumab: Understanding clinical trial results. Oncotarget, 2018, 9(61), 31915-31919.
[http://dx.doi.org/10.18632/oncotarget.25739] [PMID: 30159132]
[341]
García-Alonso, S.; Ocaña, A.; Pandiella, A. Trastuzumab emtansine: mechanisms of action and resistance, clinical progress, and beyond. Trends Cancer, 2020, 6(2), 130-146.
[http://dx.doi.org/10.1016/j.trecan.2019.12.010] [PMID: 32061303]
[342]
Liu, F.; Ke, J.; Song, Y. T-DM1-induced thrombocytopenia in breast cancer patients: New perspectives. Biomed. Pharmacother., 2020, 129, 110407.
[http://dx.doi.org/10.1016/j.biopha.2020.110407] [PMID: 32570117]
[343]
Pegram, M.D.; Miles, D.; Tsui, C.K.; Zong, Y. HER2-overexpressing/amplified breast cancer as a testing ground for antibody-drug conjugate drug development in solid tumors. Clin. Cancer Res., 2020, 26(4), 775-786.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1976] [PMID: 31582515]
[344]
Zoeller, J.J.; Vagodny, A.; Taneja, K.; Tan, B.Y.; O’Brien, N.; Slamon, D.J.; Sampath, D.; Leverson, J.D.; Bronson, R.T.; Dillon, D.A.; Brugge, J.S. Neutralization of BCL-2/XL enhances the cytotoxicity of T-DM1 in vivo. Mol. Cancer Ther., 2019, 18(6), 1115-1126.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0743] [PMID: 30962322]
[345]
Peters, S.; Stahel, R.; Bubendorf, L.; Bonomi, P.; Villegas, A.; Kowalski, D.M.; Baik, C.S.; Isla, D.; Carpeno, J.C.; Garrido, P.; Rittmeyer, A.; Tiseo, M.; Meyenberg, C.; de Haas, S.; Lam, L.H.; Lu, M.W.; Stinchcombe, T.E. Trastuzumab emtansine (T-DM1) in patients with previously treated HER2 overexpressing metastatic non-small cell lung cancer: efficacy, safety and biomarkers. Clin. Cancer Res., 2019, 25(1), 64-72.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1590] [PMID: 30206164]
[346]
Nakada, T.; Sugihara, K.; Jikoh, T.; Abe, Y.; Agatsuma, T. The latest research and development into the antibody–drug conjugate, [fam-] trastuzumab deruxtecan (DS-8201a), for HER2 cancer therapy. Chem. Pharm. Bull. (Tokyo), 2019, 67(3), 173-185.
[http://dx.doi.org/10.1248/cpb.c18-00744] [PMID: 30827997]
[347]
LoRusso, P.M.; Weiss, D.; Guardino, E.; Girish, S.; Sliwkowski, M.X. Trastuzumab emtansine: A unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin. Cancer Res., 2011, 17(20), 6437-6447.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0762] [PMID: 22003071]
[348]
Xu, Z.; Guo, D.; Jiang, Z.; Tong, R.; Jiang, P.; Bai, L.; Chen, L.; Zhu, Y.; Guo, C.; Shi, J.; Yu, D. Novel HER2-targeting antibody-drug conjugates of trastuzumab beyond T-DM1 in breast cancer: Trastuzumab deruxtecan (DS-8201a) and (vic-)trastuzumab duocarmazine (SYD985). Eur. J. Med. Chem., 2019, 183, 111682.
[http://dx.doi.org/10.1016/j.ejmech.2019.111682] [PMID: 31563805]
[349]
Avilés, P.; Domínguez, J.M.; Guillén, M.J.; Muñoz-Alonso, M.J.; Mateo, C.; Rodriguez-Acebes, R.; Molina-Guijarro, J.M.; Francesch, A.; Martínez-Leal, J.F.; Munt, S.; Galmarini, C.M.; Cuevas, C. MI130004, a novel antibody-drug conjugate combining trastuzumab with a molecule of marine origin, shows outstanding in vivo activity against HER2 expressing tumors. Mol. Cancer Ther., 2018, 17(4), 786-794.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0795] [PMID: 29440297]
[350]
Menderes, G.; Bonazzoli, E.; Bellone, S.; Black, J.; Predolini, F.; Pettinella, F.; Masserdotti, A.; Zammataro, L.; Altwerger, G.; Buza, N.; Hui, P.; Wong, S.; Litkouhi, B.; Ratner, E.; Silasi, D.A.; Azodi, M.; Schwartz, P.E.; Santin, A.D. SYD985, a novel duocarmycin-based HER2 targeting antibody–drug conjugate, shows antitumor activity in uterine and ovarian carcinosarcoma with HER2/Neu expression. Clin. Cancer Res., 2017, 23(19), 5836-5845.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2862] [PMID: 28679774]
[351]
Burris, H.A., III; Rugo, H.S.; Vukelja, S.J.; Vogel, C.L.; Borson, R.A.; Limentani, S.; Tan-Chiu, E.; Krop, I.E.; Michaelson, R.A.; Girish, S.; Amler, L.; Zheng, M.; Chu, Y.W.; Klencke, B.; O’Shaughnessy, J.A. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J. Clin. Oncol., 2011, 29(4), 398-405.
[http://dx.doi.org/10.1200/JCO.2010.29.5865] [PMID: 21172893]
[352]
Li, B.T.; Zauderer, M.; Chaft, J.; Drilon, A.; Eng, J.; Sima, C.; Makker, V.; Iyer, G.; Janjigian, Y.; Hyman, D. Ado-trastuzumab emtansine for HER2 amplified or HER2 overexpressed cancers: A phase II “basket” trial. Cancer Res., 2015, 75(15 suppl), p. Abs. CT225.
[353]
Humphreys, R.C.; Kirtely, J.; Hewit, A.; Biroc, S.; Knudsen, N.; Skidmore, L.; Wahl, A. Site specific conjugation of ARX-788, an Antibody Drug Conjugate (ADC) targeting HER2, generates a potent and stable targeted therapeutic for multiple cancers. Cancer Res., 2015, 75(15 suppl), p. Abs. 639.
[http://dx.doi.org/10.1158/1538-7445.AM2015-639]
[354]
Zhang, H.; Li, Z.;; Zhu, T.; Cao, S.; Chen, G.; Miao, D. Superior anti-tumor activity compared to T-DM1 in preclinical studies of targeted therapies for HER2-postitive cancers by a novel HER2- ADC ZV0201. Cancer Res.,, 2015, 75(15 suppl), Abs. 651.
[355]
Zhu, Z.; Boopathy, R.; Li, J.; Probakaran, P.; Colantonio, S.; Feng, Y.; Wang, Y.; Dyba, M.A. Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. MAbs, 2014, 6(5), 1190-1200.
[356]
Demeule, M.; Das, S.; Che, C.; Yang, G.; Currie, J.C.; Lord- Dufour, S.; Tripathy, S.; Regina, A. Targeting HER2-positive brain metastases by incorporating the brain-penetrant angiopep-2 peptide to an anti-HER2 antibody and anti-HER2 antibody drug conjugate. Cancer Res., 2015, 75(15 suppl), p. Abs. 2465.
[357]
Jia, J.; Zhou, X.; Huang, Y.; Xie, H.; Guo, H.; Gai, S.; Qu, L.; Li, W.; Chen, L.; Li, X.; Sun, S. Functional evaluation of novel tubulysin analogs as payloads for antibody-drug conjugates. Cancer Res., 2015, 75(15 suppl), p. Abs. 4532.
[358]
Bodyak, N.; Yurkovetskiy, A.; Park, P.U.; Gumerov, D.R.; DeVit, M.; Yin, M.; Thomas, J.D. Trastuzumab-dolaflexin, a highly potent Fleximar-based antibody-drug conjugate, demonstrates a favorable therapeutic index in exploratory toxicology studies in multiple species. Proc AACR, 2015.
[359]
Bergstrom, D.A.; Bodyak, N.; Yurkovetskiy, A.; Park, P.U.; DeVit, M.; Yin, M.; Poling, L.; Thomas, J.D.; Gumerov, D.R. A novel potent HER2-targeted antibody-drug conjugate (ADC) for the treatment of low HER2-expressing tumors and combination with trastuzumab-based regimens in HER2-driven tumors. Cancer Res., 2015, 75(15 suppl), p. Abs. LB-231.
[http://dx.doi.org/10.1158/1538-7445.AM2015-LB-231]
[360]
Gupta, N.; Kancharla, J.; Kaushik, S.; Hossain, S.; Sarkar, A.; Sengupta, A.; Roy, M.; Sengupta, S. Supramolecular assembly of antibody-drug conjugates using CORDLink platform for targeted drug delivery. Cancer Res., 2015, 75(15)(Suppl.), 649.
[http://dx.doi.org/10.1158/1538-7445.AM2015-649]
[361]
Chen, G.; Zhu, T.; Deng, D.; Zhang, H.; Miao, D. Development of anti-cancer ADCs with Concortis’ C-and K-lock technology. Cancer Res., 2015, 75(15)(Suppl.), 635.
[362]
van der Lee, M.M.; Groothuis, P.G.; Ubink, R.; van der Vleuten, M.A.J.; van Achterberg, T.A.; Loosveld, E.M.; Damming, D.; Jacobs, D.C.; Rouwette, M.; Egging, D.F.; van den Dobbelsteen, D.; Beusker, P.H.; Goedings, P.; Verheijden, G.F.; Lemmens, J.M.; Timmers, M.; Dokter, W.H. The preclinical profile of the duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low HER2-expressing breast cancers. Mol. Cancer Ther., 2015, 14(3), 692-703.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0881-T] [PMID: 25589493]
[363]
de Goeij, B.E.C.G.; Vink, T.; Ten Napel, H.; Breij, E.C.W.; Satijn, D.; Wubbolts, R.; Miao, D.; Parren, P.W.H.I. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol. Cancer Ther., 2016, 15(11), 2688-2697.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0364] [PMID: 27559142]
[364]
Krop, I.E.; Kim, S.B.; González-Martín, A.; LoRusso, P.M.; Ferrero, J.M.; Smitt, M.; Yu, R.; Leung, A.C.; Wildiers, H. Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): A randomised, open-label, phase 3 trial. Lancet Oncol., 2014, 15(7), 689-699.
[http://dx.doi.org/10.1016/S1470-2045(14)70178-0] [PMID: 24793816]
[365]
Uppal, H.; Doudement, E.; Mahapatra, K.; Darbonne, W.C.; Bumbaca, D.; Shen, B.Q.; Du, X.; Saad, O.; Bowles, K.; Olsen, S.; Lewis Phillips, G.D.; Hartley, D.; Sliwkowski, M.X.; Girish, S.; Dambach, D.; Ramakrishnan, V. Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin. Cancer Res., 2015, 21(1), 123-133.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2093] [PMID: 25370470]
[366]
Hess, K.R.; Esteva, F.J. Effect of HER2 status on distant recurrence in early stage breast cancer. Breast Cancer Res. Treat., 2013, 137(2), 449-455.
[http://dx.doi.org/10.1007/s10549-012-2366-0] [PMID: 23225147]
[367]
Ramakrishna, N.; Temin, S.; Chandarlapaty, S.; Crews, J.R.; Davidson, N.E.; Esteva, F.J.; Giordano, S.H.; Gonzalez-Angulo, A.M.; Kirshner, J.J.; Krop, I.; Levinson, J.; Modi, S.; Patt, D.A.; Perez, E.A.; Perlmutter, J.; Winer, E.P.; Lin, N.U. Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol., 2014, 32(19), 2100-2108.
[http://dx.doi.org/10.1200/JCO.2013.54.0955] [PMID: 24799487]
[368]
Bartsch, R.; Berghoff, A.S.; Preusser, M. Breast cancer brain metastases responding to primary systemic therapy with T-DM1. J. Neurooncol., 2014, 116(1), 205-206.
[http://dx.doi.org/10.1007/s11060-013-1257-5] [PMID: 24065570]
[369]
Torres, S.; Maralani, P.; Verma, S. Activity of T-DM1 in HER-2 positive central nervous system breast cancer metastases. BMJ Case Rep., 2014, 2014, bcr2014205680.
[http://dx.doi.org/10.1136/bcr-2014-205680] [PMID: 25123575]
[370]
Krop, I.E.; Lin, N.U.; Blackwell, K.; Guardino, E.; Huober, J.; Lu, M.; Miles, D.; Samant, M.; Welslau, M.; Diéras, V. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: A retrospective, exploratory analysis in EMILIA. Ann. Oncol., 2015, 26(1), 113-119.
[http://dx.doi.org/10.1093/annonc/mdu486] [PMID: 25355722]
[371]
Phillips, G.D.; Fields, C.T.; Li, G.; Dowbenko, D.; Schaefer, G.; Miller, K.; Andre, F.; Burris, H.A., III; Albain, K.S.; Harbeck, N.; Dieras, V.; Crivellari, D.; Fang, L.; Guardino, E.; Olsen, S.R.; Crocker, L.M.; Sliwkowski, M.X. Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: Critical role for neuregulin blockade in antitumor response to combination therapy. Clin. Cancer Res., 2014, 20(2), 456-468.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0358] [PMID: 24097864]
[372]
Wildiers, H.; Kim, S-B.; Gonzalez-Martin, A. T-DM1 for HER2-positive metastatic breast cancer (MBC): Primary results from TH3RESA, a phase 3 study of T-DM1 vs. treatment of physician’s choice. Eur. J. Cancer, 2013, 49, S7-S8.
[373]
Krop, I.E.; LoRusso, P.; Miller, K.D.; Modi, S.; Yardley, D.; Rodriguez, G.; Guardino, E.; Lu, M.; Zheng, M.; Girish, S.; Amler, L.; Winer, E.P.; Rugo, H.S. A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who were previously treated with trastuzumab, lapatinib, an anthracycline, a taxane, and capecitabine. J. Clin. Oncol., 2012, 30(26), 3234-3241.
[http://dx.doi.org/10.1200/JCO.2011.40.5902] [PMID: 22649126]
[374]
Baselga, J.; Gelmon, K.A.; Verma, S.; Wardley, A.; Conte, P.; Miles, D.; Bianchi, G.; Cortes, J.; McNally, V.A.; Ross, G.A.; Fumoleau, P.; Gianni, L. Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J. Clin. Oncol., 2010, 28(7), 1138-1144.
[http://dx.doi.org/10.1200/JCO.2009.24.2024] [PMID: 20124182]
[375]
Miller, K.D.; Diéras, V.; Harbeck, N.; Andre, F.; Mahtani, R.L.; Gianni, L.; Albain, K.S.; Crivellari, D.; Fang, L.; Michelson, G.; de Haas, S.L.; Burris, H.A. Phase IIa trial of trastuzumab emtansine with pertuzumab for patients with human epidermal growth factor receptor 2-positive, locally advanced, or metastatic breast cancer. J. Clin. Oncol., 2014, 32(14), 1437-1444.
[http://dx.doi.org/10.1200/JCO.2013.52.6590] [PMID: 24733796]
[376]
Korkola, J.E.; Liu, M.; Liby, T.; Heiser, L.; Feiler, H.; Gray, J.W. Detrimental effects of sequential compared to concurrent treatment of pertuzumab plus T-DM1 in HER2+ breast cancer cell lines. Cancer Res., 2015, 75(9)(Suppl.), S6-S07.
[377]
Verheijden, G.; Beusker, P.; Ubink, R.; van der Lee, M.; Groothuis, P.; Goedings, P.J.; Egging, D.; Mattaar, E.; Timmers, M.; Dokter, W. Toward clinical development of SYD985, a novel HER2-targeting Antibody-Drug Conjugate (ADC). J. Clin. Oncol., 2014, 32(Suppl.), 626.
[378]
Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; Wong, W.L.T.; Jacobson, F.S.; Koeppen, H.; Schwall, R.H.; Kenkare-Mitra, S.R.; Spencer, S.D.; Sliwkowski, M.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res., 2008, 68(22), 9280-9290.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1776] [PMID: 19010901]
[379]
Black, J.D.; Lopez, S.; Cocco, E.; Bellone, S.; Bonazzoli, E.; Schwab, C.; English, D.P. SYD985, a novel HER2-targeting antibody-drug conjugate, shows strong antitumor activity in primary USC cell lines with low (1+) and moderate (2+) HER2/Neu expression. Mol. Cancer Ther., 2016, 15, 1900-1909.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0163] [PMID: 27256376]
[380]
Black, J.; Lopez, S.; Cocco, E.; Bellone, S.; Bonazzoli, E.; Schwab, C.; English, D.P. SYD985, a novel HER2-targeting antibody-drug conjugate in preclinical models for USC, both in vitro and in vivo. J. Clin. Oncol., 2015, 33(Suppl.), e16527.
[381]
Ubink, R.; Dirksen, E.H.C.; Rouwette, M.; Bos, E.S.; Janssen, I.; Egging, D.F.; Loosveld, E.M.; van Achterberg, T.A.; Berentsen, K.; van der Lee, M.M.C.; Bichat, F.; Raguin, O.; van der Vleuten, M.A.J.; Groothuis, P.G.; Dokter, W.H.A. Unraveling the interaction between carboxylesterase 1c and the antibody drug conjugate SYD985: improved translational PKPD by using Ces1c knockout mice. Mol. Cancer Ther., 2018, 17(11), 2389-2398.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0329] [PMID: 30093567]
[382]
Hingorani, D.V.; Doan, M.K.; Camargo, M.F.; Aguilera, J.; Song, S.M.; Pizzo, D.; Scanderbeg, D.J.; Cohen, E.E.W.; Lowy, A.M.; Adams, S.R.; Advani, S.J. Precision chemo-radiotherapy for HER2 tumors using antibody conjugates of an auristatin derivative with reduced cell permeability. Mol. Cancer Ther., 2020, 19(1), 157-167.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1302] [PMID: 31597712]
[383]
Rinnerthaler, G.; Gampenrieder, S.P.; Greil, R. HER2 directed antibody-drug-conjugates beyond T-DM1 in breast cancer. Int. J. Mol. Sci., 2019, 20(5), 1115.
[http://dx.doi.org/10.3390/ijms20051115] [PMID: 30841523]
[384]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
[385]
Trail, P.A.; Dubowchik, G.M.; Lowinger, T.B. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol. Ther., 2018, 181, 126-142.
[http://dx.doi.org/10.1016/j.pharmthera.2017.07.013] [PMID: 28757155]
[386]
Sheng, X.; Yan, X.; Wang, L.; Shi, Y.; Yao, X.; Luo, H.; Shi, B.; Liu, J.; He, Z.; Yu, G.; Ying, J.; Han, W.; Hu, C.; Ling, Y.; Chi, Z.; Cui, C.; Si, L.; Fang, J.; Zhou, A.; Guo, J. Open-label, multicenter, phase 2 study of RC48-ADC, a HER2-targeting 1antibody-drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma. Clin. Cancer Res., 2021, 27(1), 43-51.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2488] [PMID: 33109737]
[387]
Skidmore, L.; Sakamuri, S.; Knudsen, N.A.; Hewet, A.G.; Milutinovic, S.; Barkho, W.; Biroc, S.L.; Kirtley, J.; Marsden, R.; Storey, K.; Lopez, I.; Yu, W.; Fang, S.Y.; Yao, S.; Gu, Y.; Tian, F. ARX788, a site-specific anti-HER2 antibody–drug conjugate, demonstrates potent and selective activity in HER2-low and T-DM1–resistant breast and gastric cancers. Mol. Cancer Ther., 2020, 19(9), 1833-1843.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-1004] [PMID: 32669315]
[388]
Yonesaka, K.; Takegawa, N.; Watanabe, S.; Haratani, K.; Kawakami, H.; Sakai, K.; Chiba, Y.; Maeda, N.; Kagari, T.; Hirotani, K.; Nishio, K.; Nakagawa, K. An HER3-targeting antibody-drug conjugate incorporating a DNA topoisomerase I inhibitor U3-1402 conquers EGFR tyrosine kinase inhibitor-resistant NSCLC. Oncogene, 2019, 38(9), 1398-1409.
[http://dx.doi.org/10.1038/s41388-018-0517-4] [PMID: 30302022]
[389]
Koganemaru, S.; Kuboki, Y.; Koga, Y.; Kojima, T.; Yamauchi, M.; Maeda, N.; Kagari, T.; Hirotani, K.; Yasunaga, M.; Matsumura, Y.; Doi, T. U3-1402, a novel HER3-targeting antibody–drug conjugate, for the treatment of colorectal cancer. Mol. Cancer Ther., 2019, 18(11), 2043-2050.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0452] [PMID: 31395690]
[390]
Hashimoto, Y.; Koyama, K.; Kamai, Y.; Hirotani, K.; Ogitani, Y.; Zembutsu, A.; Abe, M.; Kaneda, Y.; Maeda, N.; Shiose, Y.; Iguchi, T.; Ishizaka, T.; Karibe, T.; Hayakawa, I.; Morita, K.; Nakada, T.; Nomura, T.; Wakita, K.; Kagari, T.; Abe, Y.; Murakami, M.; Ueno, S.; Agatsuma, T. A novel HER3-targeting antibody-drug conjugate, U3-1402, exhibits potent therapeutic efficacy through the delivery of cytotoxic payload by efficient internalization. Clin. Cancer Res., 2019, 25(23), 7151-7161.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1745] [PMID: 31471314]
[391]
Haratani, K.; Yonesaka, K.; Takamura, S.; Maenishi, O.; Kato, R.; Takegawa, N.; Kawakami, H.; Tanaka, K.; Hayashi, H.; Takeda, M.; Maeda, N.; Kagari, T.; Hirotani, K.; Tsurutani, J.; Nishio, K.; Doi, K.; Miyazawa, M.; Nakagawa, K. U3-1402 sensitizes HER3-expressing tumors to PD-1 blockade by immune activation. J. Clin. Invest., 2020, 130(1), 374-388.
[http://dx.doi.org/10.1172/JCI126598] [PMID: 31661465]
[392]
Janne, P.A.; Yu, H.A.; Johnson, M.L.; Steuer, C.E.; Vigliotti, M. Iacobucci, C Safety and preliminary antitumor activity of U3-1402: A HER3-targeted antibody drug conjugate in EGFR TKI-resistant, EGFRm NSCLC. J. Clin. Oncol., 2019, 33(Suppl.), 9010.
[393]
Akla, B.; Broussas, M.; Loukili, N.; Robert, A.; Beau-Larvor, C.; Malissard, M.; Boute, N.; Champion, T.; Haeuw, J.F.; Beck, A.; Perez, M.; Dreyfus, C.; Pavlyuk, M.; Chetaille, E.; Corvaia, N. Efficacy of the antibody-drug conjugate W0101 in preclinical models of IGF-1 receptor overexpressing solid tumors. Mol. Cancer Ther., 2020, 19(1), 168-177.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0219] [PMID: 31594825]
[394]
Tivadar, S.T.; McIntosh, R.S.; Chua, J.X.; Moss, R.; Parsons, T.; Zaitoun, A.M.; Madhusudan, S.; Durrant, L.G.; Vankemmelbeke, M. Monoclonal antibody targeting sialyl-di-Lewisa–containing internalizing and non-internalizing glycoproteins with cancer immunotherapy development potential. Mol. Cancer Ther., 2020, 19(3), 790-801.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0221] [PMID: 31871270]
[395]
Currier, N.V.; Ackerman, S.E.; Kintzing, J.R.; Chen, R.; Filsinger Interrante, M.; Steiner, A.; Sato, A.K.; Cochran, J.R. Targeted drug delivery with an integrin-binding knottin-Fc-MMAF conjugate produced by cell-free protein synthesis. Mol. Cancer Ther., 2016, 15(6), 1291-1300.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0881] [PMID: 27197305]
[396]
Junttila, M.R.; Mao, W.; Wang, X.; Wang, B.E.; Pham, T.; Flygare, J.; Yu, S.F.; Yee, S.; Goldenberg, D.; Fields, C.; Eastham-Anderson, J.; Singh, M.; Vij, R.; Hongo, J.A.; Firestein, R.; Schutten, M.; Flagella, K.; Polakis, P.; Polson, A.G. Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci. Transl. Med., 2015, 7(314), 314ra186.
[http://dx.doi.org/10.1126/scitranslmed.aac7433] [PMID: 26582901]
[397]
Gong, X.; Azhdarinia, A.; Ghosh, S.C.; Xiong, W.; An, Z.; Liu, Q.; Carmon, K.S. LGR5-targeted antibody-drug conjugate eradicates gastrointestinal tumors and prevents recurrence. Mol. Cancer Ther., 2016, 15(7), 1580-1590.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0114] [PMID: 27207778]
[398]
Deng, M.; Gui, X.; Kim, J.; Xie, L.; Chen, W.; Li, Z.; He, L.; Chen, Y.; Chen, H.; Luo, W.; Lu, Z.; Xie, J.; Churchill, H.; Xu, Y.; Zhou, Z.; Wu, G.; Yu, C.; John, S.; Hirayasu, K.; Nguyen, N.; Liu, X.; Huang, F.; Li, L.; Deng, H.; Tang, H.; Sadek, A.H.; Zhang, L.; Huang, T.; Zou, Y.; Chen, B.; Zhu, H.; Arase, H.; Xia, N.; Jiang, Y.; Collins, R.; You, M.J.; Homsi, J.; Unni, N.; Lewis, C.; Chen, G.Q.; Fu, Y.X.; Liao, X.C.; An, Z.; Zheng, J.; Zhang, N.; Zhang, C.C. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature, 2018, 562(7728), 605-609.
[http://dx.doi.org/10.1038/s41586-018-0615-z] [PMID: 30333625]
[399]
Anami, Y.; Deng, M.; Gui, X.; Yamaguchi, A.; Yamazaki, C.M.; Zhang, N.; Zhang, C.C.; An, Z.; Tsuchikama, K. LILRB4-targeting antibody-drug conjugates for the treatment of acute myeloid leukemia. Mol. Cancer Ther., 2020, 19(11), 2330-2339.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0407] [PMID: 32879051]
[400]
Sussman, D.; Smith, L.M.; Anderson, M.E.; Duniho, S.; Hunter, J.H.; Kostner, H.; Miyamoto, J.B.; Nesterova, A.; Westendorf, L.; Van Epps, H.A.; Whiting, N.; Benjamin, D.R. SGN-LIV1A: A novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol. Cancer Ther., 2014, 13(12), 2991-3000.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0896] [PMID: 25253783]
[401]
Kostic, A.; Anderson, M.; Duniho, S.; Miyamoto, J.; Nesterova, A.; Sussman, D. SGN-LIV1A, an antibody-drug conjugate (ADC), in patients with LIV-1-positive breast cancer. J. Clin. Oncol., 2014, 32(Suppl.), TPS1143.
[402]
Modi, S. 2016 San Antonio Breast Cancer Symposium, 2016, PD3-PD14.
[403]
Han, H.S.; Alemany, C.A.; Brown-Glaberman, U.A.; Pluard, T.J.; Sinha, R.; Sterrenberg, D.; Albain, K.S.; Basho, R.K.; Biggs, D.; Boni, V.; Diab, S.; Tsai, M.L.; Tkaczuk, K.H.; Wang, Y.; Wang, Z.; Meisel, J.L. SGNLVA-002: Single-arm, open label phase Ib/II study of Ladiratuzumab Vedotin (LV) in combination with pembrolizumab for first-line treatment of patients with unresectable locally advanced or metastatic triple-negative breast cancer. J. Clin. Oncol., 2019, 37(Suppl.), TPS1110.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS1110]
[404]
Anderson, I.C.; Wang, Y.; Wang, Z.; Sanborn, R.E. Sgnlva-005: Open-label, phase II study of Ladiratuzumab Vedotin (LV) for advanced aerodigestive tract malignancies. J. Clin. Oncol., 2020, 38(Suppl.), TPS469.
[http://dx.doi.org/10.1200/JCO.2020.38.4_suppl.TPS469]
[405]
Purcell, J.W.; Tanlimco, S.G.; Hickson, J.; Fox, M.; Sho, M.; Durkin, L.; Uziel, T.; Powers, R.; Foster, K.; McGonigal, T.; Kumar, S.; Samayoa, J.; Zhang, D.; Palma, J.P.; Mishra, S.; Hollenbaugh, D.; Gish, K.; Morgan-Lappe, S.E.; Hsi, E.D.; Chao, D.T. LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Cancer Res., 2018, 78(14), 4059-4072.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0327] [PMID: 29764866]
[406]
Ben-Ami, E.; Perret, R.; Huang, Y.; Courgeon, F.; Gokhale, P.C.; Laroche-Clary, A.; Eschle, B.K.; Velasco, V.; Le Loarer, F.; Algeo, M.P.; Purcell, J.; Demetri, G.D.; Italiano, A. LRRC15 targeting in soft-tissue sarcomas: Biological and clinical implications. Cancers (Basel), 2020, 12(3), 757.
[http://dx.doi.org/10.3390/cancers12030757] [PMID: 32210091]
[407]
Slemmons, K.K.; Mukherjee, S.; Meltzer, P.; Purcell, J.W.; Helman, L.J. LRRC15 antibody-drug conjugates show promise as osteosarcoma therapeutics in preclinical studies. Pediatr. Blood Cancer, 2021, 68(2), e28771.
[http://dx.doi.org/10.1002/pbc.28771] [PMID: 33063919]
[408]
Demetri, G.D.; Luke, J.J.; Hollebecque, A.; Powderly, J.D.; Spira, A.I.; Subbiah, V. First-in-human phase 1 study of ABBV-085, an antibody-drug conjugate (ADC) targeting LRRC15, in sarcomas and other advanced solid tumors. J. Clin. Oncol., 2019, 37(Suppl.), 3004.
[409]
Hingorani, P.; Roth, M.E.; Wang, Y.; Zhang, W.; Gill, J.B.; Harrison, D.J.; Teicher, B.; Erickson, S.; Gatto, G.; Smith, M.A.; Kolb, E.A.; Gorlick, R. ABBV-085, antibody-drug conjugate targeting LRRC15, is effective in osteosarcoma: A report by the Pediatric Preclinical Testing Consortium. Mol. Cancer Ther., 2021, 20(3), 535-540.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0406] [PMID: 33298592]
[410]
Hassan, R.; Bera, T.; Pastan, I. Mesothelin: A new target for immunotherapy. Clin. Cancer Res., 2004, 10(12 Pt 1), 3937-3942.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0801] [PMID: 15217923]
[411]
Bendell, J.; Blumenschein, G.; Zinner, R.; Hong, D.; Jones, S.; Infante, J.; Burris, H. First-in-human phase I dose-escalation study of a novel anti-mesothelin antibody drug conjugate, BAY 94-9343, in patients with advanced solid tumors. Proc. Am. Assoc. Cancer Res., 2013, LB-291.
[412]
Golfier, S.; Kopitz, C.; Kahnert, A.; Heisler, I.; Schatz, C.A.; Stelte-Ludwig, B.; Mayer-Bartschmid, A.; Unterschemmann, K.; Bruder, S.; Linden, L.; Harrenga, A.; Hauff, P.; Scholle, F.D.; Müller-Tiemann, B.; Kreft, B.; Ziegelbauer, K. Anetumab ravtansine: A novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol. Cancer Ther., 2014, 13(6), 1537-1548.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0926] [PMID: 24714131]
[413]
Lindenberg, L.; Thomas, A.; Adler, S.; Mena, E.; Kurdziel, K.; Maltzman, J.; Wallin, B.; Hoffman, K.; Pastan, I.; Paik, C.H.; Choyke, P.; Hassan, R. Safety and biodistribution of 111In-amatuximab in patients with mesothelin expressing cancers using single photon emission computed tomography-computed tomography (SPECT-CT) imaging. Oncotarget, 2015, 6(6), 4496-4504.
[http://dx.doi.org/10.18632/oncotarget.2883] [PMID: 25756664]
[414]
Mason-Osann, E.; Hollevoet, K.; Niederfellner, G.; Pastan, I. Quantification of recombinant immunotoxin delivery to solid tumors allows for direct comparison of in vivo and in vitro results. Sci. Rep., 2015, 5, 10832.
[http://dx.doi.org/10.1038/srep10832] [PMID: 26111884]
[415]
Lamberts, L.E. Menke-van der Houven van Oordt, C.W.; ter Weele, E.J.; Bensch, F.; Smeenk, M.M.; Voortman, J.; Hoekstra, O.S.; Williams, S.P.; Fine, B.M.; Maslyar, D.; de Jong, J.R.; Gietema, J.A.; Schröder, C.P.; Bongaerts, A.H.; Lub-de Hooge, M.N.; Verheul, H.M.; Sanabria Bohorquez, S.M.; Glaudemans, A.W.; de Vries, E.G. ImmunoPET with anti-mesothelin antibody in patients with Pancreatic and ovarian cancer before anti-mesothelin antibody-drug conjugate treatment. Clin. Cancer Res., 2016, 22(7), 1642-1652.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1272] [PMID: 26589435]
[416]
Weekes, C.D.; Lamberts, L.E.; Borad, M.J.; Voortman, J.; McWilliams, R.R.; Diamond, J.R.; de Vries, E.G.E.; Verheul, H.M.; Lieu, C.H.; Kim, G.P.; Wang, Y.; Scales, S.J.; Samineni, D.; Brunstein, F.; Choi, Y.; Maslyar, D.J.; Colon-Otero, G. Phase I study of DMOT4039A, an antibody-drug conjugate targeting mesothelin, in patients with unresectable pancreatic or platinum-resistant ovarian cancer. Mol. Cancer Ther., 2016, 15(3), 439-447.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0693] [PMID: 26823490]
[417]
Quanz, M.; Hagemann, U.B.; Zitzmann-Kolbe, S.; Stelte-Ludwig, B.; Golfier, S.; Elbi, C.; Mumberg, D.; Ziegelbauer, K.; Schatz, C.A. Anetumab ravtansine inhibits tumor growth and shows additive effect in combination with targeted agents and chemotherapy in mesothelin-expressing human ovarian cancer models. Oncotarget, 2018, 9(75), 34103-34121.
[http://dx.doi.org/10.18632/oncotarget.26135] [PMID: 30344925]
[418]
Hassan, R.; Blumenschein, G.R., Jr; Moore, K.N.; Santin, A.D.; Kindler, H.L.; Nemunaitis, J.J.; Seward, S.M.; Thomas, A.; Kim, S.K.; Rajagopalan, P.; Walter, A.O.; Laurent, D.; Childs, B.H.; Sarapa, N.; Elbi, C.; Bendell, J.C. MD, Bendell JC. First-in-human, multicenter, phase I dose-escalation and expansion study of anti-mesothelin antibody–drug conjugate anetumab ravtansine in advanced or metastatic solid tumors. J. Clin. Oncol., 2020, 38(16), 1824-1835.
[http://dx.doi.org/10.1200/JCO.19.02085] [PMID: 32213105]
[419]
Lazzerini, L.; Jöhrens, K.; Sehouli, J.; Cichon, G. Favorable therapeutic response after anti-Mesothelin antibody-drug conjugate treatment requires high expression of Mesothelin in tumor cells. Arch. Gynecol. Obstet., 2020, 302(5), 1255-1262.
[http://dx.doi.org/10.1007/s00404-020-05734-9] [PMID: 32815024]
[420]
Moentenich, V.; Comut, E.; Gebauer, F.; Tuchscherer, A.; Bruns, C.; Schroeder, W.; Buettner, R.; Alakus, H.; Loeser, H.; Zander, T.; Quaas, A. Mesothelin expression in esophageal adenocarcinoma and squamous cell carcinoma and its possible impact on future treatment strategies. Ther. Adv. Med. Oncol., 2020, 12, 1758835920917571.
[http://dx.doi.org/10.1177/1758835920917571] [PMID: 32547645]
[421]
Pascual, M.H.; Verdier, P.; Malette, P.; Mnich, J.; Ozoux, M.L. Validation of an immunoassay to selectively quantify the naked antibody of a new Antibody Drug Conjugate--SAR566658--for pharmacokinetic interpretation improvement. J. Immunol. Methods, 2013, 396(1-2), 140-146.
[http://dx.doi.org/10.1016/j.jim.2013.06.012] [PMID: 23892158]
[422]
Gomez-Roca, C.A.; Boni, V.; Moreno, V.; Morris, J.C.; Delord, J.P.; Calvo, E.; Papadopoulos, K.P.; Rixe, O.; Cohen, P.; Tellier, A.; Ziti-Ljajic, S.; Tolcher, A.W. A phase I study of SAR566658, an anti CA6-antibody drug conjugate (ADC), in patients (Pts) with CA6-positive advanced solid tumors (STs)(NCT01156870). J. Clin. Oncol., 2016, 34(Suppl.), 2511.
[423]
Panchamoorthy, G.; Jin, C.; Raina, D.; Bharti, A.; Yamamoto, M.; Adeebge, D.; Zhao, Q.; Bronson, R.; Jiang, S.; Li, L.; Suzuki, Y.; Tagde, A.; Ghoroghchian, P.P.; Wong, K.K.; Kharbanda, S.; Kufe, D. Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight, 2018, 3(12), e99880.
[http://dx.doi.org/10.1172/jci.insight.99880] [PMID: 29925694]
[424]
Lin, K.; Rubinfeld, B.; Zhang, C.; Firestein, R.; Harstad, E.; Roth, L.; Tsai, S.P.; Schutten, M.; Xu, K.; Hristopoulos, M.; Polakis, P. Preclinical development of an anti-NaPi2β (SLC34A2) antibody-drug conjugate as a therapeutic for non-small cell lung and ovarian cancers. Clin. Cancer Res., 2015, 21(22), 5139-5150.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3383] [PMID: 26156394]
[425]
Burris, H.A.; Gordon, M.S.; Gerber, D.E.; Spigel, D.R.; Mendelson, D.S.; Schiller, J.H. A phase I study of DNIB0600A, an Antibody-Drug Conjugate (ADC) targeting NaPi2β in patients with Non-Small Cell Lung Cancer (NSCLC) or platinum-resistant Ovarian Cancer (OC). J. Clin. Oncol., 2014, 32(Suppl.), 2504.
[426]
Banerjee, S.; Oza, A.M.; Birrer, M.J.; Hamilton, E.P.; Hasan, J.; Leary, A.; Moore, K.N.; Mackowiak-Matejczyk, B.; Pikiel, J.; Ray-Coquard, I.; Trask, P.; Lin, K.; Schuth, E.; Vaze, A.; Choi, Y.; Marsters, J.C.; Maslyar, D.J.; Lemahieu, V.; Wang, Y.; Humke, E.W.; Liu, J.F. Anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer in a randomized, open-label, phase II study. Ann. Oncol., 2018, 29(4), 917-923.
[http://dx.doi.org/10.1093/annonc/mdy023] [PMID: 29401246]
[427]
Gerber, D.E.; Infante, J.R.; Gordon, M.S.; Goldberg, S.B.; Martin, M.; Felip, E.; Garcia, M.M.; Schiller, J.H.; Spige, D.R.; Cordova, J.; Westcott, V.; Wang, Y.; Shames, D.S.; Choi, Y.J.; Kahn, R.; Dere, R.C.; Samineni, D.; Xu, J.; Lin, K.; Wood, K.; Royer-Joo, S.R.; Lemahieu, V.; Schuth, E.; Vaze, A.; Maslyar, D.; Humke, E.W.; Burris, H.A. Phase Ia study of anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin DNIB0600A in non-small cell Lung cancer and platinum-resistant ovarian cancer patients. Clin. Cancer Res., 2020, 26, 364-372.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3965] [PMID: 31540980]
[428]
Moore, K.N.; Birrer, M.J.; Marsters, J.; Wang, Y. choi YJ, Royer-Joo S, Lemahieu V, Armstrong K, Cordova J, Samineni D, Schuth E, Vaze A, Maslyar D, Hunke EW, Hamilton EP, Liu JF. Phase Ib study of anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) in patients with platinum-sensitive recurrent ovarian cancer. Gynecol. Oncol., 2020, 158, 631-639.
[http://dx.doi.org/10.1016/j.ygyno.2020.05.039] [PMID: 32534811]
[429]
Yu, H.; Mosher, R.; Ellison, K.; Shaw, P.; Dziadziuszko, R.; Hailman, E.; Rivard, C.; Hirsch, F. P2.09-24 MERS67 is a novel anti-NaPi2b antibody and demonstrates differential expression patterns in lung cancer histologic subtypes. Thoracic Oncol, 2018, 13, S770.
[http://dx.doi.org/10.1016/j.jtho.2018.08.1321]
[430]
Fessler, S.; Dirksen, A.; Collins, S.D.; Xu, L.; Lee, W.; Wang, J.; Eydelloth, R.; Ter-Ovanesyen, E.; Zurita, J.; Ditty, E.; Nehilla, B.; Clardy, S.; Carter, T.; Avocetien, K.; Nazzaro, M.; Le, N.; Catcott, K.C.; Uttard, A.; Du, B.; Chin, C.N.; Mosher, R.; Slocum, K.; Qin, L.; Lee, D.; Toader, D.; Damelin, M.; Lowinger, T.B. XMT-1592, a site-specific Dolasynthen-based NaPi2b-targeted antibody-drug conjugate for the treatment of ovarian cancer and lung adenocarcinoma. Cancer Res., 2020, 80(Suppl.), 2894.
[431]
Boswell, C.A.; Mundo, E.E.; Zhang, C.; Bumbaca, D.; Valle, N.R.; Kozak, K.R.; Fourie, A.; Chuh, J.; Koppada, N.; Saad, O.; Gill, H.; Shen, B.Q.; Rubinfeld, B.; Tibbitts, J.; Kaur, S.; Theil, F.P.; Fielder, P.J.; Khawli, L.A.; Lin, K. Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjug. Chem., 2011, 22(10), 1994-2004.
[http://dx.doi.org/10.1021/bc200212a] [PMID: 21913715]
[432]
Danila, D.C.; Scher, H.I.; Szafer-Glusman, E.; Herkal, A.; Suttmann, R.; Fleisher, M.; Schreiber, N.A. Predictive biomarkers of tumor sensitivity to STEAP1 Antibody-Drug Conjugate (ADC) in patients (pts) with metastatic Castration Resistant Prostate Cancer (mCRPC). Proc. AACR, 2015, 75(15), 4310.
[433]
Danila, D.C.; Fleisher, M.; Carrasquillo, J.A.; Gilbert, H.; Morris, M.J.; Bellomo, L.P.; Hendrix, P.J. STEAP1 as a predictive biomarker for antibody-drug conjugate (ADC) activity in metastatic castration resistant prostate cancer (mCRPC). J. Clin. Oncol., 2015, 33(Suppl.), 5029.
[434]
Williams, S.P.; Ogasawara, A.; Tinianow, J.N.; Flores, J.E.; Kan, D.; Lau, J.; Go, M.; Vanderbilt, A.N.; Gill, H.S.; Miao, L.; Goldsmith, J.; Rubinfeld, B.; Mao, W.; Firestein, R.; Yu, S.F.; Marik, J.; Terwisscha van Scheltinga, A.G. ImmunoPET helps predicting the efficacy of antibody-drug conjugates targeting TENB2 and STEAP1. Oncotarget, 2016, 7(18), 25103-25112.
[http://dx.doi.org/10.18632/oncotarget.8390] [PMID: 27029064]
[435]
Sukumaran, S.; Zhang, C.; Leipold, D.D.; Saad, O.M.; Xu, K.; Gadkar, K.; Samineni, D.; Wang, B.; Milojic-Blair, M.; Carrasco-Triguero, M.; Rubinfeld, B.; Fielder, P.; Lin, K.; Ramanujan, S. Development and translational application of an integrated, mechanistic model of antibody-drug conjugate pharmacokinetics. AAPS J., 2017, 19(1), 130-140.
[http://dx.doi.org/10.1208/s12248-016-9993-z] [PMID: 27679517]
[436]
Ma, D.; Hopf, C.E.; Malewicz, A.D.; Donovan, G.P.; Senter, P.D.; Goeckeler, W.F.; Maddon, P.J.; Olson, W.C. Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen. Clin. Cancer Res., 2006, 12(8), 2591-2596.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2107] [PMID: 16638870]
[437]
Ma, D.; Zhang, H.; Maddon, P.; Parsons, T.; Olson, W. PSMA ADC improved survival and reduced measurable tumor burden in a subcutaneous mouse xenograft models of human prostate cancer. Cancer Res., 2008, 68(9), 4058.
[438]
Ma, D.; Zhang, H.; Buonagurio, B.; Maddon, P.; Olson, W. Forced resistance to PSMA ADC, a novel targeted therapy for prostate cancer, does not confer cross-resistance to docetaxel or other cytotoxic agents. Proc. AACR, 2007, 48, 4102.
[439]
DiPippo, V.A.; Nguyen, H.M.; Brown, L.G.; Olson, W.C.; Vessella, R.L.; Corey, E. In vivo efficacy of PSMA ADC in combination with enzalutamide in castration-resistant prostate cancer. Cancer Res., 2015, 75, 1685.
[440]
Ejadi, S.; Vogelzang, N.J.; Sartor, A.O.; Habbe, A.; Nguyen, B.; Tolcher, A.W. Phase 1 study of the PSMA-tubulysin small-molecule drug conjugate EC1169 in pts with metastatic castrate-resistant prostate cancer (mCRPC). J. Clin. Oncol., 2015, 33(Suppl.), e13527.
[441]
Cho, S.; Zammarchi, F.; Williams, D.G.; Havenith, C.E.G.; Monks, N.R.; Tyrer, P.; D’Hooge, F.; Fleming, R.; Vashisht, K.; Dimasi, N.; Bertelli, F.; Corbett, S.; Adams, L.; Reinert, H.W.; Dissanayake, S.; Britten, C.E.; King, W.; Dacosta, K.; Tammali, R.; Schifferli, K.; Strout, P.; Korade, M., III; Masson Hinrichs, M.J.; Chivers, S.; Corey, E.; Liu, H.; Kim, S.; Bander, N.H.; Howard, P.W.; Hartley, J.A.; Coats, S.; Tice, D.A.; Herbst, R.; van Berkel, P.H. Antitumor activity of MEDI3726 (ADCT-401), a pyrrolobenzodiazepine antibody-drug conjugate targeting PSMA, in pre-clinical models of prostate cancer. Mol. Cancer Ther., 2018, 17(10), 2176-2186.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0982] [PMID: 30065100]
[442]
Danila, D.C.; Szmulewitz, R.Z.; Vaishampayan, U.; Higano, C.S.; Baron, A.D.; Gilbert, H.N.; Brunstein, F.; Milojic-Blair, M.; Wang, B.; Kabbarah, O.; Mamounas, M.; Fine, B.M.; Maslyar, D.J.; Ungewickell, A.; Scher, H.I. Phase I study of DSTP3086S, an antibody-drug conjugate targeting six-transmembrane epithelial antigen of prostate 1, in metastatic castration-resistant prostate cancer. J. Clin. Oncol., 2019, 37(36), 3518-3527.
[http://dx.doi.org/10.1200/JCO.19.00646] [PMID: 31689155]
[443]
Petrylak, D.P.; Vogelzang, N.J.; Chatta, G.S.; Fleming, M.T.; Smith, D.C.; Appleman, L.J. A phase 2 study of prostate specific membrane antigen antibody drug conjugate (PSMA ADC) in patients (pts) with progressive metastatic castration-resistant prostate cancer (mCRPC) following abiraterone and/or enzalutamide (abi/enz). J. Clin. Oncol., 2020, 38(Suppl.), 144.
[444]
De Bono, J.S.; Fleming, M.T.; Wang, J.S.Z.; Cathomas, R.; Williams, M.; Bothos, J.G. MEDI3726, a Prostate-Specific Membrane Antigen (PSMA)-targeted Antibody-Drug Conjugate (ADC) in mCRPC after failure of abiraterone or enzalutamide. J. Clin. Oncol., 2020, 38(Suppl.), 99.
[445]
Milowsky, M.I.; Galsky, M.D.; Morris, M.J.; Crona, D.J.; George, D.J.; Dreicer, R.; Tse, K.; Petruck, J.; Webb, I.J.; Bander, N.H.; Nanus, D.M.; Scher, H.I.; Scher, H.I. Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer. Urol. Oncol., 2016, 34(12), 530.e15-530.e21.
[http://dx.doi.org/10.1016/j.urolonc.2016.07.005] [PMID: 27765518]
[446]
Niaz, M.O.; Sun, M.; Ramirez-Fort, M.K.; Niaz, M.J. Prostate-specific membrane antigen-based antibody-drug conjugates for metastatic castration-resistance prostate cancer. Cureus, 2020, 12(2), e7147.
[http://dx.doi.org/10.7759/cureus.7147] [PMID: 32257692]
[447]
Afar, D.E.H.; Bhaskar, V.; Ibsen, E.; Breinberg, D.; Henshall, S.M.; Kench, J.G.; Drobnjak, M.; Powers, R.; Wong, M.; Evangelista, F.; O’Hara, C.; Powers, D.; DuBridge, R.B.; Caras, I.; Winter, R.; Anderson, T.; Solvason, N.; Stricker, P.D.; Cordon-Cardo, C.; Scher, H.I.; Grygiel, J.J.; Sutherland, R.L.; Murray, R.; Ramakrishnan, V.; Law, D.A. Preclinical validation of anti-TMEFF2-auristatin E-conjugated antibodies in the treatment of prostate cancer. Mol. Cancer Ther., 2004, 3(8), 921-932.
[PMID: 15299075]
[448]
Law, D.A.; Afar, D.; Bhaskar, V.; Ibsen, E.; Powers, R.; Breinberg, D.; Wong, M.; Dubridge, R.; Ramakrishnan, V.; Murray, R. Identification and validation of anti-TMEFF2-auristatin E conjugated antibodies in the treatment of prostate cancer. J. Clin. Oncol., 2004, 22, 2557.
[449]
Boswell, C.A.; Yadav, D.B.; Mundo, E.E.; Yu, S.F.; Lacap, J.A.; Fourie-O’Donohue, A.; Kozak, K.R.; Ferl, G.Z.; Zhang, C.; Ho, J.; Ulufatu, S.; Khawli, L.A.; Lin, K. Biodistribution and efficacy of an anti-TENB2 antibody-drug conjugate in a patient-derived model of prostate cancer. Oncotarget, 2019, 10(58), 6234-6244.
[http://dx.doi.org/10.18632/oncotarget.27263] [PMID: 31692898]
[450]
Mathur, R.; Weiner, G.J. Picking the optimal target for antibodydrug conjugates. ASCO EdBook, 2013, e103-e107.
[http://dx.doi.org/10.14694/EdBook_AM.2013.33.e103]
[451]
Kurkjian, C.; LoRusso, P.; Sankhala, K.K.; Birrer, M.J.; Kirby, M.; Ladd, S.; Hawes, S.; Running, K.L.; O’Leary, J.J.; Moore, K.N. A phase I, first-in-human study to evaluate the safety, Pharmacokinetics (PK), and Pharmacodynamics (PD) of IMGN853 in patients (Pts) with Epithelial Ovarian Cancer (EOC) and other FOLR1-positive solid tumors. J. Clin. Oncol., 2013, 31(Suppl.), 2573.
[452]
Yoder, N.C.; Bai, C.; Tavares, D.; Widdison, W.C.; Ab, O.; Whiteman, K.R.; Wilhelm, A.; Maloney, E.K. Stability and efficacy comparison of site-specific and lysine-linked maytansinoid antibody-drug conjugates. Cancer Res., 2015, 75, 645.
[http://dx.doi.org/10.1158/1538-7445.AM2015-645]
[453]
Challita-Eid, P.M.; Satpayev, D.; Yang, P.; An, Z.; Morrison, K.; Shostak, Y.; Raitano, A.; Nadell, R.; Liu, W.; Lortie, D.R.; Capo, L.; Verlinsky, A.; Leavitt, M.; Malik, F.; Aviña, H.; Guevara, C.I.; Dinh, N.; Karki, S.; Anand, B.S.; Pereira, D.S.; Joseph, I.B.; Doñate, F.; Morrison, K.; Stover, D.R. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res., 2016, 76(10), 3003-3013.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1313] [PMID: 27013195]
[454]
M-Rabet,M.; Cabaud, O.; Josselin, E.; Finetti, P.; Castellano, R.; Farina, A.; Agavnian-Couquiaud, E.; Saviane, G.; Collette, Y.; Viens, P.; Gonçalves, A.; Ginestier, C.; Charafe-Jauffret, E.; Birnbaum, D.; Olive, D.; Bertucci, F.; Lopez, M. Nectin-4: A new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Ann. Oncol., 2017, 28(4), 769-776.
[http://dx.doi.org/10.1093/annonc/mdw678] [PMID: 27998973]
[455]
Boylan, K.L.; Buchanan, P.C.; Manion, R.D.; Shukla, D.M.; Braumberger, K.; Bruggemeyer, C.; Skubitz, A.P. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget, 2017, 8(6), 9717-9738.
[http://dx.doi.org/10.18632/oncotarget.14206] [PMID: 28038455]
[456]
Petrylak, D.P.; Perez, R.P.; Zhang, J.; Smith, D.C.; Ruether, J.D.; Sridhar, S.S. A phase I study of enfortumab vedotin (ASG-22CE; ASG-22ME): updated analysis of patients with metastatic urothelial cancer. J. Clin. Oncol., 2017, 35(Suppl.), 106.
[457]
Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Durán, I.; Lee, J.L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; Campbell, M.; Matsangou, M.; Petrylak, D.P. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N. Engl. J. Med., 2021, 384(12), 1125-1135.
[http://dx.doi.org/10.1056/NEJMoa2035807] [PMID: 33577729]
[458]
McGregor, B.A.; Sonpavde, G. Enfortumab Vedotin, a fully human monoclonal antibody against Nectin 4 conjugated to monomethyl auristatin E for metastatic urothelial Carcinoma. Expert Opin. Investig. Drugs, 2019, 28(10), 821-826.
[http://dx.doi.org/10.1080/13543784.2019.1667332] [PMID: 31526130]
[459]
Vlachostergios, P.J.; Jakubowski, C.D.; Niaz, M.J.; Lee, A.; Thomas, C.; Hackett, A.L.; Patel, P.; Rashid, N.; Tagawa, S.T. Antibody-drug conjugates in bladder cancer. Bladder Cancer, 2018, 4(3), 247-259.
[http://dx.doi.org/10.3233/BLC-180169] [PMID: 30112436]
[460]
Sarfaty, M.; Rosenberg, J.E. Antibody-drug conjugates in urothelial carcinomas. Curr. Oncol. Rep., 2020, 22(2), 13.
[http://dx.doi.org/10.1007/s11912-020-0879-y] [PMID: 32008109]
[461]
Rosenberg, J.E.; O’Donnell, P.H.; Balar, A.V.; McGregor, B.A.; Heath, E.I.; Yu, E.Y.; Galsky, M.D.; Hahn, N.M.; Gartner, E.M.; Pinelli, J.M.; Liang, S.Y.; Melhem-Bertrandt, A.; Petrylak, D.P. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J. Clin. Oncol., 2019, 37(29), 2592-2600.
[http://dx.doi.org/10.1200/JCO.19.01140] [PMID: 31356140]
[462]
Chang, E.; Weinstock, C.; Zhang, L.; Charlab, R.; Dorff, S.E.; Gong, Y.; Hsu, V.; Li, F.; Ricks, T.K.; Song, P.; Tang, S.; Waldron, P.E.; Yu, J.; Zahalka, E.; Goldberg, K.B.; Pazdur, R.; Theoret, M.R.; Ibrahim, A.; Beaver, J.A. FDA approval summary: enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin. Cancer Res., 2021, 27(4), 922-927.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2275] [PMID: 32962979]
[463]
Geles, K.G.; Gao, Y.; Sridharan, L.; Giannakou, A.; Yamin, T.T.; Golas, J.; Lucas, J.; Charati, M.; Li, X.; Guffroy, M.; Nichols, T. therapeutic targeting the NOTCH3 receptor with antibody-drug conjugates. Proc. AACR, 2015, 1697.
[464]
Katoh, M.; Katoh, M. Precision medicine for human cancers with Notch signaling dysregulation (Review). Int. J. Mol. Med., 2020, 45(2), 279-297.
[PMID: 31894255]
[465]
Rosen, L.S.; Wesolowski, R.; Baffa, R.; Liao, K.H.; Hua, S.Y.; Gibson, B.L.; Pirie-Shepherd, S.; Tolcher, A.W. A phase I, dose-escalation study of PF-06650808, an anti-Notch3 antibody-drug conjugate, in patients with breast cancer and other advanced solid tumors. Invest. New Drugs, 2020, 38(1), 120-130.
[http://dx.doi.org/10.1007/s10637-019-00754-y] [PMID: 30887250]
[466]
Damelin, M.; Bankovich, A.; Bernstein, J.; Lucas, J.; Chen, L.; Williams, S.; Park, A.; Aguilar, J.; Ernstoff, E.; Charati, M.; Dushin, R.; Aujay, M.; Lee, C.; Ramoth, H.; Milton, M.; Hampl, J.; Lazetic, S.; Pulito, V.; Rosfjord, E.; Sun, Y.; King, L.; Barletta, F.; Betts, A.; Guffroy, M.; Falahatpisheh, H.; O’Donnell, C.J.; Stull, R.; Pysz, M.; Escarpe, P.; Liu, D.; Foord, O.; Gerber, H.P.; Sapra, P.; Dylla, S.J.A. PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Sci. Transl. Med., 2017, 9(372), eaag2611.
[http://dx.doi.org/10.1126/scitranslmed.aag2611] [PMID: 28077676]
[467]
Sachdev, J.C.; Maitland, M.L.; Sharma, M.; Moreno, V.; Boni, V.; Kummar, S. PF-06647020 (PF-7020), an antibody-drug conjugate (ADC) targeting protein tyrosine kinase 7 (PTK7), in patients (pts) with advanced solid tumors: Results of a phase I dose escalation and expansion study. J. Clin. Oncol., 2018, 36(Suppl.), 5565.
[468]
Coveler, A.L.; Von Hoff, D.D.; Ko, A.H.; Whiting, N.C.; Zhao, B.; Wolpin, B.M. A phase I study of ASG-5ME, a novel antibody-drug conjugate, in pancreatic ductal adenocarcinoma. J. Clin. Oncol., 2013, 31(Suppl.), 176.
[469]
Mattie, M.; Raitano, A.; Morrison, K.; Morrison, K.; An, Z.; Capo, L.; Verlinsky, A.; Leavitt, M.; Ou, J.; Nadell, R.; Aviña, H.; Guevara, C.; Malik, F.; Moser, R.; Duniho, S.; Coleman, J.; Li, Y.; Pereira, D.S.; Doñate, F.; Joseph, I.B.; Challita-Eid, P.; Benjamin, D.; Stover, D.R. The discovery and preclinical development of ASG-5ME, an antibody-drug conjugate targeting SLC44A4-positive epithelial tumors including pancreatic and prostate cancer. Mol. Cancer Ther., 2016, 15(11), 2679-2687.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0225] [PMID: 27550944]
[470]
McHugh, D.; Eisenberger, M.; Heath, E.I.; Bruce, J.; Danila, D.C.; Rathkopf, D.E.; Feldman, J.; Slovin, S.F.; Anand, B.; Chu, R.; Lackey, J.; Reyno, L.; Antonarakis, E.S.; Morris, M.J. A phase I study of the antibody drug conjugate ASG-5ME, an SLC44A4-targeting antibody carrying auristatin E, in metastatic castration-resistant prostate cancer. Invest. New Drugs, 2019, 37(5), 1052-1060.
[http://dx.doi.org/10.1007/s10637-019-00731-5] [PMID: 30725389]
[471]
Hamblett, K.J.; Jacob, A.P.; Gurgel, J.L.; Tometsko, M.E.; Rock, B.M.; Patel, S.K.; Milburn, R.R.; Siu, S.; Ragan, S.P.; Rock, D.A.; Borths, C.J.; O’Neill, J.W.; Chang, W.S.; Weidner, M.F.; Bio, M.M.; Quon, K.C.; Fanslow, W.C. SLC46A3 is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res., 2015, 75(24), 5329-5340.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1610] [PMID: 26631267]
[472]
Kinneer, K.; Meekin, J.; Tiberghien, A.C.; Tai, Y.T.; Phipps, S.; Kiefer, C.M.; Rebelatto, M.C.; Dimasi, N.; Moriarty, A.; Papadopoulos, K.P.; Sridhar, S.; Gregson, S.J.; Wick, M.J.; Masterson, L.; Anderson, K.C.; Herbst, R.; Howard, P.W.; Tice, D.A. SLC46A3 as a potential predictive biomarker for antibody-drug conjugates bearing non-cleavable linked maytansinoid and pyrrolobenzodiazepine warheads. Clin. Cancer Res., 2018, 24(24), 6570-6582.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1300] [PMID: 30131388]
[473]
Morrison, K.; Challita-Eid, P.M.; Raitano, A.; An, Z.; Yang, P.; Abad, J.D.; Liu, W.; Lortie, D.R.; Snyder, J.T.; Capo, L.; Verlinsky, A.; Aviña, H.; Doñate, F.; Joseph, I.B.J.; Pereira, D.S.; Morrison, K.; Stover, D.R. Development of ASG-15ME, a novel antibody-drug conjugate targeting SLITRK6, a new urothelial cancer biomarker. Mol. Cancer Ther., 2016, 15(6), 1301-1310.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0570] [PMID: 26944921]
[474]
Thomas, L.J.; Vitale, L.; O’Neill, T.; Dolnick, R.Y.; Wallace, P.K.; Minderman, H.; Gergel, L.E.; Forsberg, E.M.; Boyer, J.M.; Storey, J.R.; Pilsmaker, C.D.; Hammond, R.A.; Widger, J.; Sundarapandiyan, K.; Crocker, A.; Marsh, H.C., Jr; Keler, T. Development of a novel antibody-drug conjugate for the potential treatment of ovarian, lung and renal cell carcinoma expressing TIM-1. Mol. Cancer Ther., 2016, 15(12), 2946-2954.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0393] [PMID: 27671527]
[475]
Kishimoto, W.; Nishikori, M.; Arima, H.; Miyoshi, H.; Sasaki, Y.; Kitawaki, T.; Shirakawa, K.; Kato, T.; Imaizumi, Y.; Ishikawa, T.; Ohno, H.; Haga, H.; Ohshima, K.; Takaori-Kondo, A. Expression of Tim-1 in primary CNS lymphoma. Cancer Med., 2016, 5(11), 3235-3245.
[http://dx.doi.org/10.1002/cam4.930] [PMID: 27709813]
[476]
McGregor, B.A.; Gordon, M.; Flippot, R.; Agarwal, N.; George, S.; Quinn, D.I.; Rogalski, M.; Hawthorne, T.; Keler, T.; Choueiri, T.K. Safety and efficacy of CDX-014, an antibody-drug conjugate directed against T cell immunoglobulin mucin-1 in advanced renal cell carcinoma. Invest. New Drugs, 2020, 38(6), 1807-1814.
[http://dx.doi.org/10.1007/s10637-020-00945-y] [PMID: 32472319]
[477]
de Goeij, B.E.C.G.; Satijn, D.; Freitag, C.M.; Wubbolts, R.; Bleeker, W.K.; Khasanov, A.; Zhu, T.; Chen, G.; Miao, D.; van Berkel, P.H.; Parren, P.W. High turnover of tissue factor enables efficient intracellular delivery of antibody-drug conjugates. Mol. Cancer Ther., 2015, 14(5), 1130-1140.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0798] [PMID: 25724665]
[478]
Lassen, U.N.; Hong, D.S.; Diamantis, N.; Subbiah, V.; Kumar, R.; Sorensen, M.; Lisby, S. A phase I, first-in-human study to evaluate the tolerability, pharmacokinetics and preliminary efficacy of HuMax-tissue factor-ADC (TF-ADC) in patients with solid tumors. J. Clin. Oncol., 2015, 33(Suppl.), 2570.
[479]
Theunissen, J.W.; Cai, A.G.; Bhatti, M.M.; Cooper, A.B.; Avery, A.D.; Dorfman, R.; Guelman, S.; Levashova, Z.; Migone, T.S. Treating tissue factor–positive cancers with antibody-drug conjugates that do not affect blood clotting. Mol. Cancer Ther., 2018, 17(11), 2412-2426.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0471] [PMID: 30126944]
[480]
de Bono, J.S.; Concin, N.; Hong, D.S.; Thistlethwaite, F.C.; Machiels, J.P.; Arkenau, H.T.; Plummer, R.; Jones, R.H.; Nielsen, D.; Windfeld, K.; Ghatta, S.; Slomovitz, B.M.; Spicer, J.F.; Yachnin, J.; Ang, J.E.; Mau-Sørensen, P.M.; Forster, M.D.; Collins, D.; Dean, E.; Rangwala, R.A.; Lassen, U. Tisotumab vedotin in patients with advanced or metastatic solid tumours (InnovaTV 201): A first-in-human, multicentre, phase 1-2 trial. Lancet Oncol., 2019, 20(3), 383-393.
[http://dx.doi.org/10.1016/S1470-2045(18)30859-3] [PMID: 30745090]
[481]
Hong, D.S.; Concin, N.; Vergote, I.; de Bono, J.S.; Slomovitz, B.M.; Drew, Y.; Arkenau, H.T.; Machiels, J.P.; Spicer, J.F.; Jones, R.; Forster, M.D.; Cornez, N.; Gennigens, C.; Johnson, M.L.; Thistlethwaite, F.C.; Rangwala, R.A.; Ghatta, S.; Windfeld, K.; Harris, J.R.; Lassen, U.N.; Coleman, R.L. Tisotumab vedotin in previously treated recurrent or metastatic cervical cancer. Clin. Cancer Res., 2020, 26(6), 1220-1228.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2962] [PMID: 31796521]
[482]
Vergote, I.; Concin, N.; Mirza, M.R.; Andreassen, C.M.; Lorusso, D.; Gennigens, C.N. Phase Ib/II trial of tisotumab vedotin (TV) ± bevacizumab (BEV), pembrolizumab (PEM), or carboplatin (CBP) in recurrent or metastatic cervical cancer (innovaTV 205/ENGOT-cx8/GOG-3024). J. Clin. Oncol., 2020, 38(Suppl.), TPS6095.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.TPS6095]
[483]
Mahdi, H.; Schuster, S.R.; O’Malley, D.M.; McNamara, D.M.; Rangwala, R.A.; Liang, S.Y. Phase 2 trial of tisotumab vedotin in platinum-resistant ovarian cancer (innovaTV 208). J. Clin. Oncol., 2019, 37(15)(Suppl.), TPS5602.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS5602]
[484]
Goldenberg, D.M.; Sharkey, R.M. Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: A case study of anti-TROP-2 sacituzumab govitecan. MAbs, 2019, 11(6), 987-995.
[http://dx.doi.org/10.1080/19420862.2019.1632115] [PMID: 31208270]
[485]
Sharkey, R.M.; McBride, W.J.; Cardillo, T.M.; Govindan, S.V.; Wang, Y.; Rossi, E.A.; Chang, C.H.; Goldenberg, D.M. Enhanced delivery of SN-38 to human tumor xenografts with an anti-Trop-2-SN-38 antibody conjugate (Sacituzumab govitecan). Clin. Cancer Res., 2015, 21(22), 5131-5138.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0670] [PMID: 26106073]
[486]
Strop, P.; Tran, T.T.; Dorywalska, M.; Delaria, K.; Dushin, R.; Wong, O.K.; Ho, W.H.; Zhou, D.; Wu, A.; Kraynov, E.; Aschenbrenner, L.; Han, B.; O’Donnell, C.J.; Pons, J.; Rajpal, A.; Shelton, D.L.; Liu, S.H. RN927C, a site-specific Trop-2 Antibody-Drug Conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models. Mol. Cancer Ther., 2016, 15(11), 2698-2708.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0431] [PMID: 27582525]
[487]
Cardillo, T.M.; Sharkey, R.M.; Rossi, D.L.; Arrojo, R.; Mostafa, A.A.; Goldenberg, D.M. Synthetic lethality exploitation by an anti-Trop-2-SN-38 antibody-drug conjugate, IMMU-132, plus PARP-inhibitors in BRCA1/2-wild-type triple-negative breast cancer. Clin. Cancer Res., 2017, 23(13), 3405-3415.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2401] [PMID: 28069724]
[488]
Gray, J.E.; Heist, R.S.; Starodub, A.N.; Camidge, D.R.; Kio, E.A.; Masters, G.A.; Purcell, W.T.; Guarino, M.J.; Misleh, J.; Schneider, C.J.; Schneider, B.J.; Ocean, A.; Johnson, T.; Gandhi, L.; Kalinsky, K.; Scheff, R.; Messersmith, W.A.; Govindan, S.V.; Maliakal, P.P.; Mudenda, B.; Wegener, W.A.; Sharkey, R.M.; Goldenberg, D.M. Therapy of Small-Cell Lung Cancer (SCLC) with a topoisomerase-inhibiting Antibody-Drug Conjugate (ADC) targeting trop-2, sacituzumab govitecan. Clin. Cancer Res., 2017, 23(19), 5711-5719.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0933] [PMID: 28679770]
[489]
Bardia, A.; Mayer, I.A.; Vahdat, L.T.; Tolaney, S.M.; Isakoff, S.J.; Diamond, J.R.; O’Shaughnessy, J.; Moroose, R.L.; Santin, A.D.; Abramson, V.G.; Shah, N.C.; Rugo, H.S.; Goldenberg, D.M.; Sweidan, A.M.; Iannone, R.; Washkowitz, S.; Sharkey, R.M.; Wegener, W.A.; Kalinsky, K. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N. Engl. J. Med., 2019, 380(8), 741-751.
[http://dx.doi.org/10.1056/NEJMoa1814213] [PMID: 30786188]
[490]
Wahby, S.; Fashoyin-Aje, L.; Osgood, C.L.; Cheng, J.; Fiero, M.H.; Zhang, L.; Tang, S.; Hamed, S.S.; Song, P.; Charlab, R.; Dorff, S.E.; Ricks, T.K.; Barnett-Ringgold, K.; Dinin, J.; Goldberg, K.B.; Theoret, M.R.; Pazdur, R.; Amiri-Kordestani, L.; Beaver, J.A. FDA approval summary: Accelerated approval of sacituzumab govitecan-hziy for third line treatment of metastatic triple-negative breast cancer (mTNBC). Clin. Cancer Res., 2021, 27(7), 1850-1854.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3119] [PMID: 33168656]
[491]
Syed, Y.Y. Sacituzumab govitecan: First approval. Drugs, 2020, 80(10), 1019-1025.
[http://dx.doi.org/10.1007/s40265-020-01337-5] [PMID: 32529410]
[492]
Starodub, A.N.; Ocean, A.J.; Shah, M.A.; Guarino, M.J.; Picozzi, V.J., Jr; Vahdat, L.T.; Thomas, S.S.; Govindan, S.V.; Maliakal, P.P.; Wegener, W.A.; Hamburger, S.A.; Sharkey, R.M.; Goldenberg, D.M. First-in-human trial of a novel anti-Trop-2 antibody-SN-38 conjugate sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin. Cancer Res., 2015, 21(17), 3870-3878.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3321] [PMID: 25944802]
[493]
Guarino, M.J.; Starodub, A.N.; Masters, G.A.; Heist, R.S.; Messersmith, W.A.; Bardia, A.; Ocean, A.J. Therapy of advanced metastatic lung cancer with an anti-trop-2-SN-38 antibody-drug conjugate (ADC), sacituzumab govitecan (IMMU-132): phase I/II clinical experience. J. Clin. Oncol., 2015, 33(Suppl.), 2504.
[494]
Starodub, A.N.; Ocean, A.J.; Messersmith, W.A.; Picozzi, V.J.; Guarino, M.J.; Bardia, A.; Thomas, S. Therapy of gastrointestinal malignancies with an anti-trop-2-SN-38 antibody-drug conjugate (ADC) (sacituzumab govitecan): Phase I/II clinical experience. J. Clin. Oncol., 2015, 33(Suppl.), 3546.
[495]
Bardia, A.; Vahdat, L.T.; Diamond, J.R.; Starodub, A.; Moroose, R.L.; Isakoff, S.J.; Ocean, A.J.; Berlin, J. Therapy of refractory/relapsed metastatic triple-negative breast cancer (TNBC) with an anti-trop-2-SN-38 antibody-drug conjugate (ADC), sacituzumab govitecan (IMMU-132): Phase I/II clinical experience. J. Clin. Oncol., 2015, 33(Suppl.), 1016.
[496]
Asundi, J.; Crocker, L.; Tremayne, J.; Chang, P.; Sakanaka, C.; Tanguay, J.; Spencer, S.; Chalasani, S.; Luis, E.; Gascoigne, K.; Desai, R.; Raja, R.; Friedman, B.A.; Haverty, P.M.; Polakis, P.; Firestein, R. An antibody-drug conjugate directed against lymphocyte antigen 6 complex, locus E (LY6E) provides robust tumor killing in a wide range of solid tumor malignancies. Clin. Cancer Res., 2015, 21(14), 3252-3262.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0156] [PMID: 25862760]
[497]
Tolaney, S.M.; Do, K.T.; Eder, J.P.; LoRusso, P.M.; Weekes, C.D.; Chandarlapaty, S.; Chang, C.W.; Chen, S.C.; Nazzal, D.; Schuth, E.; Brunstein, F.; Carrasco-Triguero, M.; Darbonne, W.C.; Giltnane, J.M.; Flanagan, W.M.; Commerford, S.R.; Ungewickell, A.; Shapiro, G.I.; Modi, S. 1 Shanu Modi. A Phase I study of DLYE5953A, an anti-LY6E antibody covalently linked to monomethyl auristatin E, in patients with refractory solid tumors. Clin. Cancer Res., 2020, 26(21), 5588-5597.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1067] [PMID: 32694157]
[498]
Sandhu, S.; McNeil, C.M.; LoRusso, P.; Patel, M.R.; Kabbarah, O.; Li, C.; Sanabria, S.; Flanagan, W.M.; Yeh, R.F.; Brunstein, F.; Nazzal, D.; Hicks, R.; Lemahieu, V.; Meng, R.; Hamid, O.; Infante, J.R. Phase I study of the anti-endothelin B receptor antibody-drug conjugate DEDN6526A in patients with metastatic or unresectable cutaneous, mucosal, or uveal melanoma. Invest. New Drugs, 2020, 38(3), 844-854.
[http://dx.doi.org/10.1007/s10637-019-00832-1] [PMID: 31385109]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy