Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Antibody-drug Conjugate Targets, Drugs, and Linkers

Author(s): Beverly A. Teicher* and Joel Morris

Volume 22, Issue 6, 2022

Published on: 29 April, 2022

Page: [463 - 529] Pages: 67

DOI: 10.2174/1568009622666220224110538

Price: $65

Abstract

Antibody-drug conjugates offer the possibility of directing powerful cytotoxic agents to a malignant tumor while sparing normal tissue. The challenge is to select an antibody target expressed exclusively or at highly elevated levels on the surface of tumor cells and either not all or at low levels on normal cells. The current review explores 78 targets that have been explored as antibody-drug conjugate targets. Some of these targets have been abandoned, 9 or more are the targets of FDA-approved drugs, and most remain active clinical interest. Antibody-drug conjugates require potent cytotoxic drug payloads, several of these small molecules are discussed, as are the linkers between the protein component and small molecule components of the conjugates. Finally, conclusions regarding the elements for the successful antibody-drug conjugate are discussed.

Keywords: Antibody-drug conjugates, ADCs, cell surface targets, auristatins, maytansines, cytotoxic drugs.

Graphical Abstract

[1]
Shalini Makawita, S.; Funda Meric-Bernstam, F. Antibody-Drug Conjugates: Patient and Treatment Selection; American Society of Clinical Oncology: Alexandria, VA, USA, 2020, pp. 105-114.
[2]
Birrer, M.J.; Moore, K.N.; Betella, I.; Bates, R.C. Antibody-drug conjugate-based therapeutics: State of the science. J. Natl. Cancer Inst., 2019, 111(6), 538-549.
[http://dx.doi.org/10.1093/jnci/djz035] [PMID: 30859213]
[3]
Diamantis, N.; Banerji, U. Antibody-drug conjugates-An emerging class of cancer treatment. Br. J. Cancer, 2016, 114(4), 362-367.
[http://dx.doi.org/10.1038/bjc.2015.435] [PMID: 26742008]
[4]
Lambert, J.M.; Berkenblit, A. Antibody-drug conjugates for cancer treatment. Annu. Rev. Med., 2018, 69, 191-207.
[http://dx.doi.org/10.1146/annurev-med-061516-121357] [PMID: 29414262]
[5]
Deshaies, R.J. Multispecific drugs herald a new era of biopharmaceutical innovation. Nature, 2020, 580(7803), 329-338.
[http://dx.doi.org/10.1038/s41586-020-2168-1] [PMID: 32296187]
[6]
Yu, B.; Liu, D. Antibody-drug conjugates in clinical trials for lymphoid malignancies and multiple myeloma. J. Hematol. Oncol., 2019, 12(1), 94.
[http://dx.doi.org/10.1186/s13045-019-0786-6] [PMID: 31500657]
[7]
de la Torre, B.G.; Albericio, F. The pharmaceutical Industry in 2019. An analysis of FDA drug approvals from the perspective of molecules. Molecules, 2020, 25(3), 745.
[http://dx.doi.org/10.3390/molecules25030745] [PMID: 32050446]
[8]
Andreev, J.; Thambi, N.; Perez Bay, A.E.; Delfino, F.; Martin, J.; Kelly, M.P.; Kirshner, J.R.; Rafique, A.; Kunz, A.; Nittoli, T.; MacDonald, D.; Daly, C.; Olson, W.; Thurston, G. Bispecific antibodies and antibody-drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs. Mol. Cancer Ther., 2017, 16(4), 681-693.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0658] [PMID: 28108597]
[9]
Teicher, B.A. Antibody-drug conjugate targets. Curr. Cancer Drug Targets, 2009, 9(8), 982-1004.
[http://dx.doi.org/10.2174/156800909790192365] [PMID: 20025606]
[10]
Fu, Y.; Ho, M. DNA damaging agent-based antibody-drug conjugates for cancer therapy. Antib. Ther., 2018, 1(2), 33-43.
[http://dx.doi.org/10.1093/abt/tby007] [PMID: 30294716]
[11]
Esteva, F.J.; Miller, K.D.; Teicher, B.A. What Can We Learn About Antibody-Drug Conjugates from the T-DM1 Experience? Am. Soc. Clin. Oncol. Educ. Book, 2015, 2015, e117-e125.
[http://dx.doi.org/10.14694/EdBook_AM.2015.35.e117] [PMID: 25993162]
[12]
Gébleux, R.; Casi, G. Antibody-drug conjugates: Current status and future perspectives. Pharmacol. Ther., 2016, 167, 48-59.
[http://dx.doi.org/10.1016/j.pharmthera.2016.07.012] [PMID: 27492898]
[13]
Chau, C.H.; Steeg, P.S.; Figg, W.D. Antibody-drug conjugates for cancer. Lancet, 2019, 394(10200), 793-804.
[http://dx.doi.org/10.1016/S0140-6736(19)31774-X] [PMID: 31478503]
[14]
Donaghy, H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs, 2016, 8(4), 659-671.
[http://dx.doi.org/10.1080/19420862.2016.1156829] [PMID: 27045800]
[15]
Leal, A.D.; Krishnamurthy, A.; Head, L.; Messersmith, W.A. Antibody drug conjugates under investigation in phase I and phase II clinical trials for gastrointestinal cancer. Expert Opin. Investig. Drugs, 2018, 27(11), 901-916.
[http://dx.doi.org/10.1080/13543784.2018.1541085] [PMID: 30359534]
[16]
Thomas, A.; Teicher, B.A.; Hassan, R. Antibody-drug conjugates for cancer therapy. Lancet Oncol., 2016, 17(6), e254-e262.
[http://dx.doi.org/10.1016/S1470-2045(16)30030-4] [PMID: 27299281]
[17]
Wolska-Washer, A.; Robak, P.; Smolewski, P.; Robak, T. Emerging antibody-drug conjugates for treating lymphoid malignancies. Expert Opin. Emerg. Drugs, 2017, 22(3), 259-273.
[http://dx.doi.org/10.1080/14728214.2017.1366447] [PMID: 28792782]
[18]
Nasiri, H.; Valedkarimi, Z.; Aghebati-Maleki, L.; Majidi, J. Antibody-drug conjugates: Promising and efficient tools for targeted cancer therapy. J. Cell. Physiol., 2018, 233(9), 6441-6457.
[http://dx.doi.org/10.1002/jcp.26435] [PMID: 29319167]
[19]
Abdollahpour-Alitappeh, M.; Lotfinia, M.; Gharibi, T.; Mardaneh, J.; Farhadihosseinabadi, B.; Larki, P.; Faghfourian, B.; Sepehr, K.S.; Abbaszadeh-Goudarzi, K.; Abbaszadeh-Goudarzi, G.; Johari, B.; Zali, M.R.; Bagheri, N. Antibody-drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J. Cell. Physiol., 2019, 234(5), 5628-5642.
[http://dx.doi.org/10.1002/jcp.27419] [PMID: 30478951]
[20]
Teicher, B.A.; Chari, R.V.J. Antibody conjugate therapeutics: challenges and potential. Clin. Cancer Res., 2011, 17(20), 6389-6397.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1417] [PMID: 22003066]
[21]
Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov., 2017, 16(5), 315-337.
[http://dx.doi.org/10.1038/nrd.2016.268] [PMID: 28303026]
[22]
Li, F.; Ulrich, M.L.; Shih, V.F.S.; Cochran, J.H.; Hunter, J.H.; Westendorf, L.; Neale, J.; Benjamin, D.R. Mouse strains influence clearance and efficacy of antibody and antibody-drug conjugate via FcFcγR interaction. Mol. Cancer Ther., 2019, 18(4), 780-787.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0977] [PMID: 30824607]
[23]
Li, F.; Ulrich, M.; Jonas, M.; Stone, I.J.; Linares, G.; Zhang, X.; Westendorf, L.; Benjamin, D.R.; Law, C.L. Tumor associated macrophages can contribute to antitumor activity through FcγR mediated processing of antibody-drug conjugates. Mol. Cancer Ther., 2017, 16(7), 1347-1354.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0019] [PMID: 28341790]
[24]
Gauzy-Lazo, L.; Sassoon, I.; Brun, M.P. Gauzy-Lazo1L, Sassoon I, Brun MP. Advances in antibody-drug conjugate design – current clinical landscape and future innovations. SLAS Discov., 2020, 25(8), 843-868.
[http://dx.doi.org/10.1177/2472555220912955] [PMID: 32192384]
[25]
García-Alonso, S.; Ocaña, A.; Pandiella, A. Resistance to antibody–drug conjugates. Cancer Res., 2018, 78(9), 2159-2165.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3671] [PMID: 29653942]
[26]
Loganzo, F.; Sung, M.; Gerber, H.P. Mechanisms of resistance to antibody-drug conjugates. Mol. Cancer Ther., 2016, 15(12), 2825-2834.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0408] [PMID: 27780876]
[27]
Haddish-Berhane, N.; Shah, D.K.; Ma, D.; Leal, M.; Gerber, H.P.; Sapra, P.; Barton, H.A.; Betts, A.M. On translation of antibody drug conjugates efficacy from mouse experimental tumors to the clinic: A PK/PD approach. J. Pharmacokinet. Pharmacodyn., 2013, 40(5), 557-571.
[http://dx.doi.org/10.1007/s10928-013-9329-x] [PMID: 23933716]
[28]
Saber, H.; Simpson, N.; Ricks, T.K.; Leighton, J.K. An FDA oncology analysis of toxicities associated with PBD-containing antibody-drug conjugates. Regul. Toxicol. Pharmacol., 2019, 107, 104429.
[http://dx.doi.org/10.1016/j.yrtph.2019.104429] [PMID: 31325532]
[29]
Matulonis, U.A.; Birrer, M.J.; O’Malley, D.M.; Moore, K.N.; Konner, J.; Gilbert, L.; Martin, L.P.; Bauer, T.M.; Oza, A.M.; Malek, K.; Pinkas, J.; Kim, S.K. Evaluation of prophylactic corticosteroid eye drop use in the management of corneal abnormalities induced by the antibody-drug conjugate mirvetuximab soravtansine. Clin. Cancer Res., 2019, 25(6), 1727-1736.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2474] [PMID: 30413525]
[30]
Lutz, R.J.; Chari, R.V.J. Methods for decreasing ocular toxicity of antibody drug conjugates. U.S. Patent 20120282282 A1, 2012.
[31]
Banerjee, S.; Wang, Z.; Mohammad, M.; Sarkar, F.H.; Mohammad, R.M. Efficacy of selected natural products as therapeutic agents against cancer. J. Nat. Prod., 2008, 71(3), 492-496.
[http://dx.doi.org/10.1021/np0705716] [PMID: 18302335]
[32]
Shnyder, S.D.; Cooper, P.A.; Millington, N.J.; Pettit, G.R.; Bibby, M.C. Auristatin PYE, a novel synthetic derivative of dolastatin 10, is highly effective in human colon tumour models. Int. J. Oncol., 2007, 31(2), 353-360.
[http://dx.doi.org/10.3892/ijo.31.2.353] [PMID: 17611692]
[33]
Akaiwa, M.; Dugal-Tessier, J.; Mendelsohn, B.A. Antibody-drug conjugate payloads; study of auristatin derivatives. Chem. Pharm. Bull. (Tokyo), 2020, 68(3), 201-211.
[http://dx.doi.org/10.1248/cpb.c19-00853] [PMID: 32115527]
[34]
Mohammad, R.M.; Al-Katib, A.; Pettit, G.R.; Vaitkevicius, V.K.; Joshi, U.; Adsay, V.; Majumdar, A.P.N.; Sarkar, F.H. An orthotopic model of human pancreatic cancer in severe combined immunodeficient mice: Potential application for preclinical studies. Clin. Cancer Res., 1998, 4(4), 887-894.
[PMID: 9563882]
[35]
Moquist, P.N.; Bovee, T.D.; Waight, A.B.; Mitchell, J.A.; Miyamoto, J.B.; Mason, M.L.; Emmerton, K.K.; Stevens, N.; Balasubramanian, C.; Simmons, J.K.; Lyon, R.P.; Senter, P.D.; Doronina, S.O. Novel auristatins with high bystander and cytotoxic activities in drug efflux positive tumor models. Mol. Cancer Ther., 2021, 20(2), 320-328.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0618] [PMID: 33288628]
[36]
Chari, R.V.J. Targeted cancer therapy: Conferring specificity to cytotoxic drugs. Acc. Chem. Res., 2008, 41(1), 98-107.
[http://dx.doi.org/10.1021/ar700108g] [PMID: 17705444]
[37]
Chari, R.V.J.; Martell, B.A.; Gross, J.L.; Cook, S.B.; Shah, S.A.; Blättler, W.A.; McKenzie, S.J.; Goldmacher, V.S. Immunoconjugates containing novel maytansinoids: Promising anticancer drugs. Cancer Res., 1992, 52(1), 127-131.
[PMID: 1727373]
[38]
Lopus, M.; Oroudjev, E.; Wilson, L.; Wilhelm, S.; Widdison, W.; Chari, R.; Jordan, M.A. Maytansine and cellular metabolites of antibody-maytansinoid conjugates strongly suppress microtubule dynamics by binding to microtubules. Mol. Cancer Ther., 2010, 9(10), 2689-2699.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0644] [PMID: 20937594]
[39]
Erickson, H.K.; Park, P.U.; Widdison, W.C.; Kovtun, Y.V.; Garrett, L.M.; Hoffman, K.; Lutz, R.J.; Goldmacher, V.S.; Blättler, W.A. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res., 2006, 66(8), 4426-4433.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4489] [PMID: 16618769]
[40]
Hartley, J.A. The development of pyrrolobenzodiazepines as antitumour agents. Expert Opin. Investig. Drugs, 2011, 20(6), 733-744.
[http://dx.doi.org/10.1517/13543784.2011.573477] [PMID: 21457108]
[41]
Mantaj, J.; Jackson, P.J.M.; Rahman, K.M.; Thurston, D.E. From anthramycin to pyrrolobenzodiazepine (PBD)-containing antibody-drug conjugates (ADCs). Angew. Chem. Int. Ed., 2016, 55, 2-29.
[PMID: 27862776]
[42]
Rios-Doria, J.; Harper, J.; Rothstein, R.; Wetzel, L.; Chesebrough, J.; Marrero, A.; Chen, C.; Strout, P.; Mulgrew, K.; McGlinchey, K.; Fleming, R.; Bezabeh, B.; Meekin, J.; Stewart, D.; Kennedy, M.; Martin, P.; Buchanan, A.; Dimasi, N.; Michelotti, E.; Hollingsworth, R. Antibody-drug conjugates bearing pyrrolobenzodiazepine or tubulysin payloads are immunomodulatory and synergize with multiple immunotherapies. Cancer Res., 2017, 77(10), 2686-2698.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2854] [PMID: 28283653]
[43]
Puzanov, I.; Lee, W.; Berlin, J.D.; Calcutt, M.W.; Hachey, D.L.; Vermeulen, W.L. Final results of phase I and pharmacokinetic trial of SJG-136 administered on a daily x 3 schedule. J Clin Cancer, 2008, 26(15), 2504.
[44]
Kadia, T.M.; Faderl, S.; Estrov, Z.; Konopleva, M.; George, S.; Lee, W. Final results of phase I and pharmacokinetic study of SJG-136 administered on a daily x 5 schedule. J. Clin. Oncol., 2009, 27(15)(Suppl.), e13506.
[45]
Miller, M.L.; Shizuka, M.; Wilhelm, A.; Salomon, P.; Reid, E.E.; Lanieri, L.; Sikka, S.; Maloney, E.K.; Harvey, L.; Qiu, Q.; Archer, K.E.; Bai, C.; Vitharana, D.; Harris, L.; Singh, R.; Ponte, J.F.; Yoder, N.C.; Kovtun, Y.; Lai, K.C.; Ab, O.; Pinkas, J.; Keating, T.A.; Chari, R.V.J.O.; Ab, O.; Pinkas, J.; Keating, T.A. Chari RVJ. A DNA-interacting payload designed to eliminate cross-linking improves the therapeutic index of Antibody-Drug Conjugates (ADCs). Mol. Cancer Ther., 2018, 17(3), 650-660.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0940] [PMID: 29440292]
[46]
Hartley, J.A.; Spanswick, V.J.; Brooks, N.; Clingen, P.H.; McHugh, P.J.; Hochhauser, D.; Pedley, R.B.; Kelland, L.R.; Alley, M.C.; Schultz, R.; Hollingshead, M.G.; Schweikart, K.M.; Tomaszewski, J.E.; Sausville, E.A.; Gregson, S.J.; Howard, P.W.; Thurston, D.E. SJG-136 (NSC 694501), a novel rationally designed DNA minor groove interstrand cross-linking agent with potent and broad spectrum antitumor activity: Part 1: Cellular pharmacology, in vitro and initial in vivo antitumor activity. Cancer Res., 2004, 64(18), 6693-6699.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2941] [PMID: 15374986]
[47]
Nicolaou, K.C.; Smith, A.L.; Yue, E.W. Chemistry and biology of natural and designed enediynes. Proc. Natl. Acad. Sci. USA, 1993, 90(13), 5881-5888.
[http://dx.doi.org/10.1073/pnas.90.13.5881] [PMID: 8327459]
[48]
Zein, N.; Sinha, A.M.; McGahren, W.J.; Ellestad, G.A. Calicheamicin γ 1I: An antitumor antibiotic that cleaves double-stranded DNA site specifically. Science, 1988, 240(4856), 1198-1201.
[http://dx.doi.org/10.1126/science.3240341] [PMID: 3240341]
[49]
Garcia-Carbonero, R.; Supko, J.G. Current perspectives on the clinical experience, pharmacology, and continued development of the camptothecins. Clin. Cancer Res., 2002, 8(3), 641-661.
[PMID: 11895891]
[50]
Garrison, M.A.; Hammond, L.A.; Geyer, C.E., Jr; Schwartz, G.; Tolcher, A.W.; Smetzer, L.; Figueroa, J.A.; Ducharme, M.; Coyle, J.; Takimoto, C.H.; De Jager, R.L.; Rowinsky, E.K. A Phase I and pharmocokinetic study of exatecan mesylate administered as a protracted 21-day infusion in patients with advanced solid malignancies. Clin. Cancer Res., 2003, 9(7), 2527-2537.
[PMID: 12855627]
[51]
Braybrooke, J.P.; Boven, E.; Bates, N.P.; Ruijter, R.; Dobbs, N.; Cheverton, P.D.; Pinedo, H.M.; Talbot, D.C. Phase I and pharmacokinetic study of the topoisomerase I inhibitor, exatecan mesylate (DX-8951f), using a weekly 30-minute intravenous infusion, in patients with advanced solid malignancies. Ann. Oncol., 2003, 14(6), 913-921.
[http://dx.doi.org/10.1093/annonc/mdg243] [PMID: 12796030]
[52]
Ajani, J.A.; Takimoto, C.; Becerra, C.R.; Silva, A.; Baez, L.; Cohn, A.; Major, P.; Kamida, M.; Feit, K.; De Jager, R. A phase II clinical and pharmacokinetic study of intravenous exatecan mesylate (DX-8951f) in patients with untreated metastatic gastric cancer. Invest. New Drugs, 2005, 23(5), 479-484.
[http://dx.doi.org/10.1007/s10637-005-2907-z] [PMID: 16133799]
[53]
Zangardi, M.L.; Spring, L.M.; Nagayama, A.; Bardia, A. Sacituzumab for the treatment of triple-negative breast cancer: The poster child of future therapy? Expert Opin. Investig. Drugs, 2019, 28(2), 107-112.
[http://dx.doi.org/10.1080/13543784.2019.1555239] [PMID: 30507322]
[54]
Lyons, T.G. Targeted therapies for triple-negative breast cancer. Curr. Treat. Options Oncol., 2019, 20(11), 82.
[http://dx.doi.org/10.1007/s11864-019-0682-x] [PMID: 31754897]
[55]
Nagayama, A.; Vidula, N.; Ellisen, L.; Bardia, A. Novel antibody-drug conjugates for triple negative breast cancer. Ther. Adv. Med. Oncol., 2020, 12, 1758835920915980.
[http://dx.doi.org/10.1177/1758835920915980] [PMID: 32426047]
[56]
Lyski, R.D.; Bou, L.B.; Lau, U.Y.; Meyer, D.W.; Cochran, J.H.; Okeley, N.M.; Emmerton, K.K.; Zapata, F.; Simmons, J.K.; Trueblood, E.S.; Ortiz, D.J.; Zaval, M.C.; Snead, K.M.; Jin, S.; Farr, L.M.; Ryan, M.C.; Senter, P.D.; Jeffrey, S.C. Development of novel antibody-camptothecin conjugates. Mol. Cancer Ther., 2021, 20(2), 329-339.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0526] [PMID: 33273058]
[57]
Hechler, T.; Muller, C.; Pahl, A.; Anderl, J. Amanitin-based ADCs with an improved therapeutic index. Cancer Res., 2015, 75(15)(Suppl.), 633.
[58]
Neumann, C.S.; Olivas, K.C.; Anderson, M.E.; Cochran, J.H.; Jin, S.; Li, F.; Loftus, L.V.; Meyer, D.W.; Neale, J.; Nix, J.C.; Pittman, P.G.; Simmons, J.K.; Ulrich, M.L.; Waight, A.B.; Wong, A.; Zaval, M.C.; Zeng, W.; Lyon, R.P.; Senter, P.D. Targeted delivery of cytotoxic NAMPT inhibitors using antibody-drug conjugates. Mol. Cancer Ther., 2018, 17(12), 2633-2642.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0643] [PMID: 30242091]
[59]
Aviles, P.M.; Guillen, M.J.J.; Gallardo, A.; Cespedes, M.V.; Mangues, R.; Fiebig, H.; Hartman, N.; Dominguez, J.M.; Garcia, L.F. MI130004, a new antibody-drug conjugate, induces strong, long-lasting antitumor effect in HER2 expressing breast tumor models. Proc AACR, 2015.
[60]
Anami, Y.; Yamazaki, C.M.; Xiong, W.; Gui, X.; Zhang, N.; An, Z.; Tsuchikama, K. Glutamic acid-valine-citrulline linkers ensure stability and efficacy of antibody-drug conjugates in mice. Nat. Commun., 2018, 9(1), 2512.
[http://dx.doi.org/10.1038/s41467-018-04982-3] [PMID: 29955061]
[61]
Kellogg, B.A.; Garrett, L.; Kovtun, Y.; Lai, K.C.; Leece, B.; Miller, M.; Payne, G.; Steeves, R.; Whiteman, K.R.; Widdison, W.; Xie, H.; Singh, R.; Chari, R.V.; Lambert, J.M.; Lutz, R.J. Disulfide-linked antibody-maytansinoid conjugates: Optimization of in vivo activity by varying the steric hindrance at carbon atoms adjacent to the disulfide linkage. Bioconjug. Chem., 2011, 22(4), 717-727.
[http://dx.doi.org/10.1021/bc100480a] [PMID: 21425776]
[62]
Zhao, R.Y.; Wilhelm, S.D.; Audette, C.; Jones, G.; Leece, B.A.; Lazar, A.C.; Goldmacher, V.S.; Singh, R.; Kovtun, Y.; Widdison, W.C.; Lambert, J.M.; Chari, R.V. Synthesis and evaluation of hydrophilic linkers for antibody-maytansinoid conjugates. J. Med. Chem., 2011, 54(10), 3606-3623.
[http://dx.doi.org/10.1021/jm2002958] [PMID: 21517041]
[63]
Kovtun, Y.V.; Audette, C.A.; Mayo, M.F.; Jones, G.E.; Doherty, H.; Maloney, E.K.; Erickson, H.K.; Sun, X.; Wilhelm, S.; Ab, O.; Lai, K.C.; Widdison, W.C.; Kellogg, B.; Johnson, H.; Pinkas, J.; Lutz, R.J.; Singh, R.; Goldmacher, V.S.; Chari, R.V. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res., 2010, 70(6), 2528-2537.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3546] [PMID: 20197459]
[64]
Hamblett, K.J.; Senter, P.D.; Chace, D.F.; Sun, M.M.; Lenox, J.; Cerveny, C.G.; Kissler, K.M.; Bernhardt, S.X.; Kopcha, A.K.; Zabinski, R.F.; Meyer, D.L.; Francisco, J.A. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin. Cancer Res., 2004, 10(20), 7063-7070.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0789] [PMID: 15501986]
[65]
Tian, F.; Lu, Y.; Manibusan, A.; Sellers, A.; Tran, H.; Sun, Y.; Phuong, T.; Barnett, R.; Hehli, B.; Song, F.; DeGuzman, M.J.; Ensari, S.; Pinkstaff, J.K.; Sullivan, L.M.; Biroc, S.L.; Cho, H.; Schultz, P.G.; DiJoseph, J.; Dougher, M.; Ma, D.; Dushin, R.; Leal, M.; Tchistiakova, L.; Feyfant, E.; Gerber, H.P.; Sapra, P. A general approach to site-specific antibody drug conjugates. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1766-1771.
[http://dx.doi.org/10.1073/pnas.1321237111] [PMID: 24443552]
[66]
Pillow, T.H.; Schutten, M.; Yu, S.F.; Ohri, R.; Sadowsky, J.; Poon, K.A.; Solis, W.; Zhong, F.; Del Rosario, G.; Go, M.A.T.; Lau, J.; Yee, S.; He, J.; Liu, L.; Ng, C.; Xu, K.; Leipold, D.D.; Kamath, A.V.; Zhang, D.; Masterson, L.; Gregson, S.J.; Howard, P.W.; Fang, F.; Chen, J.; Gunzner-Toste, J.; Kozak, K.K.; Spencer, S.; Polakis, P.; Polson, A.G.; Flygare, J.A.; Junutula, J.R. Modulating therapeutic activity and toxicity of pyrrolobenzodiazepine antibody-drug conjugates with self-immolative disulfide linkers. Mol. Cancer Ther., 2017, 16(5), 871-878.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0641] [PMID: 28223423]
[67]
Zhang, D.; Yu, S.F.; Khojasteh, S.C.; Ma, Y.; Pillow, T.H.; Sadowsky, J.D.; Su, D.; Kozak, K.R.; Xu, K.; Polson, A.G.; Dragovich, P.S.; Hop, C.E.C.A. Intratumoral payload concentration correlates with the activity of antibody- drug conjugates. Mol. Cancer Ther., 2018, 17(3), 677-685.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0697] [PMID: 29348271]
[68]
Bargh, J.D.; Isidro-Llobet, A.; Parker, J.S.; Spring, D.R. Cleavable linkers in antibody-drug conjugates. Chem. Soc. Rev., 2019, 48(16), 4361-4374.
[http://dx.doi.org/10.1039/C8CS00676H] [PMID: 31294429]
[69]
Tsuchikama, K.; An, Z. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries. Protein Cell, 2018, 9(1), 33-46.
[http://dx.doi.org/10.1007/s13238-016-0323-0] [PMID: 27743348]
[70]
Burke, P.J.; Hamilton, J.Z.; Jeffrey, S.C.; Hunter, J.H.; Doronina, S.O.; Okeley, N.M.; Miyamoto, J.B.; Anderson, M.E.; Stone, I.J.; Ulrich, M.L.; Simmons, J.K.; McKinney, E.E.; Senter, P.D.; Lyon, R.P. Optimization of a PEGylated glucuronide-monomethylauristatin E linker for antibody-drug conjugates. Mol. Cancer Ther., 2017, 16(1), 116-123.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0343] [PMID: 28062707]
[71]
Singh, R.; Setiady, Y.Y.; Ponte, J.; Kovtun, Y.V.; Lai, K.C.; Hong, E.E.; Fishkin, N.; Dong, L.; Jones, G.E.; Coccia, J.A.; Lanieri, L.; Veale, K.; Costoplus, J.A.; Skaletskaya, A.; Gabriel, R.; Salomon, P.; Wu, R.; Qiu, Q.; Erickson, H.K.; Lambert, J.M.; Chari, R.V.; Widdison, W.C. A new triglycyl peptide linker for Antibody-Drug Conjugates (ADCs) with improved targeted killing of cancer cells. Mol. Cancer Ther., 2016, 15(6), 1311-1320.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0021] [PMID: 27197308]
[72]
Burke, P.J.; Hamilton, J.Z.; Pires, T.A.; Setter, J.R.; Hunter, J.H.; Cochran, J.H.; Waight, A.B.; Gordon, K.A.; Toki, B.E.; Emmerton, K.K.; Zeng, W.; Stone, I.J.; Senter, P.D.; Lyon, R.P.; Jeffrey, S.C. Development of novel quaternary ammonium linkers for antibody-drug conjugates. Mol. Cancer Ther., 2016, 15(5), 938-945.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0038] [PMID: 26944920]
[73]
Sijbrandi, N.J.; Merkul, E.; Muns, J.A.; Waalboer, D.C.J.; Adamzek, K.; Bolijn, M.; Montserrat, V.; Somsen, G.W.; Haselberg, R.; Steverink, P.J.; Houthoff, H.J.; van Dongen, G.A. A novel platinum (II)-based bifunctional ADC linker benchmarked using 89Zr-desferal and auristatin F-conjugated trastuzumab. Cancer Res., 2017, 77(2), 257-267.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1900] [PMID: 27872093]
[74]
Zhu, X.; Huo, S.; Xue, C.; An, B.; Qu, J. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates. J. Pharm. Anal., 2020, 10(3), 209-220.
[http://dx.doi.org/10.1016/j.jpha.2020.05.008] [PMID: 32612867]
[75]
Todoroki, K.; Yamada, T.; Mizuno, H.; Toyo’oka, T. Current mass spectrometric tools for the bioanalyses of therapeutic monoclonal antibodies and antibody-drug conjugates. Anal. Sci., 2018, 34(4), 397-406.
[http://dx.doi.org/10.2116/analsci.17R003] [PMID: 29643301]
[76]
Melo, R.; Lemos, A.; Preto, A.J.; Almeida, J.G.; Correia, J.D.G.; Sensoy, O.; Moreira, I.S. Computational approaches in antibody-drug conjugate optimization for targeted cancer therapy. Curr. Top. Med. Chem., 2018, 18(13), 1091-1109.
[http://dx.doi.org/10.2174/1568026618666180731165222] [PMID: 30068276]
[77]
Buecheler, J.W.; Winzer, M.; Weber, C.; Gieseler, H. Alteration of physicochemical properties for antibody-drug conjugates and their impact on stability. J. Pharm. Sci., 2020, 109(1), 161-168.
[http://dx.doi.org/10.1016/j.xphs.2019.08.006] [PMID: 31408634]
[78]
Todoroki, K.; Mizuno, H.; Sugiyama, E.; Toyo’oka, T. Bioanalytical methods for therapeutic monoclonal antibodies and antibody-drug conjugates: A review of recent advances and future perspectives. J. Pharm. Biomed. Anal., 2020, 179, 112991.
[http://dx.doi.org/10.1016/j.jpba.2019.112991] [PMID: 31761377]
[79]
Stern, P.L.; Harrop, R. 5T4 oncofoetal antigen: An attractive target for immune intervention in cancer. Cancer Immunol. Immunother., 2017, 66(4), 415-426.
[http://dx.doi.org/10.1007/s00262-016-1917-3] [PMID: 27757559]
[80]
Harrop, R.; O’Neill, E.; Stern, P.L. Cancer stem cell mobilization and therapeutic targeting of the 5T4 oncofetal antigen. Ther. Adv. Vaccines Immunother., 2019, 7, 2515135518821623.
[http://dx.doi.org/10.1177/2515135518821623] [PMID: 30719508]
[81]
Boghaert, E.R.; Sridharan, L.; Khandke, K.M.; Armellino, D.; Ryan, M.G.; Myers, K.; Harrop, R.; Kunz, A.; Hamann, P.R.; Marquette, K.; Dougher, M.; DiJoseph, J.F.; Damle, N.K. The oncofetal protein, 5T4, is a suitable target for antibody-guided anti-cancer chemotherapy with calicheamicin. Int. J. Oncol., 2008, 32(1), 221-234.
[http://dx.doi.org/10.3892/ijo.32.1.221] [PMID: 18097562]
[82]
Shapiro, G.; LoRusso, P.; Vaishampayan, V.; Kittaneh, M.; Hilton, J.F.; Cleary, J.M.; Velastegui, K. First-in-human, dose-escalation, safety and PK study of a novel 5T4-ADC in patients with advanced solid tumors. J. Clin. Oncol., 2015, 33, TPS2603.
[83]
Leal, M.; Wentland, J.; Han, X.; Zhang, Y.; Rago, B.; Duriga, N.; Spriggs, F.; Kadar, E.; Song, W.; McNally, J.; Shakey, Q.; Lorello, L.; Lucas, J.; Sapra, P. Preclinical development of an anti-5T4 antibody-drug conjugate: pharmacokinetics in mice, rats and NHP and tumor/tissue distribution in mice. Bioconjug. Chem., 2015, 26(11), 2223-2232.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00205] [PMID: 26180901]
[84]
Sapra, P.; Shor, B.; Dougher, M.; Kahler, J.; Mack, M.; Xu, J.; Lu, S.; Melamud, E. Enhanced anti-tumor activity of an auristatin-based antibody-drug conjugate in combination with PI3K/mTOR inhibitors or taxanes: translational implications and mechanistic insights. Cancer Res., 2015, 75(15)(Suppl.), 2463.
[85]
Smith, R.A.; Damle, N.K.; Reddy, S.P.; Yurkovetskiy, A.; Bodyak, N.; Yin, M.; Gumerov, D. ASN004, a novel 5T4-targetetd Dolaflexin™ antibody drug conjugate, causes complete regression in multiple solid tumor models. Cancer Res., 2015, 75(15)(Suppl.), 1693.
[86]
Shor, B.; Kahler, J.; Dougher, M.; Xu, J.; Mack, M.; Rosfjord, E.; Wang, F.; Melamud, E.; Sapra, P. Enhanced antitumor activity of an anti-5T4 antibody-drug conjugate in combination with PI3K/mTOR inhibitors or taxanes. Clin. Cancer Res., 2016, 22(2), 383-394.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1166] [PMID: 26319086]
[87]
Kerk, S.A.; Finkel, K.A.; Pearson, A.T.; Warner, K.A.; Zhang, Z.; Nör, F.; Wagner, V.P.; Vargas, P.A.; Wicha, M.S.; Hurt, E.M.; Hollingsworth, R.E.; Tice, D.A.; Nör, J.E. 5T4-targeted therapy ablates cancer stem cells and prevents recurrence of head and neck squamous cell carcinoma. Clin. Cancer Res., 2017, 23(10), 2516-2527.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1834] [PMID: 27780858]
[88]
Harper, J.; Lloyd, C.; Dimasi, N.; Toader, D.; Marwood, R.; Lewis, L.; Bannister, D.; Jovanovic, J.; Fleming, R.; D’Hooge, F.; Mao, S.; Marrero, A.M.; Korade, M., III; Strout, P.; Xu, L.; Chen, C.; Wetzel, L.; Breen, S.; van Vlerken-Ysla, L.; Jalla, S.; Rebelatto, M.; Zhong, H.; Hurt, E.M.; Hinrichs, M.J.; Huang, K.; Howard, P.W.; Tice, D.A.; Hollingsworth, R.E.; Herbst, R.; Kamal, A. Preclinical evaluation of MEDI0641, a pyrrolobenzodiazepine-conjugated antibody-drug conjugate targeting 5T4. Mol. Cancer Ther., 2017, 16(8), 1576-1587.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0825] [PMID: 28522587]
[89]
Giddabasappa, A.; Gupta, V.R.; Norberg, R.; Gupta, P.; Spilker, M.E.; Wentland, J.; Rago, B.; Eswaraka, J.; Leal, M.; Sapra, P. Biodistribution and targeting of anti-5T4 antibody-drug conjugate using fluorescence molecular tomography. Mol. Cancer Ther., 2016, 15(10), 2530-2540.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-1012] [PMID: 27466353]
[90]
Sano, R.; Krytska, K.; Larmour, C.E.; Raman, P.; Martinez, D.; Ligon, G.F.; Lillquist, J.S.; Cucchi, U.; Orsini, P.; Rizzi, S.; Pawel, B.R.; Alvarado, D.; Mossé, Y.P. An antibody-drug conjugate directed to the ALK receptor demonstrates efficacy in preclinical models of neuroblastoma. Sci. Transl. Med., 2019, 11(483), eaau9732.
[http://dx.doi.org/10.1126/scitranslmed.aau9732] [PMID: 30867324]
[91]
Breij, ECW; Verploegen, S; Lingnau, A; van den Brink, EN; Janmaat, M; Houtkamp, M; Bleeker, WK Preclinical efficacy studies using HuMax-Axl-ADC, a novel antibody-drug conjugate targeting Axl-expressing solid cancers. J Clin Oncol, 2015, 33 suppl, 3066.
[92]
Boshuizen, J.; Koopman, L.A.; Krijgsman, O.; Shahrabi, A.; van den Heuvel, E.G.; Ligtenberg, M.A.; Vredevoogd, D.W.; Kemper, K.; Kuilman, T.; Song, J.Y.; Pencheva, N.; Mortensen, J.T.; Foppen, M.G.; Rozeman, E.A.; Blank, C.U.; Janmaat, M.L.; Satijn, D.; Breij, E.C.W.; Peeper, D.S.; Parren, P.W.H.I. Cooperative targeting of melanoma heterogeneity with an AXL antibody-drug conjugate and BRAF/MEK inhibitors. Nat. Med., 2018, 24(2), 203-212.
[http://dx.doi.org/10.1038/nm.4472] [PMID: 29334371]
[93]
Koopman, L.A.; Terp, M.G.; Zom, G.G.; Janmaat, M.L.; Jacobsen, K.; Gresnigt-van den Heuvel, E.; Brandhorst, M.; Forssmann, U.; de Bree, F.; Pencheva, N.; Lingnau, A.; Zipeto, M.A.; Parren, P.W.H.I.; Breij, E.C.W.; Ditzel, H.J. Enapotamab vedotin, an AXL-specific antibody-drug conjugate, shows preclinical antitumor activity in non-small cell lung cancer. JCI Insight, 2019, 4(21), e128199.
[http://dx.doi.org/10.1172/jci.insight.128199] [PMID: 31600169]
[94]
Ameratunga, M.; Harvey, R.D.; Mau-Sørensen, M.; Thistlethwaite, F.; Forssmann, U.; Gupta, M. First-in-human, dose-escalation, phase (ph) I trial to evaluate safety of anti-Axl Antibody-Drug Conjugate (ADC) Enapotamab Vedotin (EnaV) in solid tumors. J. Clin. Oncol., 2019, 2525.
[95]
Seaman, S.; Zhu, Z.; Saha, S.; Zhang, X.M.; Yang, M.Y.; Hilton, M.B.; Morris, K.; Szot, C.; Morris, H.; Swing, D.A.; Tessarollo, L.; Smith, S.W.; Degrado, S.; Borkin, D.; Jain, N.; Scheiermann, J.; Feng, Y.; Wang, Y.; Li, J.; Welsch, D.; DeCrescenzo, G.; Chaudhary, A.; Zudaire, E.; Klarmann, K.D.; Keller, J.R.; Dimitrov, D.S.; St Croix, B. Eradication of tumors through simultaneous ablation of CD276/B7-H3-positive tumor cells and tumor vasculature. Cancer Cell, 2017, 31(4), 501-515.e8.
[http://dx.doi.org/10.1016/j.ccell.2017.03.005] [PMID: 28399408]
[96]
Ogitani, Y.; Abe, Y.; Iguchi, T.; Yamaguchi, J.; Terauchi, T.; Kitamura, M.; Goto, K.; Goto, M.; Oitate, M.; Yukinaga, H.; Yabe, Y.; Nakada, T.; Masuda, T.; Morita, K.; Agatsuma, T. Wide application of a novel topoisomerase I inhibitor-based drug conjugation technology. Bioorg. Med. Chem. Lett., 2016, 26(20), 5069-5072.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.082] [PMID: 27599744]
[97]
Scribner, J.A.; Brown, J.G.; Son, T.; Chiechi, M.; Li, P.; Sharma, S.; Li, H.; De Costa, A.; Li, Y.; Chen, Y.; Easton, A.; Yee-Toy, N.C.; Chen, F.Z.; Gorlatov, S.; Barat, B.; Huang, L.; Wolff, C.R.; Hooley, J.; Hotaling, T.E.; Gaynutdinov, T.; Ciccarone, V.; Tamura, J.; Koenig, S.; Moore, P.A.; Bonvini, E.; Loo, D. Preclinical development of MGC018, a duocarmycin-based antibody-drug conjugate targeting B7-H3 for solid cancer. Mol. Cancer Ther., 2020, 19(11), 2235-2244.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0116] [PMID: 32967924]
[98]
Powderly, J.D.; Jang, S.; Lohr, J.; Spira, A.I.; Bohac, G.C.; Sharma, M. Preliminary dose escalation results from a phase I/II, first-in-human study of MGC018 (anti-B7-H3 antibody-drug conjugate) in patients with advanced solid tumors. J. Clin. Oncol., 2020, 3071.
[99]
Leong, S.R.; Liang, W.C.; Wu, Y.; Crocker, L.; Cheng, E.; Sampath, D.; Ohri, R.; Raab, H.; Hass, P.E.; Pham, T.; Firestein, R.; Li, D.; Schutten, M.; Stagg, N.J.; Ogasawara, A.; Koppada, N.; Roth, L.; Williams, S.P.; Lee, B.C.; Chalouni, C.; Peng, I.; DeVoss, J.; Tremayne, J.; Polakis, P.; Polson, A.G. An anti-B7-H4 antibody-drug conjugate for the treatment of breast cancer. Mol. Pharm., 2015, 12(6), 1717-1729.
[http://dx.doi.org/10.1021/mp5007745] [PMID: 25853436]
[100]
Yurkovetskiy, A.V.; Bodyak, N.D.; Yin, M.; Thomas, J.D.; Clardy, S.M.; Conlon, P.R.; Stevenson, C.A.; Uttard, A.; Qin, L.; Gumerov, D.R.; Ter-Ovanesyan, E.; Bu, C.; Johnson, A.J.; Gurijala, V.R.; McGillicuddy, D.; DeVit, M.J.; Poling, L.L.; Protopopova, M.; Xu, L.; Zhang, Q.; Park, P.U.; Bergstrom, D.A.; Lowinger, T.B. Dolaflexin: A novel antibody-drug conjugate platform featuring high drug loading and a controlled bystander effect. Mol. Cancer Ther., 2021, 20(5), 885-895.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0166] [PMID: 33722857]
[101]
Tai, Y.T.; Mayes, P.A.; Acharya, C.; Zhong, M.Y.; Cea, M.; Cagnetta, A.; Craigen, J.; Yates, J.; Gliddon, L.; Fieles, W.; Hoang, B.; Tunstead, J.; Christie, A.L.; Kung, A.L.; Richardson, P.; Munshi, N.C.; Anderson, K.C. Novel anti-B-cell maturation antigen antibody-drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood, 2014, 123(20), 3128-3138.
[http://dx.doi.org/10.1182/blood-2013-10-535088] [PMID: 24569262]
[102]
Cho, S.F.; Lin, L.; Xing, L.; Li, Y.; Yu, T.; Anderson, K.C.; Tai, Y.T. BCMA-targeting therapy: Driving a new era of immunotherapy in multiple myeloma. Cancers (Basel), 2020, 12(6), 1473.
[http://dx.doi.org/10.3390/cancers12061473] [PMID: 32516895]
[103]
Cohen, A.D.; Popat, R.; Trudel, S.; Richardson, P.G.; Libby, E.N.; Lendvai, N.; Anderson, L.D.; Sutherland, H.J.; DeWall, S.; Ellis, C.E.; He, Z.; Mazumdar, J.; Wang, C.; Opalinska, J.B.; Voorhees, P.M. First in human study with GSK2857916, an antibody-drug conjugated to microtubule-disrupting agent directed against B-Cell Maturation Antigen (BCMA) in patients with relapsed/refractory Multiple Myeloma (MM): Results from study BMA117159 Part 1 dose escalation. Blood, 2016, 128(22), 1148.
[104]
Figueroa-Vazquez, V.; Ko, J.; Breunig, C.; Baumann, A.; Giesen, N.; Pálfi, A.; Müller, C.; Lutz, C.; Hechler, T.; Kulke, M.; Müller-Tidow, C.; Krämer, A.; Goldschmidt, H.; Pahl, A.; Raab, M.S. HDP-101, an anti-BCMA antibody-drug conjugate, safely delivers amanitin to induce cell death in proliferating and resting multiple myeloma cells. Mol. Cancer Ther., 2021, 20(2), 367-378.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0287] [PMID: 33298585]
[105]
Trudel, S.; Lendvai, N.; Popat, R.; Voorhees, P.M.; Reeves, B.; Libby, E.N.; Richardson, P.G.; Hoos, A.; Gupta, I.; Bragulat, V.; He, Z.; Opalinska, J.B.; Cohen, A.D. Antibody-drug conjugate, GSK2857916, in relapsed/refractory multiple myeloma: An update on safety and efficacy from dose expansion phase I study. Blood Cancer J., 2019, 9(4), 37.
[http://dx.doi.org/10.1038/s41408-019-0196-6] [PMID: 30894515]
[106]
Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.O.; Callander, N.; Lendvai, N.; Sborov, D.; Suvannasankha, A.; Weisel, K.; Karlin, L.; Libby, E.; Arnulf, B.; Facon, T.; Hulin, C.; Kortüm, K.M.; Rodríguez-Otero, P.; Usmani, S.Z.; Hari, P.; Baz, R.; Quach, H.; Moreau, P.; Voorhees, P.M.; Gupta, I.; Hoos, A.; Zhi, E.; Baron, J.; Piontek, T.; Lewis, E.; Jewell, R.C.; Dettman, E.J.; Popat, R.; Esposti, S.D.; Opalinska, J.; Richardson, P.; Cohen, A.D. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol., 2020, 21(2), 207-221.
[http://dx.doi.org/10.1016/S1470-2045(19)30788-0] [PMID: 31859245]
[107]
Markham, A. Belantamab mafodotin: First approval. Drugs, 2020, 80, 1607-1613.
[http://dx.doi.org/10.1007/s40265-020-01404-x]
[108]
Guo, H.; Cruz-Munoz, M.E.; Wu, N.; Robbins, M.; Veillette, A. Immune cell inhibition by SLAMF7 is mediated by a mechanism requiring SRC kinases, CD45, and SHIP-1 that is defective in multiple myeloma cells. Mol. Cell. Biol., 2015, 35(1), 41-51.
[http://dx.doi.org/10.1128/MCB.01107-14] [PMID: 25312647]
[109]
Vij, R.; Nath, R.; Afar, D.E.H.; Mateos, M.V.; Berdeja, J.G.; Raab, M.S.; Guenther, A.; Martínez-López, J.; Jakubowiak, A.J.; Leleu, X.; Weisel, K.; Wong, S.; Gulbranson, S.; Sheridan, J.P.; Reddy, A.; Paiva, B.; Singhal, A.; San-Miguel, J.F.; Moreau, P. First-in-human phase I study of ABBV-838, an antibody–drug conjugate targeting SLAMF7/CS1 in patients with relapsed and refractory multiple myeloma. Clin. Cancer Res., 2020, 26(10), 2308-2317.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1431] [PMID: 31969330]
[110]
Arumugam, T.; Deng, D.; Bover, L.; Wang, H.; Logsdon, C.D.; Ramachandran, V. New blocking antibodies against Novel AGR2–C4.4A pathway reduce growth and metastasis of pancreatic tumors and increase survival in mice. Mol. Cancer Ther., 2015, 14(4), 941-951.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0470] [PMID: 25646014]
[111]
Willuda, J.; Linden, L.; Lerchen, H.G.; Kopitz, C.; Stelte-Ludwig, B.; Pena, C.; Lange, C.; Golfier, S.; Kneip, C.; Carrigan, P.E.; Mclean, K.; Schuhmacher, J.; von Ahsen, O.; Müller, J.; Dittmer, F.; Beier, R.; El Sheikh, S.; Tebbe, J.; Leder, G.; Apeler, H.; Jautelat, R.; Ziegelbauer, K.; Kreft, B. Preclinical anti-tumor efficacy of BAY 1129980 - a novel auristatin-based anti-C4.4A (LYPD3) antibody-drug conjugate for the treatment of non-small cell lung cancer. Mol. Cancer Ther., 2017, 16(5), 893-904.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0474] [PMID: 28292941]
[112]
Chen, Y.; Clark, S.; Wong, T.; Chen, Y.; Chen, Y.; Dennis, M.S.; Luis, E.; Zhong, F.; Bheddah, S.; Koeppen, H.; Gogineni, A.; Ross, S.; Polakis, P.; Mallet, W. Armed antibodies targeting the mucin repeats of the ovarian cancer antigen, MUC16, are highly efficacious in animal tumor models. Cancer Res., 2007, 67(10), 4924-4932.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4512] [PMID: 17510422]
[113]
Das, S.; Batra, S.K. Understanding the unique attributes of MUC16 (CA125): potential implications in targeted therapy. Cancer Res., 2015, 75(22), 4669-4674.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1050] [PMID: 26527287]
[114]
Liu, J.F.; Moore, K.N.; Birrer, M.J.; Berlin, S.; Matulonis, U.A.; Infante, J.R.; Wolpin, B.; Poon, K.A.; Firestein, R.; Xu, J.; Kahn, R.; Wang, Y.; Wood, K.; Darbonne, W.C.; Lackner, M.R.; Kelley, S.K.; Lu, X.; Choi, Y.J.; Maslyar, D.; Humke, E.W.; Burris, H.A. Phase I study of safety and pharmacokinetics of the anti-MUC16 antibody-drug conjugate DMUC5754A in patients with platinum-resistant ovarian cancer or unresectable pancreatic cancer. Ann. Oncol., 2016, 27(11), 2124-2130.
[http://dx.doi.org/10.1093/annonc/mdw401] [PMID: 27793850]
[115]
Liu, J.F.; Moore, K.N.; Wang, J.S.; Patel, M.; Birrer, M.J.; Hamilton, E.; Barroilhet, L.; Flanagan, W.M.; Wang, Y.; Garg, A.; Lu, X.; Vaze, A.; Amin, D.; Leipold, D.; Commerford, S.R.; Humke, E.W.; Burris, H.A. Targeting MUC16 with the THIOMABTM-drug conjugate DMUC4064A in patients with platinum-resistant ovarian cancer: A Phase I escalation study. Cancer Res., 2017, 77(13)(Suppl.), CT009.
[116]
Lee, E.K.; Liu, J.F. Antibody-drug conjugates in gynecologic malignancies. Gynecol. Oncol., 2019, 153(3), 694-702.
[http://dx.doi.org/10.1016/j.ygyno.2019.03.245] [PMID: 30929824]
[117]
Menezes, D.; Abrams, T.J.; Karim, C.; Tang, Y.; Ying, C.; Miller, K.; Fanton, C.; Ghoddusi, M. Development and activity of a novel antibody-drug conjugate for the treatment of P-cadherin expressing cancers. Proc AACR, 2015, 1682.
[118]
Funase, Y.; Nakamura, E.; Kajita, M.; Saito, Y.; Oshikiri, S.; Kitano, M.; Tokura, M.; Hino, A.; Uehara, T. Preclinical characterization of radioimmunoconjugate 111In/90Y-FF-21101 against P-cadherin expressing tumor in mouse xenograft model and non-human primate. J. Nucl. Med., 2021, 62(2), 232-239.
[http://dx.doi.org/10.2967/jnumed.120.245837] [PMID: 32737245]
[119]
Bialucha, C.U.; Collins, S.D.; Li, X.; Saxena, P.; Zhang, X.; Dürr, C.; Lafont, B.; Prieur, P.; Shim, Y.; Mosher, R.; Lee, D.; Ostrom, L.; Hu, T.; Bilic, S.; Rajlic, I.L.; Capka, V.; Jiang, W.; Wagner, J.P.; Elliott, G.; Veloso, A.; Piel, J.C.; Flaherty, M.M.; Mansfield, K.G.; Meseck, E.K.; Rubic-Schneider, T.; London, A.S.; Tschantz, W.R.; Kurz, M.; Nguyen, D.; Bourret, A.; Meyer, M.J.; Faris, J.E.; Janatpour, M.J.; Chan, V.W.; Yoder, N.C.; Catcott, K.C.; McShea, M.A.; Sun, X.; Gao, H.; Williams, J.; Hofmann, F.; Engelman, J.A.; Ettenberg, S.A.; Sellers, W.R.; Lees, E. Discovery and optimization of HKT288, a cadherin-6 targeting ADC for the treatment of ovarian and renal cancers. Cancer Discov., 2017, 7(9), 1030-1045.
[http://dx.doi.org/10.1158/2159-8290.CD-16-1414] [PMID: 28526733]
[120]
Tam, A.; Zambrowski, M.; Seiss, K.; Liu, S.Q.; Abrams, T.; Caponigro, G.; Tschantz, W.; Campbell, J. Using genome-wide CRISPR screen to understand resistance mechanisms to PCA062, a P-cadherin targeting antibody-drug conjugate. Cancer Res., 2019, 79(13)(Suppl.), 4743.
[121]
Petrul, H.M.; Schatz, C.A.; Kopitz, C.C.; Adnane, L.; McCabe, T.J.; Trail, P.; Ha, S.; Chang, Y.S.; Voznesensky, A.; Ranges, G.; Tamburini, P.P. Therapeutic mechanism and efficacy of the antibody-drug conjugate BAY 79-4620 targeting human carbonic anhydrase 9. Mol. Cancer Ther., 2012, 11(2), 340-349.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0523] [PMID: 22147747]
[122]
Ziffels, B.; Stringhini, M.; Probst, P.; Fugmann, T.; Sturm, T.; Neri, D. Antibody-based delivery of cytokine payloads to carbonic anhydrase IX leads to cancer cures in immunocompetent tumor-bearing mice. Mol. Cancer Ther., 2019, 18(9), 1544-1554.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1301] [PMID: 31213507]
[123]
Cazzamalli, S.; Dal Corso, A.; Widmayer, F.; Neri, D. Chemically defined antibody- and small molecule-drug conjugates for in vivo tumor targeting applications: A comparative analysis. J. Am. Chem. Soc., 2018, 140(5), 1617-1621.
[http://dx.doi.org/10.1021/jacs.7b13361] [PMID: 29342352]
[124]
Rao, C.; Pan, C.; Huber, M.; Sattari, P.; Chong, C.; Dai, R.; Soderberg, C.; Chen, L.; Guerlavais, V.; Horgan, K.; Zhang, A.; Sufi, B.; Huang, H.; Chen, H.; Gangwar, S.; Cardarelli, P.; King, D. Efficacy study of anti-CD19 antibody drug-conjugates in Raji tumor xenograft and systemic model. Cancer Res., 2007, 67(9), 4104.
[125]
Gerber, H.P.; Morris-Tilden, C.; Stone, I.; Jonas, M.; Kung-Sutherland, M.; Miyamoto, J.; Brown, L.; Westendorf, L.; Meyer, D.; Sussman, D.; Carter, P.; Law, C.L.; Grewal, I. Humanized anti-CD19 auristatin antibody-drug conjugates display potent antitumor activity in preclinical models of B-cell malignancies. Mol. Cell. Ther., 2007, 6(11), B60.
[126]
Ingle, G.S.; Chan, P.; Elliott, J.M.; Chang, W.S.; Koeppen, H.; Stephan, J.P.; Scales, S.J. High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br. J. Haematol., 2008, 140(1), 46-58.
[PMID: 17991300]
[127]
Wang, K.; Wei, G.; Liu, D. CD19: A biomarker for B cell development, lymphoma diagnosis and therapy. Exp. Hematol. Oncol., 2012, 1(1), 36.
[http://dx.doi.org/10.1186/2162-3619-1-36] [PMID: 23210908]
[128]
Jones, L.; McCalmont, H.; Evans, K.; Mayoh, C.; Kurmasheva, R.T.; Billups, C.A.; Houghton, P.J.; Smith, M.A.; Lock, R.B. Preclinical activity of the antibody-drug conjugate denintuzumab mafodotin (SGN-CD19A) against pediatric ALL xenografts. Pediatr. Blood Cancer, 2019, 66, e27765.
[http://dx.doi.org/10.1002/pbc.27765] [PMID: 31012549]
[129]
Van Epps, H.A.; Klussman, K.; Anderson, M.; Zeng, W.; Olson, D.; Ryan, M.; Albertson, T.; Law, C.L. Preclinical results of SGN-CD19A in combination with R-ICE or CHOP in non-Hodgkin lymphoma models. Cancer Res., 2015, 75(15)(Suppl.), 2541.
[130]
Law, C.L.; Cerveny, C.G.; Gordon, K.A.; Klussman, K.; Mixan, B.J.; Chace, D.F.; Meyer, D.L.; Doronina, S.O.; Siegall, C.B.; Francisco, J.A.; Senter, P.D.; Wahl, A.F. Efficient elimination of B-lineage lymphomas by anti-CD20-auristatin conjugates. Clin. Cancer Res., 2004, 10(23), 7842-7851.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-1028] [PMID: 15585616]
[131]
Dijoseph, J.F.; Dougher, M.M.; Armellino, D.C.; Kalyandrug, L.; Kunz, A.; Boghaert, E.R.; Hamann, P.R.; Damle, N.K. CD20-specific antibody-targeted chemotherapy of non-Hodgkin’s B-cell lymphoma using calicheamicin-conjugated rituximab. Cancer Immunol. Immunother., 2007, 56(7), 1107-1117.
[http://dx.doi.org/10.1007/s00262-006-0260-5] [PMID: 17160682]
[132]
Sharkey, R.; Karacay, H.; Rossi, E.; McBride, W.; Chang, C.H.; Goldenberg, D. Pretargeted radioimmunotherapy of non-Hodgkin’s lymphoma (NHL): Improved efficacy with less toxicity than 90Y-anti-CD20 IgG. Proc AACR, 2008.
[133]
Mehta, A.; Forero-Torres, A. Development and integration of antibody-drug conjugates in non-Hodgkin lymphoma. Curr. Oncol. Rep., 2015, 17(9), 41.
[http://dx.doi.org/10.1007/s11912-015-0466-9] [PMID: 26194424]
[134]
Sullivan-Chang, L.; O’Donnell, R.T.; Tuscano, J.M. Targeting CD22 in B-cell malignancies: Current status and clinical outlook. BioDrugs, 2013, 27(4), 293-304.
[http://dx.doi.org/10.1007/s40259-013-0016-7] [PMID: 23696252]
[135]
Shor, B.; Gerber, H-P.; Sapra, P. Preclinical and clinical development of inotuzumab-ozogamicin in hematological malignancies. Mol. Immunol., 2015, 67(2 Pt A), 107-116.
[http://dx.doi.org/10.1016/j.molimm.2014.09.014] [PMID: 25304309]
[136]
Ogura, M.; Tobinai, K.; Hatake, K.; Davies, A.; Crump, M.; Ananthakrishnan, R.; Ishibashi, T.; Paccagnella, M.L.; Boni, J.; Vandendries, E.; MacDonald, D. Phase 1 study of inotuzumab ozogamicin combined with R-CVP for relapsed/refractory CD22+ B-cell non-Hodgkin lymphoma. Clin. Cancer Res., 2016, 22(19), 4807-4816.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2488] [PMID: 27154915]
[137]
Li, D.; Poon, K.A.; Yu, S.F.; Dere, R.; Go, M.; Lau, J.; Zheng, B.; Elkins, K.; Danilenko, D.; Kozak, K.R.; Chan, P.; Chuh, J.; Shi, X.; Nazzal, D.; Fuh, F.; McBride, J.; Ramakrishnan, V.; de Tute, R.; Rawstron, A.; Jack, A.S.; Deng, R.; Chu, Y.W.; Dornan, D.; Williams, M.; Ho, W.; Ebens, A.; Prabhu, S.; Polson, A.G. DCDT2980S, an anti-CD22-monomethyl auristatin E antibody-drug conjugate, is a potential treatment for non-Hodgkin lymphoma. Mol. Cancer Ther., 2013, 12(7), 1255-1265.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1173] [PMID: 23598530]
[138]
Yurkiewicz, I.R.; Muffly, L.; Liedtke, M. Inotuzumab ozogamicin: A CD22 mAb-drug conjugate for adult relapsed or refractory B-cell precursor acute lymphoblastic leukemia. Drug Des. Devel. Ther., 2018, 12, 2293-2300.
[http://dx.doi.org/10.2147/DDDT.S150317] [PMID: 30087554]
[139]
Aujla, A.; Aujla, R.; Liu, D. Inotuzumab ozogamicin in clinical development for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Biomark. Res., 2019, 7, 9.
[http://dx.doi.org/10.1186/s40364-019-0160-4] [PMID: 31011424]
[140]
Al-Salama, Z.T. Inotuzumab ozogamicin: A review in relapsed/refractory B-cell acute lymphoblastic leukemia. Target. Oncol., 2018, 13(4), 525-532.
[http://dx.doi.org/10.1007/s11523-018-0584-z] [PMID: 30090971]
[141]
Uy, N.; Nadeau, M.; Stahl, M.; Zeidan, A.M. Inotuzumab ozogamicin in the treatment of relapsed/refractory acute B cell lymphoblastic leukemia. J. Blood Med., 2018, 9, 67-74.
[http://dx.doi.org/10.2147/JBM.S136575] [PMID: 29713210]
[142]
Advani, A.; Coiffier, B.; Czuczman, M.S.; Dreyling, M.; Foran, J.; Gine, E.; Gisselbrecht, C.; Ketterer, N.; Nasta, S.; Rohatiner, A.; Schmidt-Wolf, I.G.; Schuler, M.; Sierra, J.; Smith, M.R.; Verhoef, G.; Winter, J.N.; Boni, J.; Vandendries, E.; Shapiro, M.; Fayad, L. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin’s lymphoma: Results of a phase I study. J. Clin. Oncol., 2010, 28(12), 2085-2093.
[http://dx.doi.org/10.1200/JCO.2009.25.1900] [PMID: 20308665]
[143]
Dijoseph, J.F.; Dougher, M.M.; Armellino, D.C.; Evans, D.Y.; Damle, N.K. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia, 2007, 21(11), 2240-2245.
[http://dx.doi.org/10.1038/sj.leu.2404866] [PMID: 17657218]
[144]
Advani, R.H.; Lebovic, D.; Chen, A.; Brunvand, M.; Goy, A.; Chang, J.E.; Hochberg, E.; Yalamanchili, S.; Kahn, R.; Lu, D.; Agarwal, P.; Dere, R.C.; Hsieh, H.J.; Jones, S.; Chu, Y.W.; Cheson, B.D. Phase I study of the anti-CD22 antibody-drug conjugate pinatuzumab vedotin with/without rituximab in patients with relapsed/refractory B-cell non-Hodgkin’s lymphoma. Clin. Cancer Res., 2017, 23(5), 1167-1176.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0772] [PMID: 27601593]
[145]
Yu, S.F.; Zheng, B.; Go, M.; Lau, J.; Spencer, S.; Raab, H.; Soriano, R.; Jhunjhunwala, S.; Cohen, R.; Caruso, M.; Polakis, P.; Flygare, J.; Polson, A.G. A novel anti-CD22 anthracycline-based Antibody-Drug Conjugate (ADC) that overcomes resistance to auristatin-based ADCs. Clin. Cancer Res., 2015, 21(14), 3298-3306.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2035] [PMID: 25840969]
[146]
Drake, P.M.; Carlson, A.; McFarland, J.M.; Bañas, S.; Barfield, R.M.; Zmolek, W.; Kim, Y.C.; Huang, B.C.B.; Kudirka, R.; Rabuka, D. CAT-02-106, a site-specifically conjugated anti-CD22 antibody bearing an MDR1-resistant maytansine payload yields excellent efficacy and safety in preclinical models. Mol. Cancer Ther., 2018, 17(1), 161-168.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0776] [PMID: 29142069]
[147]
Yu, S.F.; Lee, D.W.; Zheng, B.; Del Rosario, G.; Leipold, D.; Booler, H.; Zhong, F.; Carrasco-Triguero, M.; Hong, K.; Yan, P.; Rowntree, R.K.; Schutten, M.M.; Pillow, T.; Sadowsky, J.D.; Dragovich, P.S.; Polson, A.G.; Polson, A.G. An anti-CD22-seco-CBI-Dimer antibody-drug conjugate (ADC) for the treatment of non-Hodgkin lymphoma that provides a longer duration of response than auristatin based ADCs in preclinical models. Mol. Cancer Ther., 2021, 20(2), 340-346.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0046] [PMID: 33273056]
[148]
Flynn, M.J.; Zammarchi, F.; Tyrer, P.C.; Akarca, A.U.; Janghra, N.; Britten, C.E.; Havenith, C.E.G.; Levy, J.N.; Tiberghien, A.; Masterson, L.A.; Barry, C.; D’Hooge, F.; Marafioti, T.; Parren, P.W.; Williams, D.G.; Howard, P.W.; van Berkel, P.H.; Hartley, J.A. ADCT-301, a Pyrrolobenzodiazepine (PBD) dimer-containing Antibody-Drug Conjugate (ADC) targeting CD25-expressing hematological malignancies. Mol. Cancer Ther., 2016, 15(11), 2709-2721.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0233] [PMID: 27535974]
[149]
Hayashi, M.; Madokoro, H.; Yamada, K.; Nishida, H.; Morimoto, C.; Sakamoto, M.; Yanagawa, H.; Yamada, T. Novel antibody-drug conjugate with anti-CD26 humanized monoclonal antibody and TFIIH inhibitor, triptolide, inhibits tumor growth via impairing mRNA synthesis. Cancers (Basel), 2019, 11, 1138.
[http://dx.doi.org/10.3390/cancers11081138] [PMID: 31398954]
[150]
Shea, L.; Mehta-Shah, N. Brentuximab vedotin in the treatment of peripheral T cell lymphoma and cutaneous T cell lymphoma. Curr. Hematol. Malig. Rep., 2020, 15(1), 9-19.
[http://dx.doi.org/10.1007/s11899-020-00561-w] [PMID: 32016790]
[151]
Viviani, S.; Guidetti, A. Efficacy of antibody-drug conjugate brentuximab vedotin in treating Hodgkin’s lymphoma. Expert Opin. Biol. Ther., 2018, 18(8), 841-849.
[http://dx.doi.org/10.1080/14712598.2018.1499723] [PMID: 29999431]
[152]
Van Der Weyden, C.; Dickinson, M.; Whisstock, J.; Prince, H.M. Brentuximab vedotin in T-cell lymphoma. Expert Rev. Hematol., 2019, 12(1), 5-19.
[http://dx.doi.org/10.1080/17474086.2019.1558399] [PMID: 30526166]
[153]
Makita, S.; Maruyama, D.; Tobinai, K. Safety and efficacy of brentuximab vedotin in the treatment of classic Hodgkin lymphoma. OncoTargets Ther., 2020, 13, 5993-6009.
[http://dx.doi.org/10.1093/jnci/93.2.121] [PMID: 32606807]
[154]
Donato, E.M.; Fernández-Zarzoso, M.; Hueso, J.A.; de la Rubia, J. Brentuximab vedotin in Hodgkin lymphoma and anaplastic large-cell lymphoma: An evidence-based review. OncoTargets Ther., 2018, 11, 4583-4590.
[http://dx.doi.org/10.2147/OTT.S141053] [PMID: 30122950]
[155]
O’Connor, O.; Pro, B.; Illidge, T.; Trumper, L.H.; Larsen, E.K.; Manley, T.J. Phase III trial of brentuximab vedotin and CHP versus CHOP in the frontline treatment of patients (pts) with CD30+ mature T-cell lymphomas (MTCL). J. Clin. Oncol., 2015, 33, TPS8605.
[156]
Diefenbach, C.S.M.; Li, H.; Kahl, B.S.; Robertson, M.J.; Cohen, J.; Advani, R.H.; Ambinder, R. A phase I study with an expansion cohort of the combination of ipilimumab and brentuximab vedotin in patients with relapsed/refractory Hodgkin lymphoma: A trial of the ECOG-ACRIN Cancer Research Group (E4412). J.U. Clin. Oncol., 2015, 33, TPS8602.
[157]
Tactildiz, N.; Unal, E.; Yavuz, G.; Dincaslan, H.; Tanyildiz, G.; Pekpak, E. A targeted salvage therapy with brentuximab vedotin in heavily treated refractory or relapsed pediatric Hodgkin lymphoma patients who received autologous stem cell transplantation (ASCT). J. Clin. Oncol., 2015, 33, e21002.
[158]
Lhospice, F.; Brégeon, D.; Belmant, C.; Dennler, P.; Chiotellis, A.; Fischer, E.; Gauthier, L.; Boëdec, A.; Rispaud, H.; Savard-Chambard, S.; Represa, A.; Schneider, N.; Paturel, C.; Sapet, M.; Delcambre, C.; Ingoure, S.; Viaud, N.; Bonnafous, C.; Schibli, R.; Romagné, F. Site-specific conjugation of monomethyl auristatin E to anti-CD30 antibodies improves their pharmacokinetics and therapeutic index in rodent models. Mol. Pharm., 2015, 12(6), 1863-1871.
[http://dx.doi.org/10.1021/mp500666j] [PMID: 25625323]
[159]
Gardai, S.J.; Epp, A.; Law, C.L. Brentuximab vedotin-mediated immunogenic cell death. Cancer Res., 2015, 75(15)(Suppl.), 2469.
[160]
Locatelli, S.L.; Careddu, G.; Viswanadha, S.; Vakkalanka, S.; Castagna, L.; Santoro, A.; Carlo-Stella, C. The dual PI3K d/g inhibitor RP6530 in combination with brentuimab vedotin (SGN- 35) synergistically induces cell death via inhibition of tubulin polymerization in Hodgkin lymphoma cell lines. Proc AACR, 2015, p. 2420.
[161]
Ansell, S.M. Brentuximab vedotin. Blood, 2014, 124(22), 3197-3200.
[http://dx.doi.org/10.1182/blood-2014-06-537514] [PMID: 25293772]
[162]
Horwitz, S.; O’Connor, O.A.; Pro, B.; Illidge, T.; Fanale, M.; Advani, R.; Bartlett, N.L.; Christensen, J.H.; Morschhauser, F.; Domingo-Domenech, E.; Rossi, G.; Kim, W.S.; Feldman, T.; Lennard, A.; Belada, D.; Illés, Á.; Tobinai, K.; Tsukasaki, K.; Yeh, S.P.; Shustov, A.; Hüttmann, A.; Savage, K.J.; Yuen, S.; Iyer, S.; Zinzani, P.L.; Hua, Z.; Little, M.; Rao, S.; Woolery, J.; Manley, T.; Trümper, L. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet, 2019, 393(10168), 229-240.
[http://dx.doi.org/10.1016/S0140-6736(18)32984-2] [PMID: 30522922]
[163]
Younes, A.; Bartlett, N.L.; Leonard, J.P.; Kennedy, D.A.; Lynch, C.M.; Sievers, E.L.; Forero-Torres, A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med., 2010, 363(19), 1812-1821.
[http://dx.doi.org/10.1056/NEJMoa1002965] [PMID: 21047225]
[164]
Zinzani, P.L.; Sasse, S.; Radford, J.; Shonukan, O.; Bonthapally, V. Experience of brentuximab vedotin in relapsed/refractory Hodgkin lymphoma in the Named Patient Program: Review of the literature. Crit. Rev. Oncol. Hematol., 2015, 95, 359-369.
[http://dx.doi.org/10.1016/j.critrevonc.2015.03.011] [PMID: 25964164]
[165]
Li, F.; Emmerton, K.K.; Jonas, M.; Zhang, X.; Miyamoto, J.B.; Setter, J.R.; Nicholas, N.D.; Okeley, N.M.; Lyon, R.P.; Benjamin, D.R.; Law, C.L. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res., 2016, 76(9), 2710-2719.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1795] [PMID: 26921341]
[166]
Tarlock, K.; Alonzo, T.A.; Gerbing, R.B.; Raimondi, S.C.; Hirsch, B.A.; Sung, L.; Pollard, J.A.; Aplenc, R.; Loken, M.R.; Gamis, A.S.; Meshinchi, S. Gemtuzumab ozogamicin reduces relapse risk in FLT3/ITD acute myeloid leukemia: A report from the Children’s Oncology Group. Clin. Cancer Res., 2016, 22(8), 1951-1957.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1349] [PMID: 26644412]
[167]
Kung Sutherland, M.S.; Walter, R.B.; Jeffrey, S.C.; Burke, P.J.; Yu, C.; Kostner, H.; Stone, I.; Ryan, M.C.; Sussman, D.; Lyon, R.P.; Zeng, W.; Harrington, K.H.; Klussman, K.; Westendorf, L.; Meyer, D.; Bernstein, I.D.; Senter, P.D.; Benjamin, D.R.; Drachman, J.G.; McEarchern, J.A. SGN-CD33A: A novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML. Blood, 2013, 122(8), 1455-1463.
[http://dx.doi.org/10.1182/blood-2013-03-491506] [PMID: 23770776]
[168]
Baron, J.; Wang, E.S. Gemtuzumab ozogamicin for the treatment of acute myeloid leukemia. Expert Rev. Clin. Pharmacol., 2018, 11(6), 549-559.
[http://dx.doi.org/10.1080/17512433.2018.1478725] [PMID: 29787320]
[169]
Yu, B.; Liu, D. Gemtuzumab ozogamicin and novel antibody-drug conjugates in clinical trials for acute myeloid leukemia. Biomark. Res., 2019, 7, 24.
[http://dx.doi.org/10.1186/s40364-019-0175-x] [PMID: 31695916]
[170]
Egan, P.C.; Reagan, J.L. The return of gemtuzumab ozogamicin: A humanized anti-CD33 monoclonal antibody-drug conjugate for the treatment of newly diagnosed acute myeloid leukemia. OncoTargets Ther., 2018, 11, 8265-8272.
[http://dx.doi.org/10.2147/OTT.S150807] [PMID: 30538495]
[171]
Lai, K.C.; Shah, P.; Sikka, S.; Sun, X.X.; LaLeau, R.; Whiteman, K.R.; Johnson-Modafferi, H.; Wilhelm, A. Plasma pharmacokinetics and tumor accumulation in mice of IMGN779, an antibody-drug conjugate for acute myeloid leukemia. Cancer Res., 2015, 75(15)(Suppl.), 4504.
[172]
Kennedy, D.A.; Alley, S.C.; Zhao, B.; Feldman, E.J. O’Meara, Sutherland M. SGN-CD33A: Preclinical and phase 1 interim clinical trial results of a CD33A-directed PBD dimer antibody-drug conjugate for the treatment of acute myeloid leukemia (AML). Cancer Res., 2015, 75(15)(Suppl.), DDT02-DDT04.
[173]
Hagemann, U.B.; Borrebaek, J.; O’Shea, A.; Wang, E.; Wickstrom, K.; Bjerke, R.M.; Karlsson, J. In vivo efficacy of a novel anti-CD33 targeted conjugate (TTC) in mouse models of acute myeloid leukemia (AML). Cancer Res., 2015, 75(15)(Suppl.), 2462.
[174]
Ricart, A.D. Antibody-drug conjugates of calicheamicin derivative: gemtuzumab ozogamicin and inotuzumab ozogamicin. Clin. Cancer Res., 2011, 17(20), 6417-6427.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0486] [PMID: 22003069]
[175]
Miller, M.L.; Fishkin, N.E.; Li, W.; Whiteman, K.R.; Kovtun, Y.; Reid, E.E.; Archer, K.E.; Maloney, E.K.; Audette, C.A.; Mayo, M.F.; Wilhelm, A.; Modafferi, H.A.; Singh, R.; Pinkas, J.; Goldmacher, V.; Lambert, J.M.; Chari, R.V. A new class of antibody-drug conjugates with potent DNA alkylating activity. Mol. Cancer Ther., 2016, 15(8), 1870-1878.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0184] [PMID: 27216304]
[176]
Stein, E.M.; Walter, R.B.; Erba, H.P.; Fathi, A.T.; Advani, A.S.; Lancet, J.E.; Ravandi, F.; Kovacsovics, T.; DeAngelo, D.J.; Bixby, D.; Faderl, S.; Jillella, A.P.; Ho, P.A.; O’Meara, M.M.; Zhao, B.; Biddle-Snead, C.; Stein, A.S. A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33-positive acute myeloid leukemia. Blood, 2018, 131(4), 387-396.
[http://dx.doi.org/10.1182/blood-2017-06-789800] [PMID: 29196412]
[177]
Walter, R.B. Investigational CD33-targeted therapeutics for acute myeloid leukemia. Expert Opin. Investig. Drugs, 2018, 27(4), 339-348.
[http://dx.doi.org/10.1080/13543784.2018.1452911] [PMID: 29534618]
[178]
Kovtun, Y.; Noordhuis, P.; Whiteman, K.R.; Watkins, K.; Jones, G.E.; Harvey, L.; Lai, K.C.; Portwood, S.; Adams, S.; Sloss, C.M.; Schuurhuis, G.J.; Ossenkoppele, G.; Wang, E.S.; Pinkas, J. IMGN779, a novel CD33-targeting antibody– drug conjugate with DNA-alkylating activity, exhibits potent antitumor activity in models of AML. Mol. Cancer Ther., 2018, 17(6), 1271-1279.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1077] [PMID: 29588393]
[179]
Guffroy, M.; Falahatpisheh, H.; Biddle, K.; Kreeger, J.; Obert, L.; Walters, K.; Goldstein, R.; Boucher, G.; Coskran, T.; Reagan, W.; Sullivan, D.; Huang, C.; Sokolowski, S.; Giovanelli, R.; Gerber, H.P.; Finkelstein, M.; Khan, N. Liver microvascular injury and thrombocytopenia of antibody-calicheamicin conjugates in cynomolgus monkeys-mechanism and monitoring. Clin. Cancer Res., 2017, 23(7), 1760-1770.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0939] [PMID: 27683177]
[180]
Han, Y.C.; Kahler, J.; Piché-Nicholas, N.; Hu, W.; Thibault, S.; Jiang, F.; Leal, M.; Katragadda, M.; Maderna, A.; Dushin, R.; Prashad, N.; Charati, M.B.; Clark, T.; Tumey, L.N.; Tan, X.; Giannakou, A.; Rosfjord, E.; Gerber, H.P.; Tchistiakova, L.; Loganzo, F.; O’Donnell, C.J.; Sapra, P. Development of highly optimized Antibody-Drug Conjugates (ADC) against CD33 and CD123 for acute myeloid leukemia. Clin. Cancer Res., 2021, 27(2), 622-631.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2149] [PMID: 33148666]
[181]
Pereira, D.S.; Guevara, C.I.; Jin, L.; Mbong, N.; Verlinsky, A.; Hsu, S.J.; Aviña, H.; Karki, S.; Abad, J.D.; Yang, P.; Moon, S.J.; Malik, F.; Choi, M.Y.; An, Z.; Morrison, K.; Challita-Eid, P.M.; Doñate, F.; Joseph, I.B.; Kipps, T.J.; Dick, J.E.; Stover, D.R. AGS67E, an anti-CD37 monomethyl auristatin E antibody-drug conjugate as a potential therapeutic for B/T-cell malignancies and AML: A new role for CD37 in AML. Mol. Cancer Ther., 2015, 14(7), 1650-1660.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0067] [PMID: 25934707]
[182]
Hicks, S.W.; Lai, K.C.; Gavrilescu, L.C.; Yi, Y.; Sikka, S.; Shah, P.; Kelly, M.E.; Lee, J.; Lanieri, L.; Ponte, J.F.; Sloss, C.M.; Romanelli, A. The antitumor activity of IMGN529, a CD37-targeting antibody-drug conjugate, is potentiated by rituximab in non-Hodgkin lymphoma models. Neoplasia, 2017, 19(9), 661-671.
[http://dx.doi.org/10.1016/j.neo.2017.06.001] [PMID: 28753442]
[183]
Prident, J.R.; Marshall, D.J.; Murphy, J.; Malavasi, F. An anti-CD38 antibody drug conjugate for treatment of diverse hematologic malignancies. Proc AACR, 2015.
[http://dx.doi.org/10.1158/1538-7445.AM2015-953]
[184]
Li, L.; Tong, W.; Lau, M.; Fells, K.; Zhu, T.; Sun, Y.; Kovacs, E.; Khasanov, A.; Yan, Z.; Deng, D.; Takeshita, K.; Kaufmann, G.F.; Ji, H.; Li, H.; Zhang, H. Preclinical development of an anti-CD38 antibody-drug conjugate for treatment of hematological malignancies. Blood, 2019, 134(Suppl. 1), 5621.
[http://dx.doi.org/10.1182/blood-2019-132062]
[185]
Irenaeus, S.M.M.; Nielsen, D.; Ellmark, P.; Yachnin, J.; Deronic, A.; Nilsson, A.; Norlén, P.; Veitonmäki, N.; Wennersten, C.S.; Ullenhag, G.J. First-in-human study with intratumoral administration of a CD40 agonistic antibody, ADC-1013, in advanced solid malignancies. Int. J. Cancer, 2019, 145(5), 1189-1199.
[http://dx.doi.org/10.1002/ijc.32141] [PMID: 30664811]
[186]
Neff-LaFord, H; Grilley-Olson, JE; Smith, DC; Curti, B; Goel, S; Kuzel, TM; Markovic, SV; Rixe, O; Bajor, DL; Gajewski, TF; Gutierrez, M; Heath, EI; Thompson, J; Ansari, S; Gardai, S; Jacquemont, C; Schmitt, M; Coveler, AL SEA-CD40 is a non-fucosylated anti-CD40 antibody with potent pharmacodynamic activity in preclinical models and patients with advanced solid tumors. Cancer Res., 2020, 80(16)(Suppl.), 5535.
[187]
Sherbenou, D.W.; Aftab, B.T.; Su, Y.; Behrens, C.R.; Wiita, A.; Logan, A.C.; Acosta-Alvear, D.; Hann, B.C.; Walter, P.; Shuman, M.A.; Wu, X.; Atkinson, J.P.; Wolf, J.L.; Martin, T.G.; Liu, B. Antibody-drug conjugate targeting CD46 eliminates multiple myeloma cells. J. Clin. Invest., 2016, 126(12), 4640-4653.
[http://dx.doi.org/10.1172/JCI85856] [PMID: 27841764]
[188]
Su, Y.; Liu, Y.; Behrens, C.R.; Bidlingmaier, S.; Lee, N.K.; Aggarwal, R.; Sherbenou, D.W.; Burlingame, A.L.; Hann, B.C.; Simko, J.P.; Premasekharan, G.; Paris, P.L.; Shuman, M.A.; Seo, Y.; Small, E.J.; Liu, B. Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer. JCI Insight, 2018, 3(17), e121497.
[http://dx.doi.org/10.1172/jci.insight.121497] [PMID: 30185663]
[189]
Sherbenou, D.W.; Su, Y.; Behrens, C.R.; Aftab, B.T.; Perez de Acha, O.; Murnane, M.; Bearrows, S.C.; Hann, B.C.; Wolf, J.L.; Martin, T.G.; Liu, B. Potent activity of an anti-ICAM1 antibody-drug conjugate against multiple myeloma. Clin. Cancer Res., 2020, 26(22), 6028-6038.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0400] [PMID: 32917735]
[190]
Tassone, P.; Gozzini, A.; Goldmacher, V.; Shammas, M.A.; Whiteman, K.R.; Carrasco, D.R.; Li, C.; Allam, C.K.; Venuta, S.; Anderson, K.C.; Munshi, N.C. In vitro and in vivo activity of the maytansinoid immunoconjugate huN901-N2'-deacetyl-N2'-(3-mercapto-1-oxopropyl)-maytansine against CD56+ multiple myeloma cells. Cancer Res., 2004, 64(13), 4629-4636.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0142] [PMID: 15231675]
[191]
Ishitsuka, K.; Jimi, S.; Goldmacher, V.S.; Ab, O.; Tamura, K. Targeting CD56 by the maytansinoid immunoconjugate IMGN901 (huN901-DM1): A potential therapeutic modality implication against natural killer/T cell malignancy. Br. J. Haematol., 2008, 141(1), 129-131.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07000.x] [PMID: 18279455]
[192]
Whiteman, K.; Ab, O.; Bartle, L.; Foley, K.; Goldmacher, V.; Lutz, R. Efficacy of IMGN901 (huN901-DM1) in combination with bortezomib and lenalidomide against multiple myeloma cells in preclinical studies. Cancer Res., 2015, 68(9)(Suppl.), 2146.
[193]
Lutz, R.; Ab, O.; Foley, K.; Goldmacher, V.; Whiteman, K.; Xie, H.; Fram, R. Efficacy of the huN901-DM1 conjugate in combination with antineoplastic agents against multiple myeloma cells in preclinical studies. Cancer Res., 2015, 67(9)(Suppl.), 5577.
[194]
McCann, J.; Fossella, F.V.; Villalona-Calero, M.A.; Tolcher, A.W.; Fidias, P.; Raju, R.; Zildjian, S.; Guild, R.; Fram, R. Phase II trial of huN901-DM1 in patients with relapsed small cell lung cancer (SCLC) and CD56-positive small cell carcinoma. J. Clin. Oncol., 2007, 25(Suppl. 18), 18084.
[195]
Feng, Y.; Wang, Y.; Zhu, Z.; Li, W.; Sussman, R.T.; Randall, M.; Bosse, K.R.; Maris, J.M.; Dimitrov, D.S. Differential killing of CD56-expressing cells by drug-conjugated human antibodies targeting membrane-distal and membrane-proximal non-overlapping epitopes. MAbs, 2016, 8(4), 799-810.
[http://dx.doi.org/10.1080/19420862.2016.1155014] [PMID: 26910291]
[196]
Shah, M.H.; Lorigan, P.; O’Brien, M.E.R.; Fossella, F.V.; Moore, K.N.; Bhatia, S.; Kirby, M.; Woll, P.J. Phase I study of IMGN901, a CD56-targeting antibody-drug conjugate, in patients with CD56-positive solid tumors. Invest. New Drugs, 2016, 34(3), 290-299.
[http://dx.doi.org/10.1007/s10637-016-0336-9] [PMID: 26961907]
[197]
Ailawadhi, S.; Kelly, K.R.; Vescio, R.A.; Jagannath, S.; Wolf, J.; Gharibo, M.; Sher, T.; Bojanini, L.; Kirby, M.; Chanan-Khan, A. A phase I study to assess the safety and pharmacokinetics of single-agent lorvotuzumab mertansine (IMGN901) in patients with relapsed and/or refractory CD56-positive multiple myeloma. Clin. Lymphoma Myeloma Leuk., 2019, 19(1), 29-34.
[http://dx.doi.org/10.1016/j.clml.2018.08.018] [PMID: 30340993]
[198]
Wood, A.C.; Maris, J.M.; Gorlick, R.; Kolb, E.A.; Keir, S.T.; Reynolds, C.P.; Kang, M.H.; Wu, J.; Kurmasheva, R.T.; Whiteman, K.; Houghton, P.J.; Smith, M.A. Initial testing (Stage 1) of the antibody-maytansinoid conjugate, IMGN901 (Lorvotuzumab mertansine), by the pediatric preclinical testing program. Pediatr. Blood Cancer, 2013, 60(11), 1860-1867.
[http://dx.doi.org/10.1002/pbc.24647] [PMID: 23798344]
[199]
Yu, L.; Lu, Y.; Yao, Y.; Liu, Y.; Wang, Y.; Lai, Q.; Zhang, R.; Li, W.; Wang, R.; Fu, Y.; Tao, Y.; Yi, S.; Gou, L.; Chen, L.; Yang, J. Promiximab-duocarmycin, a new CD56 antibody-drug conjugates, is highly efficacious in small cell lung cancer xenograft models. Oncotarget, 2017, 9(4), 5197-5207.
[http://dx.doi.org/10.18632/oncotarget.23708] [PMID: 29435172]
[200]
Sandall, S.L.; McCormick, R.; Miyamoto, J. SGN-CD70A, a pyrrolobenzodiazepine (PBD) dimer linked ADC, mediates DNA damage pathway activation and G2 cell cycle arrest leading to cell death. Cancer Res., 2015, 75(15 suppl), p. Abs. 946.
[201]
Law, C.L.; Gordon, K.A.; Toki, B.E.; Yamane, A.K.; Hering, M.A.; Cerveny, C.G.; Petroziello, J.M.; Ryan, M.C.; Smith, L.; Simon, R.; Sauter, G.; Oflazoglu, E.; Doronina, S.O.; Meyer, D.L.; Francisco, J.A.; Carter, P.; Senter, P.D.; Copland, J.A.; Wood, C.G.; Wahl, A.F. Lymphocyte activation antigen CD70 expressed by renal cell carcinoma is a potential therapeutic target for anti-CD70 antibody-drug conjugates. Cancer Res., 2006, 66(4), 2328-2337.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2883] [PMID: 16489038]
[202]
Oflazoglu, E.; Stone, I.J.; Gordon, K.; Wood, C.G.; Repasky, E.A.; Grewal, I.S.; Law, C.L.; Gerber, H.P. Potent anticarcinoma activity of the humanized anti-CD70 antibody H1F6 conjugated to the tubulin inhibitor auristatin via an uncleavable linker. Clin. Cancer Res., 2008, 14(19), 6171-6180.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0916] [PMID: 18809969]
[203]
McDonagh, C.F.; Kim, K.M.; Turcott, E.; Brown, L.L.; Westendorf, L.; Feist, T.; Sussman, D.; Stone, I.; Anderson, M.; Miyamoto, J.; Lyon, R.; Alley, S.C.; Gerber, H.P.; Carter, P.J. Engineered anti-CD70 antibody-drug conjugate with increased therapeutic index. Mol. Cancer Ther., 2008, 7(9), 2913-2923.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0295] [PMID: 18790772]
[204]
Tannir, N.M.; Forero-Torres, A.; Ramchandren, R.; Pal, S.K.; Ansell, S.M.; Infante, J.R.; de Vos, S.; Hamlin, P.A.; Kim, S.K.; Whiting, N.C.; Gartner, E.M.; Zhao, B.; Thompson, J.A. Phase I dose-escalation study of SGN-75 in patients with CD70-positive relapsed/refractory non-Hodgkin lymphoma or metastatic renal cell carcinoma. Invest. New Drugs, 2014, 32(6), 1246-1257.
[http://dx.doi.org/10.1007/s10637-014-0151-0] [PMID: 25142258]
[205]
Owonikoko, T.K.; Hussain, A.; Stadler, W.M.; Smith, D.C.; Kluger, H.; Molina, A.M.; Gulati, P.; Shah, A.; Ahlers, C.M.; Cardarelli, P.M.; Cohen, L.J. First-in-human multicenter phase I study of BMS-936561 (MDX-1203), an antibody-drug conjugate targeting CD70. Cancer Chemother. Pharmacol., 2016, 77(1), 155-162.
[http://dx.doi.org/10.1007/s00280-015-2909-2] [PMID: 26576779]
[206]
Phillips, T.; Barr, P.M.; Park, S.I.; Kolibaba, K.; Caimi, P.F.; Chhabra, S.; Kingsley, E.C.; Boyd, T.; Chen, R.; Carret, A.S.; Gartner, E.M.; Li, H.; Yu, C.; Smith, D.C. A phase 1 trial of SGN-CD70A in patients with CD70-positive diffuse large B cell lymphoma and mantle cell lymphoma. Invest. New Drugs, 2019, 37(2), 297-306.
[http://dx.doi.org/10.1007/s10637-018-0655-0] [PMID: 30132271]
[207]
Pal, S.K.; Forero-Torres, A.; Thompson, J.A.; Morris, J.C.; Chhabra, S.; Hoimes, C.J.; Vogelzang, N.J.; Boyd, T.; Bergerot, P.G.; Adashek, J.J.; Li, H.; Yu, X.; Gartner, E.M.; Carret, A.S.; Smith, D.C. A phase 1 trial of SGN-CD70A in patients with CD70-positive, metastatic renal cell carcinoma. Cancer, 2019, 125(7), 1124-1132.
[http://dx.doi.org/10.1002/cncr.31912] [PMID: 30624766]
[208]
Jin, R.; Liu, L.; Xing, Y.; Meng, T.; Ma, L.; Pei, J.; Cong, Y.; Zhang, X.; Ren, Z.; Wang, X.; Shen, J.; Yu, K. Dual mechanisms of novel CD73-targeted antibody and antibody-drug conjugate in inhibiting lung tumor growth and promoting antitumor immune-effector function. Mol. Cancer Ther., 2020, 19(11), 2340-2352.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0076] [PMID: 32943546]
[209]
Griffiths, G.L.; Mattes, M.J.; Stein, R.; Govindan, S.V.; Horak, I.D.; Hansen, H.J.; Goldenberg, D.M. Cure of SCID mice bearing human B-lymphoma xenografts by an anti-CD74 antibody-anthracycline drug conjugate. Clin. Cancer Res., 2003, 9(17), 6567-6571.
[PMID: 14695162]
[210]
Sapra, P.; Stein, R.; Pickett, J.; Qu, Z.; Govindan, S.V.; Cardillo, T.M.; Hansen, H.J.; Horak, I.D.; Griffiths, G.L.; Goldenberg, D.M. Anti-CD74 antibody-doxorubicin conjugate, IMMU-110, in a human multiple myeloma xenograft and in monkeys. Clin. Cancer Res., 2005, 11(14), 5257-5264.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0204] [PMID: 16033844]
[211]
Govindan, S.V.; Cardillo, T.M.; Sharkey, R.M.; Tat, F.; Gold, D.V.; Goldenberg, D.M. Milatuzumab-SN-38 conjugates for the treatment of CD74+ cancers. Mol. Cancer Ther., 2013, 12(6), 968-978.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1170] [PMID: 23427296]
[212]
Shah, N.N.; Krishnan, A.Y.; Shah, N.D.; Burke, J.M.; Melear, J.M.; Spira, A.I.; Popplewell, L.L.; Andreadis, C.B.; Chhabra, S.; Sharman, J.P.; Kaufman, J.L.; Cohen, J.B.; Niesvizky, R.; Martin, T.G.; DiLea, C.; Kuriakose, J.; Matheny, S.L.; Leonard, J.P.; Molina, A. Preliminary results of a phase 1 dose escalation study of the first-in-class anti-CD74 antibody drug conjugate (ADC), STRO-001, in patients with advanced B-cell malignancies. Blood, 2019, 134(Suppl. 1), 5329.
[213]
Choi, Y.; Diefenbach, C.S. Polatuzumab vedotin: A new target for B cell malignancies. Curr. Hematol. Malig. Rep., 2020, 15(2), 125-129.
[http://dx.doi.org/10.1007/s11899-020-00572-7] [PMID: 32172360]
[214]
Advani, R.H.; Flinn, I.; Sharman, J.P.; Diefenbach, C.S.M.; Kolobaba, K.S.; Press, O.W.; Sehn, L.H. Two doses of polatuzumab vedotin (PoV, anti-CD79b antibody-drug conjugate) in patients (pts) with relapsed/refractory (RR) follicular lymphoma (FL): Durable responses at lower dose level. J. Clin. Oncol., 2015, 33 suppl, 8503.
[215]
Sawalha, Y.; Maddocks, K. Profile of polatuzumab vedotin in the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: A brief report on the emerging clinical data. OncoTargets Ther., 2020, 13, 5123-5133.
[http://dx.doi.org/10.2147/OTT.S219449] [PMID: 32606733]
[216]
Deeks, E.D. Polatuzumab vedotin: First global approval. Drugs, 2019, 79(13), 1467-1475.
[http://dx.doi.org/10.1007/s40265-019-01175-0] [PMID: 31352604]
[217]
Tilly, H.; Morschhauser, F.; Bartlett, N.L.; Mehta, A.; Salles, G.; Haioun, C.; Munoz, J.; Chen, A.I.; Kolibaba, K.; Lu, D.; Yan, M.; Penuel, E.; Hirata, J.; Lee, C.; Sharman, J.P. Polatuzumab vedotin in combination with immunochemotherapy in patients with previously untreated diffuse large B-cell lymphoma: An open-label, non-randomised, phase 1b-2 study. Lancet Oncol., 2019, 20(7), 998-1010.
[http://dx.doi.org/10.1016/S1470-2045(19)30091-9] [PMID: 31101489]
[218]
Sehn, L.H.; Herrera, A.F.; Flowers, C.R.; Kamdar, M.K.; McMillan, A.; Hertzberg, M.; Assouline, S.; Kim, T.M.; Kim, W.S.; Ozcan, M.; Hirata, J.; Penuel, E.; Paulson, J.N.; Cheng, J.; Ku, G.; Matasar, M.J. Polatuzumab vedotin in relapsed or refractory diffuse large B-cell lymphoma. J. Clin. Oncol., 2020, 38(2), 155-165.
[http://dx.doi.org/10.1200/JCO.19.00172] [PMID: 31693429]
[219]
Shingleton, J.R.; Dave, S.S. Polatuzumab Vedotin: Honing in on Relapsed or Refractory Diffuse Large B-Cell Lymphoma. J. Clin. Oncol., 2020, 38(2), 166-168.
[http://dx.doi.org/10.1200/JCO.19.02587] [PMID: 31770050]
[220]
Morschhauser, F.; Flinn, I.W.; Advani, R.; Sehn, L.H.; Diefenbach, C.; Kolibaba, K.; Press, O.W.; Salles, G.; Tilly, H.; Chen, A.I.; Assouline, S.; Cheson, B.D.; Dreyling, M.; Hagenbeek, A.; Zinzani, P.L.; Jones, S.; Cheng, J.; Lu, D.; Penuel, E.; Hirata, J.; Wenger, M.; Chu, Y.W.; Sharman, J. Polatuzumab vedotin or pinatuzumab vedotin plus rituximab in patients with relapsed or refractory non-Hodgkin lymphoma: Final results from a phase 2 randomised study (ROMULUS). Lancet Haematol., 2019, 6(5), e254-e265.
[http://dx.doi.org/10.1016/S2352-3026(19)30026-2] [PMID: 30935953]
[221]
Han, L.; Jorgensen, J.L.; Brooks, C.; Shi, C.; Zhang, Q.; Nogueras González, G.M.; Cavazos, A.; Pan, R.; Mu, H.; Wang, S.A.; Zhou, J.; Ai-Atrash, G.; Ciurea, S.O.; Rettig, M.; DiPersio, J.F.; Cortes, J.; Huang, X.; Kantarjian, H.M.; Andreeff, M.; Ravandi, F.; Konopleva, M. Anti-leukemia efficacy and mechanisms of action of SL-101, a novel anti-CD123 antibody-conjugate, in acute myeloid leukemia. Clin. Cancer Res., 2017, 23(13), 3385-3395.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1904] [PMID: 28096272]
[222]
Li, F.; Sutherland, M.K.; Yu, C.; Walter, R.B.; Westendorf, L.; Valliere-Douglass, J.; Pan, L.; Cronkite, A.; Sussman, D.; Klussman, K.; Ulrich, M.; Anderson, M.E.; Stone, I.J.; Zeng, W.; Jonas, M.; Lewis, T.S.; Goswami, M.; Wang, S.A.; Senter, P.D.; Law, C.L.; Feldman, E.J.; Benjamin, D.R. Weiping Zeng1, Jonas M, Lewis TS, Goswami M, Wang SA, Senter PD, Law CL, Feldman EJ, Benjamin DR. Characterization of SGN-CD123A, a potent CD123 directed antibody-drug conjugate for acute myeloid leukemia. Mol. Cancer Ther., 2018, 17(2), 554-564.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0742] [PMID: 29142066]
[223]
Ikeda, H.; Hideshima, T.; Fulciniti, M.; Lutz, R.J.; Yasui, H.; Okawa, Y.; Kiziltepe, T.; Vallet, S.; Pozzi, S.; Santo, L.; Perrone, G.; Tai, Y.T.; Cirstea, D.; Raje, N.S.; Uherek, C.; Dälken, B.; Aigner, S.; Osterroth, F.; Munshi, N.; Richardson, P.; Anderson, K.C. The monoclonal antibody nBT062 conjugated to cytotoxic Maytansinoids has selective cytotoxicity against CD138-positive multiple myeloma cells in vitro and in vivo. Clin. Cancer Res., 2009, 15(12), 4028-4037.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2867] [PMID: 19509164]
[224]
Schönfeld, K.; Zuber, C.; Pinkas, J.; Häder, T.; Bernöster, K.; Uherek, C. Indatuximab ravtansine (BT062) combination treatment in multiple myeloma: Pre-clinical studies. J. Hematol. Oncol., 2017, 10(1), 13.
[http://dx.doi.org/10.1186/s13045-016-0380-0] [PMID: 28077160]
[225]
Schönfeld, K.; Herbener, P.; Zuber, C.; Häder, T.; Bernöster, K.; Uherek, C.; Schüttrumpf, J. Activity of indatuximab ravtansine against triple-negative breast cancer in preclinical tumor models. Pharm. Res., 2018, 35(6), 118.
[http://dx.doi.org/10.1007/s11095-018-2400-y] [PMID: 29666962]
[226]
Jagannath, S.; Heffner, L.T., Jr; Ailawadhi, S.; Munshi, N.C.; Zimmerman, T.M.; Rosenblatt, J.; Lonial, S.; Chanan-Khan, A.; Ruehle, M.; Rharbaoui, F.; Haeder, T.; Wartenberg-Demand, A.; Anderson, K.C. Indatuximab ravtansine (BT062) monotherapy in patients with relapsed and/or refractory multiple myeloma. Clin. Lymphoma Myeloma Leuk., 2019, 19(6), 372-380.
[http://dx.doi.org/10.1016/j.clml.2019.02.006] [PMID: 30930134]
[227]
Iftikhar, A.; Hassan, H.; Iftikhar, N.; Mushtaq, A.; Sohail, A.; Rosko, N.; Chakraborty, R.; Razzaq, F.; Sandeep, S.; Valent, J.N.; Kanate, A.S.; Anwer, F. Investigational monoclonal in the treatment of multiple myeloma: A systematic review of agents under clinical development. Antibodies (Basel), 2019, 8(2), 34.
[http://dx.doi.org/10.3390/antib8020034] [PMID: 31544840]
[228]
Musto, P.; La Rocca, F. Monoclonal antibodies in relapsed/refractory myeloma: updated evidence from clinical trials, real-life studies, and meta-analyses. Expert Rev. Hematol., 2020, 13(4), 331-349.
[http://dx.doi.org/10.1080/17474086.2020.1740084] [PMID: 32153224]
[229]
Merlino, G.; Fiascarelli, A.; Bigioni, M.; Bressan, A.; Carrisi, C.; Bellarosa, D.; Salerno, M.; Bugianesi, R.; Manno, R.; Bernadó Morales, C.; Arribas, J.; Dusek, R.L.; Ackroyd, J.E.; Pham, P.H.; Awdew, R.; Aud, D.; Trang, M.; Lynch, C.M.; Terrett, J.; Wilson, K.E.; Rohlff, C.; Manzini, S.; Pellacani, A.; Binaschi, M. MEN1309/OBT076, a first-in-class antibody-drug conjugate targeting CD205 in solid tumors. Mol. Cancer Ther., 2019, 18(9), 1533-1543.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0624] [PMID: 31227646]
[230]
Garralda, E.; Tabernero, J.; Garcia, V.M.; De Miguel, M.J.; Plummer, E.R.; Jerusalem, G.H.M.; Spina, M.; Rohlff, C.; Fandi, A.; Buontempo, S.; Matera, M.; Cioce, M.; Paola, D.; Binaschi, M.; Merlino, G.; Mazzei, P.; Rossi, C.; Tonini, G.; Simonelli, C.; Pellacani, A.U.E. CD205-shuttle study: A first-in-human trial of MEN1309/OBT076 an ADC targeting CD205 in solid tumor and NHL. J. Clin. Oncol., 2018, 36(15)(Suppl.), TPS2606.
[231]
Gaudio, E.; Tarantelli, C.; Spriano, F.; Guidetti, F.; Sartori, G.; Bordone, R.; Arribas, A.J.; Cascione, L.; Bigioni, M.; Merlino, G.; Fiascarelli, A.; Bressan, A.; Adjeiwaa Mensah, A.; Golino, G.; Lucchini, R.; Bernasconi, E.; Rossi, D.; Zucca, E.; Stussi, G.; Stathis, A.; Boyd, R.S.; Dusek, R.L.; Bisht, A.; Attanasio, N.; Rohlff, C.; Pellacani, A.; Binaschi, M.; Bertoni, F. Targeting CD205 with the antibody drug conjugate MEN1309/OBT076 is an active new therapeutic strategy in lymphoma models. Haematologica, 2020, 105(11), 2584-2591.
[http://dx.doi.org/10.3324/haematol.2019.227215] [PMID: 33131247]
[232]
Rouleau, C.; Curiel, M.; Weber, W.; Smale, R.; Kurtzberg, L.; Mascarello, J.; Berger, C.; Wallar, G.; Bagley, R.; Honma, N.; Hasegawa, K.; Ishida, I.; Kataoka, S.; Thurberg, B.L.; Mehraein, K.; Horten, B.; Miller, G.; Teicher, B.A. Endosialin protein expression and therapeutic target potential in human solid tumors: Sarcoma versus carcinoma. Clin. Cancer Res., 2008, 14(22), 7223-7236.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0499] [PMID: 19010839]
[233]
Rouleau, C.; Gianolio, D.A.; Smale, R.; Roth, S.D.; Krumbholz, R.; Harper, J.; Munroe, K.J.; Green, T.L.; Horten, B.C.; Schmid, S.M.; Teicher, B.A. Anti-endosialin antibody-drug conjugate: Potential in sarcoma and other malignancies. Mol. Cancer Ther., 2015, 14(9), 2081-2089.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0312] [PMID: 26184481]
[234]
Diaz, L.A., Jr; Coughlin, C.M.; Weil, S.C.; Fishel, J.; Gounder, M.M.; Lawrence, S.; Azad, N.; O’Shannessy, D.J.; Grasso, L.; Wustner, J.; Ebel, W.; Carvajal, R.D. A first-in-human phase I study of MORAb-004, a monoclonal antibody to endosialin in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(6), 1281-1288.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1829] [PMID: 25398449]
[235]
O’Shannessy, D.J.; Smith, M.F.; Somers, E.B.; Jackson, S.M.; Albone, E.; Tomkowicz, B.; Cheng, X.; Park, Y.; Fernando, D.; Milinichik, A.; Kline, B.; Fulton, R.; Oberoi, P.; Nicolaides, N.C. Novel antibody probes for the characterization of endosialin/TEM-1. Oncotarget, 2016, 7(43), 69420-69435.
[http://dx.doi.org/10.18632/oncotarget.11018] [PMID: 27494870]
[236]
Thway, K.; Robertson, D.; Jones, R.L.; Selfe, J.; Shipley, J.; Fisher, C.; Isacke, C.M. Endosialin expression in soft tissue sarcoma as a potential marker of undifferentiated mesenchymal cells. Br. J. Cancer, 2016, 115(4), 473-479.
[http://dx.doi.org/10.1038/bjc.2016.214] [PMID: 27434038]
[237]
Lange, S.E.; Zheleznyak, A.; Studer, M.; O’Shannessy, D.J.; Lapi, S.E.; Van Tine, B.A. Development of 89Zr-Ontuxizumab for in vivo TEM-1/endosialin PET applications. Oncotarget, 2016, 7(11), 13082-13092.
[http://dx.doi.org/10.18632/oncotarget.7552] [PMID: 26909615]
[238]
Rybinski, K.; Imtiyaz, H.Z.; Mittica, B.; Drozdowski, B.; Fulmer, J.; Furuuchi, K.; Fernando, S.; Henry, M.; Chao, Q.; Kline, B.; Albone, E.; Wustner, J.; Lin, J.; Nicolaides, N.C.; Grasso, L.; Zhou, Y. Targeting endosialin/CD248 through antibody-mediated internalization results in impaired pericyte maturation and dysfunctional tumor microvasculature. Oncotarget, 2015, 6(28), 25429-25440.
[http://dx.doi.org/10.18632/oncotarget.4559] [PMID: 26327620]
[239]
Kiyohara, E.; Donovan, N.; Takeshima, L.; Huang, S.; Wilmott, J.S.; Scolyer, R.A.; Jones, P.; Somers, E.B.; O’Shannessy, D.J.; Hoon, D.S. Endosialin expression in metastatic melanoma tumor microenvironment vasculature: Potential therapeutic implications. Cancer Microenviron., 2015, 8(2), 111-118.
[http://dx.doi.org/10.1007/s12307-015-0168-8] [PMID: 26085332]
[240]
Capone, E.; Piccolo, E.; Fichera, I.; Ciufici, P.; Barcaroli, D.; Sala, A.; De Laurenzi, V.; Iacobelli, V.; Iacobelli, S.; Sala, G. Generation of a novel Antibody-Drug Conjugate targeting endosialin: Potent and durable antitumor response in sarcoma. Oncotarget, 2017, 8(36), 60368-60377.
[http://dx.doi.org/10.18632/oncotarget.19499] [PMID: 28947977]
[241]
Knutson, S.; Raja, E.; Bomgarden, R.; Nlend, M.; Chen, A.; Kalyanasundaram, R.; Desai, S. Development and evaluation of a fluorescent anti-body drug conjugate for molecular imaging and targeted therapy of pancreatic cancer. PLoS One, 2016, 11(6), e0157762.
[242]
Decary, S.; Berne, P.F.; Nicolazzi, C.; Lefebvre, A.M.; Dabdoubi, T.; Cameron, B.; Rival, P.; Devaud, C.; Prades, C.; Bouchard, H.; Cassé, A.; Henry, C.; Amara, C.; Brillac, C.; Ferrari, P.; Maçon, L.; Lacoste, E.; Combeau, C.; Beys, E.; Naimi, S.; García-Echeverría, C.; Mayaux, J.F.; Blanc, V. Preclinical activity of SAR408701, a novel anti-CEACAM5–maytansinoid antibody-drug conjugate for the treatment of CEACAM5-positive epithelial tumors. Clin. Cancer Res., 2020, 26(24), 6589-6599.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-4051] [PMID: 33046521]
[243]
Dotan, E.; Starodub, A.; Berlin, J.; Lieu, C.H.; Guarino, M.J.; Marshall, J.; Hecht, J.R.; Cohen, S.J. A new anti-CEA-SN-38 antibody-drug conjugate (ADC), IMMU-130, is active in controlling metastatic colorectal cancer (mCRC) in patients (pts) refractory or relapsing after irinotecan-containing chemotherapies. Initial results of a phase I/II study. J. Clin. Oncol., 2015, 33(Suppl.), 2505.
[244]
DeLucia, D.C.; Cardillo, T.M.; Ang, L.; Labrecque, M.P.; Zhang, A.; Hopkins, J.E.; De Sarkar, N.; Coleman, I.; da Costa, R.M.G.; Corey, E.; True, L.D.; Haffner, M.C.; Schweizer, M.T.; Morrissey, C.; Nelson, P.S.; Lee, J.K. Regulation of CEACAM5 and therapeutic efficacy of an anti-CEACAM5-SN38 antibody-drug conjugate in neuroendocrine prostate cancer. Clin. Cancer Res., 2021, 27(3), 759-774.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3396] [PMID: 33199493]
[245]
Gazzah, A.; Cousin, S.; Boni, V.; Ricordel, C.; Kim, T.M.; Kim, J.S.; Helissey, C.; Gardeazabal, I.; Chadjaa, M.; Allard, A.; Yoruk, S.; Barlesi, F. First-in-human phase 1 study of the antibody-drug conjugate (ADC) SAR408701 in advanced solid tumors: Dose-expansion cohort of patients (pts) with non-squamous non-small cell lung cancer (NSQ NSCLC). J. Clin. Oncol., 2019, 37(Suppl. 15), 9072.
[246]
Abrams, T.J.; Niu, X.; Embry, M.; Kline, J.; Patawaran, M.; Fanton, C.; Ison-Dugenny, M.; Schneider, T. Development of a novel antibody-drug conjugate for the treatment of c-Kit expressing solid tumors and AML. Proc AACR, 2015, 1695.
[247]
Hong, E.; Qiu, Q.; Wu, R.; Wilhelm, A.; Whiteman, K.; Pinkas, J.; Erickson, H.; Abrams, T.; Schleyer, S. A c-Kit targeting antibody-drug conjugate is efficiently metabolized and activated inside cancer cell lines and xenograft tumors. Proc AACR, 2015.
[248]
Abrams, T.; Connor, A.; Fanton, C.; Cohen, S.B.; Huber, T.; Miller, K.; Hong, E.E.; Niu, X.; Kline, J.; Ison-Dugenny, M.; Harris, S.; Walker, D.; Krauser, K.; Galimi, F.; Wang, Z.; Ghoddusi, M.; Mansfield, K.; Lee-Hoeflich, S.T.; Holash, J.; Pryer, N.; Kluwe, W.; Ettenberg, S.A.; Sellers, W.R.; Lees, E.; Kwon, P.; Abraham, J.A.; Schleyer, S.C. Preclinical antitumor activity of a novel anti–c-KIT antibody–drug conjugate against mutant and wild-type c-KIT–positive solid tumors. Clin. Cancer Res., 2018, 24(17), 4297-4308.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3795] [PMID: 29764854]
[249]
Zheng, B.; Yu, S.F.; Del Rosario, G.; Leong, S.R.; Lee, G.Y.; Vij, R.; Chiu, C.; Liang, W.C.; Wu, Y.; Chalouni, C.; Sadowsky, J.; Clark, V.; Hendricks, A.; Poon, K.A.; Chu, W.; Pillow, T.; Schutten, M.M.; Flygare, J.; Polson, A.G. An anti-CLL-1 antibody-drug conjugate for the treatment of acute myeloid leukemia. Clin. Cancer Res., 2019, 25(4), 1358-1368.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0333] [PMID: 29959143]
[250]
Wang, J.; Anderson, M.G.; Oleksijew, A.; Vaidya, K.S.; Boghaert, E.R.; Tucker, L.; Zhang, Q.; Han, E.K.; Palma, J.P.; Naumovski, L.; Reilly, E.B. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-amplified and c-Met-overexpressing tumors, irrespective of MET pathway dependence. Clin. Cancer Res., 2017, 23(4), 992-1000.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1568] [PMID: 27573171]
[251]
Strickler, J.H.; Weekes, C.D.; Nemunaitis, J.; Ramanathan, R.K.; Heist, R.S.; Morgensztern, D.; Angevin, E.; Bauer, T.M.; Yue, H.; Motwani, M.; Parikh, A.; Reilly, E.B.; Afar, D.; Naumovski, L.; Kelly, K. First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody–drug conjugate targeting c-Met, in patients with advanced solid tumors. J. Clin. Oncol., 2018, 36(33), 3298-3306.
[http://dx.doi.org/10.1200/JCO.2018.78.7697] [PMID: 30285518]
[252]
Camidge, D.R.; Barlesi, F.; Goldman, J.W.; Morgensztern, D.; Heist, R.S.; Vokes, E.E. Results of the phase 1b study of ABBV-399 (telisotuzumab vedotin; teliso-v) in combination with erlotinib in patients with c-Met+ non-small cell lung cancer by EGFR mutation status. J. Clin. Oncol., 2019, 37(15)(Suppl.), 3011.
[253]
Goldman, J.; Angevin, E.; Strickler, J.; Camidge, D.R.; Heist, R.; Morgensztern, D.; Barve, M.; Yue, H.; Beaulieu, J.; Motwani, M.; Afar, D.; Naumovski, L.; Kelly, K. Phase I study of ABBV-399 (telisotuzumab vedotin) as monotherapy and in combination with erlotinib in NSCLC. J. Thorac. Oncol., 2019, 12, pS1805-pS1806.
[254]
Cazes, A.; Betancourt, O.; Esparza, E.; Mose, E.S.; Jaquish, D.; Wong, E.; Wascher, A.A.; Tiriac, H.; Gymnopoulos, M.; Lowy, A.M. A MET Targeting Antibody-Drug Conjugate Overcomes Gemcitabine Resistance in Pancreatic Cancer. Clin. Cancer Res., 2021, 27(7), 2100-2110.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3210] [PMID: 33451980]
[255]
Nguyen, M.; Miyakawa, S.; Kato, J.; Mori, T.; Arai, T.; Armanini, M.; Gelmon, K.; Yerushalmi, R.; Leung, S.; Gao, D.; Landes, G.; Haak-Frendscho, M.; Elias, K.; Simmons, A.D. Preclinical efficacy and safety assessment of an antibody-drug conjugate targeting the c-RET proto-oncogene for breast cancer. Clin. Cancer Res., 2015, 21(24), 5552-5562.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0468] [PMID: 26240273]
[256]
Kelly, R.K.; Olson, D.L.; Sun, Y.; Wen, D.; Wortham, K.A.; Antognetti, G.; Cheung, A.E.; Orozco, O.E.; Yang, L.; Bailly, V.; Sanicola, M. An antibody-cytotoxic conjugate, BIIB015, is a new targeted therapy for Cripto positive tumours. Eur. J. Cancer, 2011, 47(11), 1736-1746.
[http://dx.doi.org/10.1016/j.ejca.2011.02.023] [PMID: 21458984]
[257]
Bianco, C.; Salomon, D.S. Targeting the embryonic gene Cripto-1 in cancer and beyond. Expert Opin. Ther. Pat., 2010, 20(12), 1739-1749.
[http://dx.doi.org/10.1517/13543776.2010.530659] [PMID: 21073352]
[258]
Zammarchi, F.; Williams, D.; Havenith, K.; D’Hooge, F.; Howard, P.W.; Hartley, J.A.; van Berkel, P. Preclinical activity of hLL2- PBD, a novel anti-CD-22 antibody-pyrrolobenodiazepine (PBD) conjugate in models of non-Hodgkin lymphoma. Proc AACR, 2015, p. Abs 637.
[259]
Saunders, L.R.; Bankovich, A.J.; Anderson, W.C.; Aujay, M.A.; Bheddah, S.; Black, K.; Desai, R.; Escarpe, P.A.; Hampl, J.; Laysang, A.; Liu, D.; Lopez-Molina, J.; Milton, M.; Park, A.; Pysz, M.A.; Shao, H.; Slingerland, B.; Torgov, M.; Williams, S.A.; Foord, O.; Howard, P.; Jassem, J.; Badzio, A.; Czapiewski, P.; Harpole, D.H.; Dowlati, A.; Massion, P.P.; Travis, W.D.; Pietanza, M.C.; Poirier, J.T.; Rudin, C.M.; Stull, R.A.; Dylla, S.J.A. DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci. Transl. Med., 2015, 7(302), 302ra136.
[http://dx.doi.org/10.1126/scitranslmed.aac9459] [PMID: 26311731]
[260]
Lu, H.; Jiang, Z. Advances in antibody therapeutics targeting small-cell lung cancer. Adv. Clin. Exp. Med., 2018, 27(9), 1317-1323.
[http://dx.doi.org/10.17219/acem/70159] [PMID: 29790694]
[261]
Pacheco, J.M.; Camidge, D.R. Antibody drug conjugates in thoracic malignancies. Lung Cancer, 2018, 124, 260-269.
[http://dx.doi.org/10.1016/j.lungcan.2018.07.001] [PMID: 30268471]
[262]
Saunders, L.R.W.S.; Bheddah, S.; Isse, K.; Fong, S.; Pysz, M.A. Expression of DLL3 in metastatic melanoma, glioblastoma and high-grade extrapulmonary neuroendocrine carcinomas as potential indications for rovalpituzumab tesirine (Rova-T; SC16LD6.5), a delta-like protein 3 (DLL3)-targeted Antibody Drug Conjugate (ADC). Cancer Res., 2017, 77(13)(Suppl.), 3093.
[263]
Rudin, C.M.; Pietanza, M.C.; Bauer, T.M.; Ready, N.; Morgensztern, D.; Glisson, B.S.; Byers, L.A.; Johnson, M.L.; Burris, H.A., III; Robert, F.; Han, T.H.; Bheddah, S.; Theiss, N.; Watson, S.; Mathur, D.; Vennapusa, B.; Zayed, H.; Lally, S.; Strickland, D.K.; Govindan, R.; Dylla, S.J.; Peng, S.L.; Spigel, D.R. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: A first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol., 2017, 18(1), 42-51.
[http://dx.doi.org/10.1016/S1470-2045(16)30565-4] [PMID: 27932068]
[264]
Morgensztern, D.; Besse, B.; Greillier, L.; Santana-Davila, R.; Ready, N.; Hann, C.L.; Glisson, B.S.; Farago, A.F.; Dowlati, A.; Rudin, C.M.; Le Moulec, S.; Lally, S.; Yalamanchili, S.; Wolf, J.; Govindan, R.; Carbone, D.P. Efficacy and safety of rovalpituzumab tesirine in third-line and beyond patients with DLL3-expressing, relapsed/refractory small-cell lung cancer: results from the Phase II TRINITY study. Clin. Cancer Res., 2019, 25(23), 6958-6966.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1133] [PMID: 31506387]
[265]
Lashari, B.H.; Vallatharasu, Y.; Kolandra, L.; Hamid, M.; Uprety, D. Rovalpituzumab tesirine: A novel DLL3-targeting antibody-drug conjugate. Drugs R D., 2018, 18(4), 255-258.
[http://dx.doi.org/10.1007/s40268-018-0247-7] [PMID: 30232719]
[266]
Owen, D.H.; Giffin, M.J.; Bailis, J.M.; Smit, M.D.; Carbone, D.P.; He, K. DLL3: An emerging target in small cell lung cancer. J. Hematol. Oncol., 2019, 12(1), 61.
[http://dx.doi.org/10.1186/s13045-019-0745-2] [PMID: 31215500]
[267]
Marcucci, F.; Caserta, C.A.; Romeo, E.; Rumio, C. Antibody-Drug Conjugates (ADC) against Cancer Stem-Like Cells (CSC)-is there still room for optimism? Front. Oncol., 2019, 9, 167.
[http://dx.doi.org/10.3389/fonc.2019.00167] [PMID: 30984612]
[268]
Puca, L.; Gavyert, K.; Sailer, V.; Conteduca, V.; Dardenne, E.; Sigouros, M.; Isse, K.; Kearney, M.; Vosoughi, A.; Fernandez, L.; Pan, H.; Motanagh, S.; Hess, J.; Donoghue, A.J.; Sboner, A.; Wang, Y.; Dittamore, R.; Rickman, D.; Nanus, D.M.; Tagawa, S.T.; Elemento, O.; Mosquera, J.M.; Saunders, L.; Beltran, H. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci. Transl. Med., 2019, 11(484), eaav0891.
[http://dx.doi.org/10.1126/scitranslmed.aav0891] [PMID: 30894499]
[269]
Ricciuti, B.; Lamberti, G.; Andrini, E.; Genova, C.; De Giglio, A.; Bianconi, V.; Sahebkar, A.; Chiari, R.; Pirro, M. Antibody-drug conjugates for lung cancer in the era of personalized oncology. Semin. Cancer Biol., 2021, 69, 268-278.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.024] [PMID: 31899248]
[270]
Gan, H.K.; Papadopoulos, K.P.; Fichtel, L.; Lassman, A.B.; Merrell, R.; Van Den Bent, M.J.; Kumthekar, P. Phase I study of ABT-414 mono- or combination therapy with temozolomide (TMZ) in recurrent glioblastoma (GBM). J. Clin. Oncol., 2015, 33 suppl, 2016.
[271]
Phillips, A.C.; Boghaert, E.R.; Vaidya, K.S.; Mitten, M.J.; Norvell, S.; Falls, H.D.; DeVries, P.J.; Cheng, D.; Meulbroek, J.A.; Buchanan, F.G.; McKay, L.M.; Goodwin, N.C.; Reilly, E.B. ABT-414, an antibody-drug conjugate targeting a tumor-selective EGFR epitope. Mol. Cancer Ther., 2016, 15(4), 661-669.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0901] [PMID: 26846818]
[272]
van den Bent, M.; Gan, H.K.; Lassman, A.B.; Kumthekar, P.; Merrell, R.; Butowski, N.; Lwin, Z.; Mikkelsen, T.; Nabors, L.B.; Papadopoulos, K.P.; Penas-Prado, M.; Simes, J.; Wheeler, H.; Walbert, T.; Scott, A.M.; Gomez, E.; Lee, H.J.; Roberts-Rapp, L.; Xiong, H.; Bain, E.; Ansell, P.J.; Holen, K.D.; Maag, D.; Reardon, D.A. Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: Results from a multi-center, international study. Cancer Chemother. Pharmacol., 2017, 80(6), 1209-1217.
[http://dx.doi.org/10.1007/s00280-017-3451-1] [PMID: 29075855]
[273]
Narita, Y.; Muragaki, Y.; Maruyama, T.; Kagawa, N.; Asai, K.; Kuroda, J. Phase I/II study of depatuxizumab mafodotin (ABT-414) monotherapy or combination with temozolomide in Japanese patients with/without EGFR-amplified recurrent glioblastoma. J. Clin. Oncol., 2019, 2065.
[274]
He, K.; Xu, J.; Liang, J.; Jiang, J.; Tang, M.; Ye, X.; Zhang, Z.; Zhang, L.; Fu, B.; Li, Y.; Bai, C.; Zhang, L.; Tao, W. Discovery of a novel EGFR-targeting antibody– drug conjugate, SHR-A1307, for the treatment of solid tumors resistant or refractory to anti-EGFR therapies. Mol. Cancer Ther., 2019, 18(6), 1104-1114.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0854] [PMID: 30962319]
[275]
Anderson, M.G.; Falls, H.D.; Mitten, M.J.; Oleksijew, A.; Vaidya, K.S.; Boghaert, E.R.; Gao, W.; Palma, J.P.; Cao, D.; Chia, P.L.; John, T.; Gan, H.K.; Scott, A.M.; Reilly, E.B. Targeting multiple EGFR-expressing tumors with a highly potent tumor-selective antibody-drug conjugate. Mol. Cancer Ther., 2020, 19(10), 2117-2125.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0149] [PMID: 32847977]
[276]
Carneiro, BA; Bestvina, CM; Shmueli, ES; Gan, HK; Beck, JT; Robinson, R Phase I study of the antibody-drug conjugate ABBV- 321 in patients with non-small cell lung cancer and squamous head and neck cancer with overexpression of the epidermal growth factor receptor. J. Clin. Oncol., 2020, TPS3649.
[277]
Greene, M.K.; Chen, T.; Robinson, E.; Straubinger, N.L.; Minx, C.; Chan, D.K.W.; Wang, J.; Burrows, J.F.; Van Schaeybroeck, S.; Baker, J.R.; Caddick, S.; Longley, D.B.; Mager, D.E.; Straubinger, R.M.; Chudasama, V.; Scott, C.J. Controlled coupling of an ultrapotent auristatin warhead to cetuximab yields a next-generation antibody-drug conjugate for EGFR-targeted therapy of KRAS mutant pancreatic cancer. Br. J. Cancer, 2020, 123(10), 1502-1512.
[http://dx.doi.org/10.1038/s41416-020-01046-6] [PMID: 32913288]
[278]
Wu, R.; Gavrilescu, C.; Liu, Y.; Santos, V.C.; Lai, K.C.; Harris, L.; Shah, P.; Donahue, K.; Chari, R.; Gregory, R.; Chittenden, T.; Guidi, C.; Keating, T.A. Evaluation of endoglin/CD105 as a tumor vasculature target with antibody drug conjugates. Cancer Res., 2018, 78(13)(Suppl.), 2900.
[279]
Puerto-Camacho, P.; Amaral, A.T.; Lamhamedi-Cherradi, S.E.; Menegaz, B.A.; Castillo-Ecija, H.; Ordóñez, J.L.; Domínguez, S.; Jordan-Perez, C.; Diaz-Martin, J.; Romero-Pérez, L.; Lopez-Alvarez, M.; Civantos-Jubera, G.; Robles-Frías, M.J.; Biscuola, M.; Ferrer, C.; Mora, J.; Cuglievan, B.; Schadler, K.; Seifert, O.; Kontermann, R.; Pfizenmaier, K.; Simón, L.; Fabre, M.; Carcaboso, Á.M.; Ludwig, J.A.; de Álava, E. Preclinical efficacy of endoglin-targeting antibody-drug conjugates for the treatment of ewing sarcoma. Clin. Cancer Res., 2019, 25(7), 2228-2240.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0936] [PMID: 30420447]
[280]
Doñate, F.; Raitano, A.; Morrison, K.; An, Z.; Capo, L.; Aviña, H.; Karki, S.; Morrison, K.; Yang, P.; Ou, J.; Moriya, R.; Shostak, Y.; Malik, F.; Nadell, R.; Liu, W.; Satpayev, D.; Atkinson, J.; Joseph, I.B.; Pereira, D.S.; Challita-Eid, P.M.; Stover, D.R. AGS16F is a novel antibody drug conjugate directed against ENPP3 for the treatment of renal cell carcinoma. Clin. Cancer Res., 2016, 22(8), 1989-1999.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1542] [PMID: 26589436]
[281]
Thompson, J.A.; Motzer, R.J.; Molina, A.M.; Choueiri, T.K.; Heath, E.I.; Redman, B.G.; Sangha, R.S.; Ernst, D.S.; Pili, R.; Kim, S.K.; Reyno, L.; Wiseman, A.; Trave, F.; Anand, B.; Morrison, K.; Doñate, F.; Kollmannsberger, C.K. Phase I trials of anti-ENPP3 antibody–drug conjugates in advanced refractory renal cell carcinomas. Clin. Cancer Res., 2018, 24(18), 4399-4406.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0481] [PMID: 29848572]
[282]
Moldenhauer, G.; Salnikov, A.V.; Lüttgau, S.; Herr, I.; Anderl, J.; Faulstich, H. Therapeutic potential of amanitin-conjugated anti-epithelial cell adhesion molecule monoclonal antibody against pancreatic carcinoma. J. Natl. Cancer Inst., 2012, 104(8), 622-634.
[http://dx.doi.org/10.1093/jnci/djs140] [PMID: 22457476]
[283]
Salomon, P.L.; Singh, R. Sensitive ELISA method for the measurement of catabolites of antibody-drug conjugates (ADCs) in target cancer cells. Mol. Pharm., 2015, 12(6), 1752-1761.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00028] [PMID: 25738394]
[284]
Kowalski, M.; Brazas, L.; Zaretsky, R.; Rasamoelisolo, M.; MacDonald, G.; Cuthbert, W.; Glover, N. A phase I study of VB6-845, an anti-EpCAM fusion protein targeting advanced solid tumors of epithelial origin: preliminary results. J. Clin. Oncol. Proc. ASCO, 2008, 26, 14663.
[285]
Marlin, C.; Brown, J.; Rasamoelisolo, M.; Cizeau, J.; Bose, D.; Entwistle, J.; Glover, N.; MacDonald, G. Pre-clinical safety assessment of VB6-845, an EpCAM binding immunoconjugate. Proc AACR, 2008, p. Abstr 2136.
[286]
Amann, M.; Friedrich, M.; Lutterbuese, R.; Lutterbuese, P.; Kischel, R.; Baeuerle, P.; Kufer, P.; Schlereth, B. Long-term treatment of mice with an EpCAM (CD326)-specific BiTE antibody reveals a therapeutic window and sustained activity of T cells. Cancer Res., 2008, 68(9 Suupl), p. 2130.
[287]
Schlereth, B.; Lorenczewski, G.; Friedrich, M.; Lutterbuese, P.; Lutterbuese, R.; Kischel, R.; Kufer, P.; Baeuerle, P.; Wolf, A. Feasibility of repeated subcutaneous delivery supports a new route of administration for treating cancer patients with EpCAM-specific BiTE antibody MT110. Cancer Res., 2008, 68(9 Suupl), p. 2403.
[288]
Liu, Y.; Wu, R.; Gavrilescu, C.; Sagert, J.; Tipton, K.; Liu, S.; Chan, C.; Boulé, S.; Wilhelm, A.; Lucas, J.; Matin, B.; Lecerf, J.M.; Themeles, M.; Morneault, A.; Drake, T.; Yancey, S.; Kohli, N.; Espelin, C.; Follit, J.; Donahue, K.A.; Chittenden, T.; Guidi, C.; Hicks, S.W. Development of a probody-drug conjugate targeting EpCAM for the treatment of solid tumors. Cancer Res., 2019, 79(13)(Suppl.), 213.
[http://dx.doi.org/10.1158/1538-7445.AM2019-213]
[289]
Jackson, D.; Gooya, J.; Mao, S.; Kinneer, K.; Xu, L.; Camara, M.; Fazenbaker, C.; Fleming, R.; Swamynathan, S.; Meyer, D.; Senter, P.D.; Gao, C.; Wu, H.; Kinch, M.; Coats, S.; Kiener, P.A.; Tice, D.A. A human antibody-drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res., 2008, 68(22), 9367-9374.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1933] [PMID: 19010911]
[290]
Hong, D.S.; Garrido-Laguna, I.; Krop, I.E.; Subbiah, V.; Werner, T.L.; Cotter, C.M.; Hamilton, E.P. First-in-human dose escalation, safety and PK study of a novel EFNA4-ADC in patients with advanced solid tumors. J. Clin. Oncol., 2015, 33(Suppl.), 2520.
[291]
Damelin, M.; Bankovich, A.; Park, A.; Aguilar, J.; Anderson, W.; Santaguida, M.; Aujay, M.; Fong, S.; Khandke, K.; Pulito, V.; Ernstoff, E.; Escarpe, P.; Bernstein, J.; Pysz, M.; Zhong, W.; Upeslacis, E.; Lucas, J.; Lucas, J.; Nichols, T.; Loving, K.; Foord, O.; Hampl, J.; Stull, R.; Barletta, F.; Falahatpisheh, H.; Sapra, P.; Gerber, H.P.; Dylla, S.J. Anti-EFNA5 calicheamicin conjugates effectively target triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regressions. Clin. Cancer Res., 2015, 21(18), 4165-4173.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0695] [PMID: 26015513]
[292]
Damelin, M.; Bankovich, A.; Park, A.; Aguilar, J.; Anderson, W.; Santaguida, M.; Fong, S. An anti-Ephrin-A4 calicheamicin conjugate effectively targets triple-negative breast and ovarian tumor-initiating cells to result in sustained tumor regression. Cancer Res., 2015, 75(15)(Suppl.), 5425.
[293]
Lee, J.W.; Stone, R.L.; Lee, S.J.; Nam, E.J.; Roh, J.W.; Nick, A.M.; Han, H.D.; Shahzad, M.M.K.; Kim, H.S.; Mangala, L.S.; Jennings, N.B.; Mao, S.; Gooya, J.; Jackson, D.; Coleman, R.L.; Sood, A.K. EphA2 targeted chemotherapy using an antibody drug conjugate in endometrial carcinoma. Clin. Cancer Res., 2010, 16(9), 2562-2570.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-0017] [PMID: 20388851]
[294]
Annunziata, C.M.; Kohn, E.C.; LoRusso, P.; Houston, N.D.; Coleman, R.L.; Buzoianu, M.; Robbie, G.; Lechleider, R. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Invest. New Drugs, 2013, 31(1), 77-84.
[http://dx.doi.org/10.1007/s10637-012-9801-2] [PMID: 22370972]
[295]
Bennett, G.; Brown, A.; Mudd, G.; Huxley, P.; Van Rietschoten, K.; Pavan, S.; Chen, L.; Watcham, S.; Lahdenranta, J.; Keen, N. MMAE delivery using the bicycle toxin conjugate BT5528. Mol. Cancer Ther., 2020, 19(7), 1385-1394.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-1092] [PMID: 32398269]
[296]
Offenhäuser, C.; Al-Ejeh, F.; Puttick, S.; Ensbey, K.S.; Bruce, Z.C.; Jamieson, P.R.; Smith, F.M.; Stringer, B.W.; Carrington, B.; Fuchs, A.V.; Bell, C.A.; Jeffree, R.; Rose, S.; Thurecht, K.J.; Andrew, W. Boyd AW, Day BW. EphA3 pay-loaded antibody therapeutics for the treatment of glioblastoma. Cancers (Basel), 2018, 10, 519.
[http://dx.doi.org/10.3390/cancers10120519]
[297]
Fabre, M.; Ferrer, C.; Domínguez-Hormaetxe, S.; Bockorny, B.; Murias, L.; Seifert, O.; Eisler, S.A.; Kontermann, R.E.; Pfizenmaier, K.; Lee, S.Y.; Vivanco, M.D.; López-Casas, P.P.; Perea, S.; Abbas, M.; Richter, W.; Simon, L.; Hidalgo, M. OMTX705, a novel FAP-targeting ADC demonstrates activity in chemotherapy and PD1-resistant solid tumors models. Clin. Cancer Res., 2020, 26(13), 3420-3430.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2238] [PMID: 32161121]
[298]
Sommer, A.; Kopitz, C.; Schatz, C.A.; Nising, C.F.; Mahlert, C.; Lerchen, H.G.; Stelte-Ludwig, B.; Hammer, S.; Greven, S.; Schuhmacher, J.; Braun, M.; Zierz, R.; Wittemer-Rump, S.; Harrenga, A.; Dittmer, F.; Reetz, F.; Apeler, H.; Jautelat, R.; Huynh, H.; Ziegelbauer, K.; Kreft, B. Preclinical efficacy of the auristatin-based antibody-drug conjugate BAY 1187982 for the treatment of FGFR2-positive solid tumors. Cancer Res., 2016, 76(21), 6331-6339.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0180] [PMID: 27543601]
[299]
Wittemer-Rump, S.; Sommer, A.; Kopitz, C.; Huynh, H.; Schatz, C.; Zierz, R.; Braun, M. Pharmacokinetic/pharmacodynamic (PK/PD) and toxicokinetic/toxicodynamic (TK/TD) modeling of preclinical data of FGFR2-ADC (Bay 118982) to guide dosing in phase I. Proc AACR, 2015, 1683.
[300]
Kim, S.B.; Meric-Bernstam, F.; Berlin, J.; Wittemer-Rump, S.; Osada, M.; Valencia, R.; Babich, A.; Liu, R.; Hwang, A.; Tanigawa, T.; Reetz, F.; Laurent, D.; Kalyan, A. Phase I study of fibroblast growth factor receptor 2 antibody-drug conjugate (FGFR2-ADC) BAY 1187982 in patients with advanced cancer. Cancer Res., 2017, 77(13)(Suppl.), CT094.
[301]
Kim, S.B.; Meric-Bernstam, F.; Kalyan, A.; Babich, A.; Liu, R.; Tanigawa, T.; Sommer, A.; Osada, M.; Reetz, F.; Laurent, D.; Wittemer-Rump, S.; Berlin, J. First-in-human phase I study of aprutumab ixadotin, a fibroblast growth factor receptor 2 antibody–drug conjugate (BAY 1187982) in patients with advanced cancer. Target. Oncol., 2019, 14(5), 591-601.
[http://dx.doi.org/10.1007/s11523-019-00670-4] [PMID: 31502117]
[302]
Rudra-Ganguly, N.; Challita-Eid, P.M.; Lowe, C.; Mattie, M.; Moon, S.J.; Mendelsohn, B.A.; Leavitt, M.; Virata, C.; Verlinsky, A.; Capo, L. AGS62P1, a novel site-specific antibody drug conjugate targeting FLT3 exhibits potent antitumor activity regardless of FLT3 kinase activation status. Cancer Res., 2015, 76(14)(Suppl.), 574.
[303]
Snyder, J.T.; Malinao, M.C.; Dugal-Tessier, J.; Atkinson, J.E.; Anand, B.S.; Okada, A.; Mendelsohn, B.A. Metabolism of an oxime-linked antibody drug conjugate, AGS62P1, and characterization of its identified metabolite. Mol. Pharm., 2018, 15(6), 2384-2390.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00225] [PMID: 29757653]
[304]
Cheng, X.; Li, J.; Tanaka, K.; Majumder, U.; Milinichik, A.Z.; Verdi, A.C.; Maddage, C.J.; Rybinski, K.A.; Fernando, S.; Fernando, D.; Kuc, M.; Furuuchi, K.; Fang, F.; Uenaka, T.; Grasso, L.; Albone, E.F. MORAb-202, an antibody–drug conjugate utilizing humanized anti-human FR farletuzumab and the microtubule-targeting agent erubulin, has potent antitumor activity. Mol. Cancer Ther., 2018, 17(12), 2665-2675.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-1215] [PMID: 30262588]
[305]
Fernández, M.; Javaid, F.; Chudasama, V. Advances in targeting the folate receptor in the treatment/imaging of cancers. Chem. Sci. (Camb.), 2017, 9(4), 790-810.
[http://dx.doi.org/10.1039/C7SC04004K] [PMID: 29675145]
[306]
Borghaei, H.; O’Malley, D.M.; Seward, S.M.; Bauer, T.M.; Perez, R.P.; Oza, A.M.; Jeong, W. -targeting antibody-drug conjugate (ADC) in patients (pts) with Epithelial Ovarian Cancer (EOC) and other FRA-positive solid tumors.aPhase 1 study of IMGN853, a Folate Receptor alpha (FR. J. Clin. Oncol., 2015, 33(Suppl.), 5558.
[307]
Altwerger, G.; Bonazzoli, E.; Bellone, S.; Egawa-Takata, T.; Menderes, G.; Pettinella, F.; Bianchi, A.; Riccio, F.; Feinberg, J.; Zammataro, L.; Han, C.; Yadav, G.; Dugan, K.; Morneault, A.; Ponte, J.F.; Buza, N.; Hui, P.; Wong, S.; Litkouhi, B.; Ratner, E.; Silasi, D.A.; Huang, G.S.; Azodi, M.; Schwartz, P.E.; Santin, A.D. In vitro and in vivo activity of IMGN853, an antibody-drug conjugate targeting folate receptor alpha linked to DM4, in biologically aggressive endometrial cancers. Mol. Cancer Ther., 2018, 17(5), 1003-1011.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0930] [PMID: 29440294]
[308]
Ponte, J.F.; Lanieri, L.; Khera, E.; Laleau, R.; Ab, O.; Espelin, C.; Kohli, N.; Matin, B.; Setiady, Y.; Miller, M.L.; Keating, T.A.; Chari, R.; Pinkas, J.; Gregory, R.; Thurber, G.M. Antibody co-administration can improve systemic and local distribution of antibody drug conjugates to increase in vivo efficacy. Mol. Cancer Ther., 2021, 20(1), 203-212.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0451] [PMID: 33177153]
[309]
O’Malley, D.M.; Matulonis, U.A.; Birrer, M.J.; Castro, C.M.; Gilbert, L.; Vergote, I.; Martin, L.P.; Mantia-Smaldone, G.M.; Martin, A.G.; Bratos, R.; Penson, R.T.; Malek, K.; Moore, K.N. Phase Ib study of mirvetuximab soravtansine, a Folate Receptor alpha (FRα)-targeting Antibody-Drug Conjugate (ADC), in combination with bevacizumab in patients with platinum-resistant ovarian cancer. Gynecol. Oncol., 2020, 157(2), 379-385.
[http://dx.doi.org/10.1016/j.ygyno.2020.01.037] [PMID: 32081463]
[310]
Moore, K.N.; Martin, L.P.; O’Malley, D.M.; Matulonis, U.A.; Konner, J.A.; Vergote, I.; Ponte, J.F.; Birrer, M.J. A review of mirvetuximab soravtansine in the treatment of platinum-resistant ovarian cancer. Future Oncol., 2018, 14(2), 123-136.
[http://dx.doi.org/10.2217/fon-2017-0379] [PMID: 29098867]
[311]
Gilbert, L.; Oaknin, A.; Matulonis, U.A.; Mantia-Smaldone, G.M.; Lim, P.; Castro, C.; Provencher, D.; Memarzadeh, S.; Zweidler-McKay, P.; Wang, J.; Esteves, B.; Kathleen, N. Mirvetuximab soravtansine (MIRV), a folate receptor alpha (FRα)-targeting antibody-drug conjugate (ADC), in combination with bevacizumab (BEV) in patients (pts) with platinum-agnostic ovarian cancer. J. Clin. Oncol., 2020, 38(Suppl.), 6004.
[312]
Bhakta, S.; Crocker, L.M.; Chen, Y.; Hazen, M.; Schutten, M.M.; Li, D.; Kuijl, C.; Ohri, R.; Zhong, F.; Poon, K.A.; Go, M.A.T.; Cheng, E.; Piskol, R.; Firestein, R.; Fourie-O’Donohue, A.; Kozak, K.R.; Raab, H.; Hongo, J.A.; Sampath, D.; Dennis, M.S.; Scheller, R.H.; Polakis, P.; Junutula, J.R. An anti-GDNF family receptor alpha 1(GFRA1) antibody-drug conjugate for the treatment of hormone receptor-positive breast cancer. Mol. Cancer Ther., 2018, 17(3), 638-649.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0813] [PMID: 29282299]
[313]
Bosco, E.E.; Christie, R.J.; Carrasco, R.; Sabol, D.; Zha, J.; DaCosta, K.; Brown, L.; Kennedy, M.; Meekin, J.; Phipps, S.; Ayriss, J.; Du, Q.; Bezabeh, B.; Chowdhury, P.; Breen, S.; Chen, C.; Reed, M.; Hinrichs, M.; Zhong, H.; Xiao, Z.; Dixit, R.; Herbst, R.; Tice, D.A. Preclinical evaluation of a GFRA1 targeted antibody-drug conjugate in breast cancer. Oncotarget, 2018, 9(33), 22960-22975.
[http://dx.doi.org/10.18632/oncotarget.25160] [PMID: 29796165]
[314]
Bosse, K.R.; Raman, P.; Zhu, Z.; Lane, M.; Martinez, D.; Heitzeneder, S.; Rathi, K.S.; Kendsersky, N.M.; Randall, M.; Donovan, L.; Morrissy, S.; Sussman, R.T.; Zhelev, D.V.; Feng, Y.; Wang, Y.; Hwang, J.; Lopez, G.; Harenza, J.L.; Wei, J.S.; Pawel, B.; Bhatti, T.; Santi, M.; Ganguly, A.; Khan, J.; Marra, M.A.; Taylor, M.D.; Dimitrov, D.S.; Mackall, C.L.; Maris, J.M. Identification of GPC2 as an oncoprotein and candidate immunotherapeutic target in high-risk neuroblastoma. Cancer Cell, 2017, 32(3), 295-309.e12.
[http://dx.doi.org/10.1016/j.ccell.2017.08.003] [PMID: 28898695]
[315]
Malone, C.F.; Stegmaier, K. Scratching the surface of immunotherapeutic targets in neuroblastoma. Cancer Cell, 2017, 32(3), 271-273.
[http://dx.doi.org/10.1016/j.ccell.2017.08.011] [PMID: 28898689]
[316]
Vaklavas, C.; Forero, A. Management of metastatic breast cancer with second-generation antibody-drug conjugates: Focus on glembatumumab vedotin (CDX-011, CR011-vcMMAE). BioDrugs, 2014, 28(3), 253-263.
[http://dx.doi.org/10.1007/s40259-014-0085-2] [PMID: 24496926]
[317]
Kolb, E.A.; Gorlick, R.; Billups, C.A.; Hawthorne, T.; Kurmasheva, R.T.; Houghton, P.J.; Smith, M.A. Initial testing (stage 1) of glembatumumab vedotin (CDX-011) by the pediatric preclinical testing program. Pediatr. Blood Cancer, 2014, 61(10), 1816-1821.
[http://dx.doi.org/10.1002/pbc.25099] [PMID: 24912408]
[318]
Tse, K.F.; Jeffers, M.; Pollack, V.A.; McCabe, D.A.; Shadish, M.L.; Khramtsov, N.V.; Hackett, C.S.; Shenoy, S.G.; Kuang, B.; Boldog, F.L.; MacDougall, J.R.; Rastelli, L.; Herrmann, J.; Gallo, M.; Gazit-Bornstein, G.; Senter, P.D.; Meyer, D.L.; Lichenstein, H.S.; LaRochelle, W.J. CR011, a fully human monoclonal antibody-auristatin E conjugate, for the treatment of melanoma. Clin. Cancer Res., 2006, 12(4), 1373-1382.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2018] [PMID: 16489096]
[319]
Pollack, V.A.; Alvarez, E.; Tse, K.F.; Torgov, M.Y.; Xie, S.; Shenoy, S.G.; MacDougall, J.R.; Arrol, S.; Zhong, H.; Gerwien, R.W.; Hahne, W.F.; Senter, P.D.; Jeffers, M.E.; Lichenstein, H.S.; LaRochelle, W.J. Treatment parameters modulating regression of human melanoma xenografts by an antibody-drug conjugate (CR011-vcMMAE) targeting GPNMB. Cancer Chemother. Pharmacol., 2007, 60(3), 423-435.
[http://dx.doi.org/10.1007/s00280-007-0490-z] [PMID: 17541593]
[320]
Hwu, P.; Sznol, H.; Kluger, L.; Rink, L.; Kim, K.B.; Papadopoulos, N.E.; Sanders, D.; Boasberg, P.; Ool, C.E.; Hamid, O. A phase I/II study of CR011-vcMMAE, an antibody toxin conjugate drug, in patients with unresectable stage III/IV melanoma. J. Clin. Oncol., 2008, 26, 9029.
[321]
Ott, P.A.; Hamid, O.; Pavlick, A.C.; Kluger, H.; Kim, K.B.; Boasberg, P.D.; Simantov, R.; Crowley, E.; Green, J.A.; Hawthorne, T.; Davis, T.A.; Sznol, M.; Hwu, P. Phase I/II study of the antibody-drug conjugate glembatumumab vedotin in patients with advanced melanoma. J. Clin. Oncol., 2014, 32(32), 3659-3666.
[http://dx.doi.org/10.1200/JCO.2013.54.8115] [PMID: 25267741]
[322]
Yardley, D.A.; Melisko, M.E.; Forero, A.; Daniel, B.R.; Montero, A.J.; Guthrie, T.H.; Canfield, V.A.; Oakman, A.; Chew, H.K.; Ferrario, C. METRIC: A randomized international study of the antibody-drug conjugate glembatumumab vedotin (GV or CDX-011) in patients (pts) with metastatic GPNMB-overexpressing triple-negative breast cancer (TNBC). J. Clin. Oncol., 2015, 33(Suppl.), TPS1110.
[323]
Yardley, D.A.; Weaver, R.; Melisko, M.E.; Saleh, M.N.; Arena, F.P.; Forero, A.; Cigler, T.; Stopeck, A.; Citrin, D.; Oliff, I.; Bechhold, R.; Loutfi, R.; Garcia, A.A.; Cruickshank, S.; Crowley, E.; Green, J.; Hawthorne, T.; Yellin, M.J.; Davis, T.A.; Vahdat, L.T. EMERGE: A randomized phase II study of the antibody-drug conjugate glembatumumab vedotin in advanced glycoprotein NMB-expressing breast cancer. J. Clin. Oncol., 2015, 33(14), 1609-1619.
[http://dx.doi.org/10.1200/JCO.2014.56.2959] [PMID: 25847941]
[324]
Rose, A.A.N.; Annis, M.G.; Frederick, D.T.; Biondini, M.; Dong, Z.; Kwong, L.; Chin, L.; Keler, T.; Hawthorne, T.; Watson, I.R.; Flaherty, K.T.; Siegel, P.M. MAPK pathway inhibitors sensitize BRAF-mutant melanoma to an antibody-drug conjugate targeting GPNMB. Clin. Cancer Res., 2016, 22(24), 6088-6098.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1192] [PMID: 27515299]
[325]
Rose, A.A.N.; Biondini, M.; Curiel, R.; Siegel, P.M. Targeting GPNMB with glembatumumab vedotin: Current developments and future opportunities for the treatment of cancer. Pharmacol. Ther., 2017, 179, 127-141.
[http://dx.doi.org/10.1016/j.pharmthera.2017.05.010] [PMID: 28546082]
[326]
Hanemaaijer, S.H.; van Gijn, S.E.; Oosting, S.F.; Plaat, B.E.C.; Moek, K.L.; Schuuring, E.M.; van der Laan, B.F.A.M.; Roodenburg, J.L.N.; van Vugt, M.A.T.M.; van der Vegt, B.; Fehrmann, R.S.N. Data-Driven prioritisation of antibody-drug conjugate targets in head and neck squamous cell carcinoma. Oral Oncol., 2018, 80, 33-39.
[http://dx.doi.org/10.1016/j.oraloncology.2018.03.005] [PMID: 29706186]
[327]
Kopp, L.M.; Malempati, S.; Krailo, M.; Gao, Y.; Buxton, A.; Weigel, B.J.; Hawthorne, T.; Crowley, E.; Moscow, J.A.; Reid, J.M.; Villalobos, V.; Randall, R.L.; Gorlick, R.; Janeway, K.A. Phase II trial of the glycoprotein non-metastatic B-targeted antibody-drug conjugate, glembatumumab vedotin (CDX-011), in recurrent osteosarcoma AOST1521: A report from the Children’s Oncology Group. Eur. J. Cancer, 2019, 121, 177-183.
[http://dx.doi.org/10.1016/j.ejca.2019.08.015] [PMID: 31586757]
[328]
Hasanov, M.; Rioth, M.J.; Kendra, K.; Hernandez-Aya, L.; Joseph, R.W.; Williamson, S.; Chandra, S.; Shirai, K.; Turner, C.D.; Lewis, K.; Crowley, E.; Moscow, J.; Carter, B.; Patel, S. A phase II study of glembatumumab vedotin for metastatic uveal melanoma. Cancers (Basel), 2020, 12(8), 2270.
[http://dx.doi.org/10.3390/cancers12082270] [PMID: 32823698]
[329]
Almhanna, K.; Kalebic, T.; Cruz, C.; Faris, J.E.; Ryan, D.P.; Jung, J.; Wyant, T.; Fasanmade, A.A.; Messersmith, W.; Rodon, J. Phase I study of the investigational anti-guanylyl cyclase antibody-drug conjugate TAK-264 (MLN0264) in adult patients with advanced gastrointestinal malignancies. Clin. Cancer Res., 2016, 22(20), 5049-5057.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2474] [PMID: 27178743]
[330]
Almhanna, K.; Prithviraj, G.K.; Veiby, P.; Kalebic, T. Antibody-drug conjugate directed against the guanylyl cyclase antigen for the treatment of gastrointestinal malignancies. Pharmacol. Ther., 2017, 170, 8-13.
[http://dx.doi.org/10.1016/j.pharmthera.2016.10.007] [PMID: 27765652]
[331]
Schreiber, A.R.; Nguyen, A.; Bagby, S.M.; Arcaroli, J.J.; Yacob, B.W.; Quackenbush, K.; Guy, J.L.; Crowell, T.; Stringer, B.; Danaee, H.; Kalebic, T.; Messersmith, W.A.; Pitts, T.M. Evaluation of TAK-264, an antibody-drug conjugate in pancreatic cancer cell lines and patient-derived xenograft models. Clin. Cancer Drugs, 2018, 5(1), 42-49.
[http://dx.doi.org/10.2174/2212697X05666180516120907] [PMID: 30631747]
[332]
Almhanna, K.; Wright, D.; Mercade, T.M.; Van Laethem, J.L.; Gracian, A.C.; Guillen-Ponce, C.; Faris, J.; Lopez, C.M.; Hubner, R.A.; Bendell, J.; Bols, A.; Feliu, J.; Starling, N.; Enzinger, P.; Mahalingham, D.; Messersmith, W.; Yang, H.; Fasanmade, A.; Danaee, H.; Kalebic, T. A phase II study of antibody-drug conjugate, TAK-264 (MLN0264) in previously treated patients with advanced or metastatic pancreatic adenocarcinoma expressing guanylyl cyclase C. Invest. New Drugs, 2017, 35(5), 634-641.
[http://dx.doi.org/10.1007/s10637-017-0473-9] [PMID: 28527133]
[333]
Abu-Yousif, A.O.; Cvet, D.; Gallery, M.; Bannerman, B.M.; Ganno, M.L.; Smith, M.D.; Lai, K.C.; Keating, T.A.; Stringer, B.; Kamali, A.; Eng, K.; Koseoglu, S.; Zhu, A.; Xia, C.Q.; Landen, M.S.; Borland, M.; Robertson, R.; Bolleddula, J.; Qian, M.G.; Fretland, J.; Veiby, O.P. Preclinical antitumor activity and biodistribution of a novel anti–GCC antibody–drug conjugate in patient-derived xenografts. Mol. Cancer Ther., 2020, 19(10), 2079-2088.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-1102] [PMID: 32788205]
[334]
Müller, P.; Kreuzaler, M.; Khan, T.; Thommen, D.S.; Martin, K.; Glatz, K.; Savic, S.; Harbeck, N.; Nitz, U.; Gluz, O.; von Bergwelt-Baildon, M.; Kreipe, H.; Reddy, S.; Christgen, M.; Zippelius, A. Trastuzumab emtansine (T-DM1) renders HER2+ breast cancer highly susceptible to CTLA-4/PD-1 blockade. Sci. Transl. Med., 2015, 7(315), 315ra188.
[http://dx.doi.org/10.1126/scitranslmed.aac4925] [PMID: 26606967]
[335]
Yan, H.; Endo, Y.; Shen, Y.; Rotstein, D.; Dokmanovic, M.; Mohan, N.; Mukhopadhyay, P.; Gao, B.; Pacher, P.; Wu, W.J. Ado-trastuzumab emtansine targets hepatocytes via human epidermal growth factor receptor 2 to induce hepatotoxicity. Mol. Cancer Ther., 2016, 15(3), 480-490.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0580] [PMID: 26712117]
[336]
Baselga, J.; Lewis Phillips, G.D.; Verma, S.; Ro, J.; Huober, J.; Guardino, A.E.; Samant, M.K.; Olsen, S.; de Haas, S.L.; Pegram, M.D. Relationship between tumor biomarkers and efficacy in EMILIA, a phase III study of trastuzumab emtansine in HER2-positive metastatic breast cancer. Clin. Cancer Res., 2016, 22(15), 3755-3763.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2499] [PMID: 26920887]
[337]
Li, G.; Guo, J.; Shen, B.Q.; Yadav, D.B.; Sliwkowski, M.X.; Crocker, L.M.; Lacap, J.A.; Phillips, G.D.L. Lewis Phillips GD. Mechanisms of acquired resistance to trastuzumab emtansine in breast cancer cells. Mol. Cancer Ther., 2018, 17(7), 1441-1453.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0296] [PMID: 29695635]
[338]
Martínez, M.T.; Pérez-Fidalgo, J.A.; Martín-Martorell, P.; Cejalvo, J.M.; Pons, V.; Bermejo, B.; Martín, M.; Albanell, J.; Lluch, A. Treatment of HER2 positive advanced breast cancer with T-DM1: A review of the literature. Crit. Rev. Oncol. Hematol., 2016, 97, 96-106.
[http://dx.doi.org/10.1016/j.critrevonc.2015.08.011] [PMID: 26318092]
[339]
Ogitani, Y.; Aida, T.; Hagihara, K.; Yamaguchi, J.; Ishii, C.; Harada, N.; Soma, M.; Okamoto, H.; Oitate, M.; Arakawa, S.; Hirai, T.; Atsumi, R.; Nakada, T.; Hayakawa, I.; Abe, Y.; Agatsuma, T. DS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1. Clin. Cancer Res., 2016, 22(20), 5097-5108.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2822] [PMID: 27026201]
[340]
Ocaña, A.; Amir, E.; Pandiella, A. Dual targeting of HER2-positive breast cancer with trastuzumab emtansine and pertuzumab: Understanding clinical trial results. Oncotarget, 2018, 9(61), 31915-31919.
[http://dx.doi.org/10.18632/oncotarget.25739] [PMID: 30159132]
[341]
García-Alonso, S.; Ocaña, A.; Pandiella, A. Trastuzumab emtansine: mechanisms of action and resistance, clinical progress, and beyond. Trends Cancer, 2020, 6(2), 130-146.
[http://dx.doi.org/10.1016/j.trecan.2019.12.010] [PMID: 32061303]
[342]
Liu, F.; Ke, J.; Song, Y. T-DM1-induced thrombocytopenia in breast cancer patients: New perspectives. Biomed. Pharmacother., 2020, 129, 110407.
[http://dx.doi.org/10.1016/j.biopha.2020.110407] [PMID: 32570117]
[343]
Pegram, M.D.; Miles, D.; Tsui, C.K.; Zong, Y. HER2-overexpressing/amplified breast cancer as a testing ground for antibody-drug conjugate drug development in solid tumors. Clin. Cancer Res., 2020, 26(4), 775-786.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1976] [PMID: 31582515]
[344]
Zoeller, J.J.; Vagodny, A.; Taneja, K.; Tan, B.Y.; O’Brien, N.; Slamon, D.J.; Sampath, D.; Leverson, J.D.; Bronson, R.T.; Dillon, D.A.; Brugge, J.S. Neutralization of BCL-2/XL enhances the cytotoxicity of T-DM1 in vivo. Mol. Cancer Ther., 2019, 18(6), 1115-1126.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0743] [PMID: 30962322]
[345]
Peters, S.; Stahel, R.; Bubendorf, L.; Bonomi, P.; Villegas, A.; Kowalski, D.M.; Baik, C.S.; Isla, D.; Carpeno, J.C.; Garrido, P.; Rittmeyer, A.; Tiseo, M.; Meyenberg, C.; de Haas, S.; Lam, L.H.; Lu, M.W.; Stinchcombe, T.E. Trastuzumab emtansine (T-DM1) in patients with previously treated HER2 overexpressing metastatic non-small cell lung cancer: efficacy, safety and biomarkers. Clin. Cancer Res., 2019, 25(1), 64-72.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1590] [PMID: 30206164]
[346]
Nakada, T.; Sugihara, K.; Jikoh, T.; Abe, Y.; Agatsuma, T. The latest research and development into the antibody–drug conjugate, [fam-] trastuzumab deruxtecan (DS-8201a), for HER2 cancer therapy. Chem. Pharm. Bull. (Tokyo), 2019, 67(3), 173-185.
[http://dx.doi.org/10.1248/cpb.c18-00744] [PMID: 30827997]
[347]
LoRusso, P.M.; Weiss, D.; Guardino, E.; Girish, S.; Sliwkowski, M.X. Trastuzumab emtansine: A unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin. Cancer Res., 2011, 17(20), 6437-6447.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0762] [PMID: 22003071]
[348]
Xu, Z.; Guo, D.; Jiang, Z.; Tong, R.; Jiang, P.; Bai, L.; Chen, L.; Zhu, Y.; Guo, C.; Shi, J.; Yu, D. Novel HER2-targeting antibody-drug conjugates of trastuzumab beyond T-DM1 in breast cancer: Trastuzumab deruxtecan (DS-8201a) and (vic-)trastuzumab duocarmazine (SYD985). Eur. J. Med. Chem., 2019, 183, 111682.
[http://dx.doi.org/10.1016/j.ejmech.2019.111682] [PMID: 31563805]
[349]
Avilés, P.; Domínguez, J.M.; Guillén, M.J.; Muñoz-Alonso, M.J.; Mateo, C.; Rodriguez-Acebes, R.; Molina-Guijarro, J.M.; Francesch, A.; Martínez-Leal, J.F.; Munt, S.; Galmarini, C.M.; Cuevas, C. MI130004, a novel antibody-drug conjugate combining trastuzumab with a molecule of marine origin, shows outstanding in vivo activity against HER2 expressing tumors. Mol. Cancer Ther., 2018, 17(4), 786-794.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0795] [PMID: 29440297]
[350]
Menderes, G.; Bonazzoli, E.; Bellone, S.; Black, J.; Predolini, F.; Pettinella, F.; Masserdotti, A.; Zammataro, L.; Altwerger, G.; Buza, N.; Hui, P.; Wong, S.; Litkouhi, B.; Ratner, E.; Silasi, D.A.; Azodi, M.; Schwartz, P.E.; Santin, A.D. SYD985, a novel duocarmycin-based HER2 targeting antibody–drug conjugate, shows antitumor activity in uterine and ovarian carcinosarcoma with HER2/Neu expression. Clin. Cancer Res., 2017, 23(19), 5836-5845.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2862] [PMID: 28679774]
[351]
Burris, H.A., III; Rugo, H.S.; Vukelja, S.J.; Vogel, C.L.; Borson, R.A.; Limentani, S.; Tan-Chiu, E.; Krop, I.E.; Michaelson, R.A.; Girish, S.; Amler, L.; Zheng, M.; Chu, Y.W.; Klencke, B.; O’Shaughnessy, J.A. Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J. Clin. Oncol., 2011, 29(4), 398-405.
[http://dx.doi.org/10.1200/JCO.2010.29.5865] [PMID: 21172893]
[352]
Li, B.T.; Zauderer, M.; Chaft, J.; Drilon, A.; Eng, J.; Sima, C.; Makker, V.; Iyer, G.; Janjigian, Y.; Hyman, D. Ado-trastuzumab emtansine for HER2 amplified or HER2 overexpressed cancers: A phase II “basket” trial. Cancer Res., 2015, 75(15 suppl), p. Abs. CT225.
[353]
Humphreys, R.C.; Kirtely, J.; Hewit, A.; Biroc, S.; Knudsen, N.; Skidmore, L.; Wahl, A. Site specific conjugation of ARX-788, an Antibody Drug Conjugate (ADC) targeting HER2, generates a potent and stable targeted therapeutic for multiple cancers. Cancer Res., 2015, 75(15 suppl), p. Abs. 639.
[http://dx.doi.org/10.1158/1538-7445.AM2015-639]
[354]
Zhang, H.; Li, Z.;; Zhu, T.; Cao, S.; Chen, G.; Miao, D. Superior anti-tumor activity compared to T-DM1 in preclinical studies of targeted therapies for HER2-postitive cancers by a novel HER2- ADC ZV0201. Cancer Res.,, 2015, 75(15 suppl), Abs. 651.
[355]
Zhu, Z.; Boopathy, R.; Li, J.; Probakaran, P.; Colantonio, S.; Feng, Y.; Wang, Y.; Dyba, M.A. Site-specific antibody-drug conjugation through an engineered glycotransferase and a chemically reactive sugar. MAbs, 2014, 6(5), 1190-1200.
[356]
Demeule, M.; Das, S.; Che, C.; Yang, G.; Currie, J.C.; Lord- Dufour, S.; Tripathy, S.; Regina, A. Targeting HER2-positive brain metastases by incorporating the brain-penetrant angiopep-2 peptide to an anti-HER2 antibody and anti-HER2 antibody drug conjugate. Cancer Res., 2015, 75(15 suppl), p. Abs. 2465.
[357]
Jia, J.; Zhou, X.; Huang, Y.; Xie, H.; Guo, H.; Gai, S.; Qu, L.; Li, W.; Chen, L.; Li, X.; Sun, S. Functional evaluation of novel tubulysin analogs as payloads for antibody-drug conjugates. Cancer Res., 2015, 75(15 suppl), p. Abs. 4532.
[358]
Bodyak, N.; Yurkovetskiy, A.; Park, P.U.; Gumerov, D.R.; DeVit, M.; Yin, M.; Thomas, J.D. Trastuzumab-dolaflexin, a highly potent Fleximar-based antibody-drug conjugate, demonstrates a favorable therapeutic index in exploratory toxicology studies in multiple species. Proc AACR, 2015.
[359]
Bergstrom, D.A.; Bodyak, N.; Yurkovetskiy, A.; Park, P.U.; DeVit, M.; Yin, M.; Poling, L.; Thomas, J.D.; Gumerov, D.R. A novel potent HER2-targeted antibody-drug conjugate (ADC) for the treatment of low HER2-expressing tumors and combination with trastuzumab-based regimens in HER2-driven tumors. Cancer Res., 2015, 75(15 suppl), p. Abs. LB-231.
[http://dx.doi.org/10.1158/1538-7445.AM2015-LB-231]
[360]
Gupta, N.; Kancharla, J.; Kaushik, S.; Hossain, S.; Sarkar, A.; Sengupta, A.; Roy, M.; Sengupta, S. Supramolecular assembly of antibody-drug conjugates using CORDLink platform for targeted drug delivery. Cancer Res., 2015, 75(15)(Suppl.), 649.
[http://dx.doi.org/10.1158/1538-7445.AM2015-649]
[361]
Chen, G.; Zhu, T.; Deng, D.; Zhang, H.; Miao, D. Development of anti-cancer ADCs with Concortis’ C-and K-lock technology. Cancer Res., 2015, 75(15)(Suppl.), 635.
[362]
van der Lee, M.M.; Groothuis, P.G.; Ubink, R.; van der Vleuten, M.A.J.; van Achterberg, T.A.; Loosveld, E.M.; Damming, D.; Jacobs, D.C.; Rouwette, M.; Egging, D.F.; van den Dobbelsteen, D.; Beusker, P.H.; Goedings, P.; Verheijden, G.F.; Lemmens, J.M.; Timmers, M.; Dokter, W.H. The preclinical profile of the duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low HER2-expressing breast cancers. Mol. Cancer Ther., 2015, 14(3), 692-703.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0881-T] [PMID: 25589493]
[363]
de Goeij, B.E.C.G.; Vink, T.; Ten Napel, H.; Breij, E.C.W.; Satijn, D.; Wubbolts, R.; Miao, D.; Parren, P.W.H.I. Efficient payload delivery by a bispecific antibody-drug conjugate targeting HER2 and CD63. Mol. Cancer Ther., 2016, 15(11), 2688-2697.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0364] [PMID: 27559142]
[364]
Krop, I.E.; Kim, S.B.; González-Martín, A.; LoRusso, P.M.; Ferrero, J.M.; Smitt, M.; Yu, R.; Leung, A.C.; Wildiers, H. Trastuzumab emtansine versus treatment of physician’s choice for pretreated HER2-positive advanced breast cancer (TH3RESA): A randomised, open-label, phase 3 trial. Lancet Oncol., 2014, 15(7), 689-699.
[http://dx.doi.org/10.1016/S1470-2045(14)70178-0] [PMID: 24793816]
[365]
Uppal, H.; Doudement, E.; Mahapatra, K.; Darbonne, W.C.; Bumbaca, D.; Shen, B.Q.; Du, X.; Saad, O.; Bowles, K.; Olsen, S.; Lewis Phillips, G.D.; Hartley, D.; Sliwkowski, M.X.; Girish, S.; Dambach, D.; Ramakrishnan, V. Potential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1). Clin. Cancer Res., 2015, 21(1), 123-133.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2093] [PMID: 25370470]
[366]
Hess, K.R.; Esteva, F.J. Effect of HER2 status on distant recurrence in early stage breast cancer. Breast Cancer Res. Treat., 2013, 137(2), 449-455.
[http://dx.doi.org/10.1007/s10549-012-2366-0] [PMID: 23225147]
[367]
Ramakrishna, N.; Temin, S.; Chandarlapaty, S.; Crews, J.R.; Davidson, N.E.; Esteva, F.J.; Giordano, S.H.; Gonzalez-Angulo, A.M.; Kirshner, J.J.; Krop, I.; Levinson, J.; Modi, S.; Patt, D.A.; Perez, E.A.; Perlmutter, J.; Winer, E.P.; Lin, N.U. Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol., 2014, 32(19), 2100-2108.
[http://dx.doi.org/10.1200/JCO.2013.54.0955] [PMID: 24799487]
[368]
Bartsch, R.; Berghoff, A.S.; Preusser, M. Breast cancer brain metastases responding to primary systemic therapy with T-DM1. J. Neurooncol., 2014, 116(1), 205-206.
[http://dx.doi.org/10.1007/s11060-013-1257-5] [PMID: 24065570]
[369]
Torres, S.; Maralani, P.; Verma, S. Activity of T-DM1 in HER-2 positive central nervous system breast cancer metastases. BMJ Case Rep., 2014, 2014, bcr2014205680.
[http://dx.doi.org/10.1136/bcr-2014-205680] [PMID: 25123575]
[370]
Krop, I.E.; Lin, N.U.; Blackwell, K.; Guardino, E.; Huober, J.; Lu, M.; Miles, D.; Samant, M.; Welslau, M.; Diéras, V. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: A retrospective, exploratory analysis in EMILIA. Ann. Oncol., 2015, 26(1), 113-119.
[http://dx.doi.org/10.1093/annonc/mdu486] [PMID: 25355722]
[371]
Phillips, G.D.; Fields, C.T.; Li, G.; Dowbenko, D.; Schaefer, G.; Miller, K.; Andre, F.; Burris, H.A., III; Albain, K.S.; Harbeck, N.; Dieras, V.; Crivellari, D.; Fang, L.; Guardino, E.; Olsen, S.R.; Crocker, L.M.; Sliwkowski, M.X. Dual targeting of HER2-positive cancer with trastuzumab emtansine and pertuzumab: Critical role for neuregulin blockade in antitumor response to combination therapy. Clin. Cancer Res., 2014, 20(2), 456-468.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0358] [PMID: 24097864]
[372]
Wildiers, H.; Kim, S-B.; Gonzalez-Martin, A. T-DM1 for HER2-positive metastatic breast cancer (MBC): Primary results from TH3RESA, a phase 3 study of T-DM1 vs. treatment of physician’s choice. Eur. J. Cancer, 2013, 49, S7-S8.
[373]
Krop, I.E.; LoRusso, P.; Miller, K.D.; Modi, S.; Yardley, D.; Rodriguez, G.; Guardino, E.; Lu, M.; Zheng, M.; Girish, S.; Amler, L.; Winer, E.P.; Rugo, H.S. A phase II study of trastuzumab emtansine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer who were previously treated with trastuzumab, lapatinib, an anthracycline, a taxane, and capecitabine. J. Clin. Oncol., 2012, 30(26), 3234-3241.
[http://dx.doi.org/10.1200/JCO.2011.40.5902] [PMID: 22649126]
[374]
Baselga, J.; Gelmon, K.A.; Verma, S.; Wardley, A.; Conte, P.; Miles, D.; Bianchi, G.; Cortes, J.; McNally, V.A.; Ross, G.A.; Fumoleau, P.; Gianni, L. Phase II trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer that progressed during prior trastuzumab therapy. J. Clin. Oncol., 2010, 28(7), 1138-1144.
[http://dx.doi.org/10.1200/JCO.2009.24.2024] [PMID: 20124182]
[375]
Miller, K.D.; Diéras, V.; Harbeck, N.; Andre, F.; Mahtani, R.L.; Gianni, L.; Albain, K.S.; Crivellari, D.; Fang, L.; Michelson, G.; de Haas, S.L.; Burris, H.A. Phase IIa trial of trastuzumab emtansine with pertuzumab for patients with human epidermal growth factor receptor 2-positive, locally advanced, or metastatic breast cancer. J. Clin. Oncol., 2014, 32(14), 1437-1444.
[http://dx.doi.org/10.1200/JCO.2013.52.6590] [PMID: 24733796]
[376]
Korkola, J.E.; Liu, M.; Liby, T.; Heiser, L.; Feiler, H.; Gray, J.W. Detrimental effects of sequential compared to concurrent treatment of pertuzumab plus T-DM1 in HER2+ breast cancer cell lines. Cancer Res., 2015, 75(9)(Suppl.), S6-S07.
[377]
Verheijden, G.; Beusker, P.; Ubink, R.; van der Lee, M.; Groothuis, P.; Goedings, P.J.; Egging, D.; Mattaar, E.; Timmers, M.; Dokter, W. Toward clinical development of SYD985, a novel HER2-targeting Antibody-Drug Conjugate (ADC). J. Clin. Oncol., 2014, 32(Suppl.), 626.
[378]
Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blättler, W.A.; Lambert, J.M.; Chari, R.V.J.; Lutz, R.J.; Wong, W.L.T.; Jacobson, F.S.; Koeppen, H.; Schwall, R.H.; Kenkare-Mitra, S.R.; Spencer, S.D.; Sliwkowski, M.X. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res., 2008, 68(22), 9280-9290.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1776] [PMID: 19010901]
[379]
Black, J.D.; Lopez, S.; Cocco, E.; Bellone, S.; Bonazzoli, E.; Schwab, C.; English, D.P. SYD985, a novel HER2-targeting antibody-drug conjugate, shows strong antitumor activity in primary USC cell lines with low (1+) and moderate (2+) HER2/Neu expression. Mol. Cancer Ther., 2016, 15, 1900-1909.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0163] [PMID: 27256376]
[380]
Black, J.; Lopez, S.; Cocco, E.; Bellone, S.; Bonazzoli, E.; Schwab, C.; English, D.P. SYD985, a novel HER2-targeting antibody-drug conjugate in preclinical models for USC, both in vitro and in vivo. J. Clin. Oncol., 2015, 33(Suppl.), e16527.
[381]
Ubink, R.; Dirksen, E.H.C.; Rouwette, M.; Bos, E.S.; Janssen, I.; Egging, D.F.; Loosveld, E.M.; van Achterberg, T.A.; Berentsen, K.; van der Lee, M.M.C.; Bichat, F.; Raguin, O.; van der Vleuten, M.A.J.; Groothuis, P.G.; Dokter, W.H.A. Unraveling the interaction between carboxylesterase 1c and the antibody drug conjugate SYD985: improved translational PKPD by using Ces1c knockout mice. Mol. Cancer Ther., 2018, 17(11), 2389-2398.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0329] [PMID: 30093567]
[382]
Hingorani, D.V.; Doan, M.K.; Camargo, M.F.; Aguilera, J.; Song, S.M.; Pizzo, D.; Scanderbeg, D.J.; Cohen, E.E.W.; Lowy, A.M.; Adams, S.R.; Advani, S.J. Precision chemo-radiotherapy for HER2 tumors using antibody conjugates of an auristatin derivative with reduced cell permeability. Mol. Cancer Ther., 2020, 19(1), 157-167.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1302] [PMID: 31597712]
[383]
Rinnerthaler, G.; Gampenrieder, S.P.; Greil, R. HER2 directed antibody-drug-conjugates beyond T-DM1 in breast cancer. Int. J. Mol. Sci., 2019, 20(5), 1115.
[http://dx.doi.org/10.3390/ijms20051115] [PMID: 30841523]
[384]
Verma, S.; Miles, D.; Gianni, L.; Krop, I.E.; Welslau, M.; Baselga, J.; Pegram, M.; Oh, D.Y.; Diéras, V.; Guardino, E.; Fang, L.; Lu, M.W.; Olsen, S.; Blackwell, K. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med., 2012, 367(19), 1783-1791.
[http://dx.doi.org/10.1056/NEJMoa1209124] [PMID: 23020162]
[385]
Trail, P.A.; Dubowchik, G.M.; Lowinger, T.B. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol. Ther., 2018, 181, 126-142.
[http://dx.doi.org/10.1016/j.pharmthera.2017.07.013] [PMID: 28757155]
[386]
Sheng, X.; Yan, X.; Wang, L.; Shi, Y.; Yao, X.; Luo, H.; Shi, B.; Liu, J.; He, Z.; Yu, G.; Ying, J.; Han, W.; Hu, C.; Ling, Y.; Chi, Z.; Cui, C.; Si, L.; Fang, J.; Zhou, A.; Guo, J. Open-label, multicenter, phase 2 study of RC48-ADC, a HER2-targeting 1antibody-drug conjugate, in patients with locally advanced or metastatic urothelial carcinoma. Clin. Cancer Res., 2021, 27(1), 43-51.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2488] [PMID: 33109737]
[387]
Skidmore, L.; Sakamuri, S.; Knudsen, N.A.; Hewet, A.G.; Milutinovic, S.; Barkho, W.; Biroc, S.L.; Kirtley, J.; Marsden, R.; Storey, K.; Lopez, I.; Yu, W.; Fang, S.Y.; Yao, S.; Gu, Y.; Tian, F. ARX788, a site-specific anti-HER2 antibody–drug conjugate, demonstrates potent and selective activity in HER2-low and T-DM1–resistant breast and gastric cancers. Mol. Cancer Ther., 2020, 19(9), 1833-1843.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-1004] [PMID: 32669315]
[388]
Yonesaka, K.; Takegawa, N.; Watanabe, S.; Haratani, K.; Kawakami, H.; Sakai, K.; Chiba, Y.; Maeda, N.; Kagari, T.; Hirotani, K.; Nishio, K.; Nakagawa, K. An HER3-targeting antibody-drug conjugate incorporating a DNA topoisomerase I inhibitor U3-1402 conquers EGFR tyrosine kinase inhibitor-resistant NSCLC. Oncogene, 2019, 38(9), 1398-1409.
[http://dx.doi.org/10.1038/s41388-018-0517-4] [PMID: 30302022]
[389]
Koganemaru, S.; Kuboki, Y.; Koga, Y.; Kojima, T.; Yamauchi, M.; Maeda, N.; Kagari, T.; Hirotani, K.; Yasunaga, M.; Matsumura, Y.; Doi, T. U3-1402, a novel HER3-targeting antibody–drug conjugate, for the treatment of colorectal cancer. Mol. Cancer Ther., 2019, 18(11), 2043-2050.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0452] [PMID: 31395690]
[390]
Hashimoto, Y.; Koyama, K.; Kamai, Y.; Hirotani, K.; Ogitani, Y.; Zembutsu, A.; Abe, M.; Kaneda, Y.; Maeda, N.; Shiose, Y.; Iguchi, T.; Ishizaka, T.; Karibe, T.; Hayakawa, I.; Morita, K.; Nakada, T.; Nomura, T.; Wakita, K.; Kagari, T.; Abe, Y.; Murakami, M.; Ueno, S.; Agatsuma, T. A novel HER3-targeting antibody-drug conjugate, U3-1402, exhibits potent therapeutic efficacy through the delivery of cytotoxic payload by efficient internalization. Clin. Cancer Res., 2019, 25(23), 7151-7161.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-1745] [PMID: 31471314]
[391]
Haratani, K.; Yonesaka, K.; Takamura, S.; Maenishi, O.; Kato, R.; Takegawa, N.; Kawakami, H.; Tanaka, K.; Hayashi, H.; Takeda, M.; Maeda, N.; Kagari, T.; Hirotani, K.; Tsurutani, J.; Nishio, K.; Doi, K.; Miyazawa, M.; Nakagawa, K. U3-1402 sensitizes HER3-expressing tumors to PD-1 blockade by immune activation. J. Clin. Invest., 2020, 130(1), 374-388.
[http://dx.doi.org/10.1172/JCI126598] [PMID: 31661465]
[392]
Janne, P.A.; Yu, H.A.; Johnson, M.L.; Steuer, C.E.; Vigliotti, M. Iacobucci, C Safety and preliminary antitumor activity of U3-1402: A HER3-targeted antibody drug conjugate in EGFR TKI-resistant, EGFRm NSCLC. J. Clin. Oncol., 2019, 33(Suppl.), 9010.
[393]
Akla, B.; Broussas, M.; Loukili, N.; Robert, A.; Beau-Larvor, C.; Malissard, M.; Boute, N.; Champion, T.; Haeuw, J.F.; Beck, A.; Perez, M.; Dreyfus, C.; Pavlyuk, M.; Chetaille, E.; Corvaia, N. Efficacy of the antibody-drug conjugate W0101 in preclinical models of IGF-1 receptor overexpressing solid tumors. Mol. Cancer Ther., 2020, 19(1), 168-177.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0219] [PMID: 31594825]
[394]
Tivadar, S.T.; McIntosh, R.S.; Chua, J.X.; Moss, R.; Parsons, T.; Zaitoun, A.M.; Madhusudan, S.; Durrant, L.G.; Vankemmelbeke, M. Monoclonal antibody targeting sialyl-di-Lewisa–containing internalizing and non-internalizing glycoproteins with cancer immunotherapy development potential. Mol. Cancer Ther., 2020, 19(3), 790-801.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0221] [PMID: 31871270]
[395]
Currier, N.V.; Ackerman, S.E.; Kintzing, J.R.; Chen, R.; Filsinger Interrante, M.; Steiner, A.; Sato, A.K.; Cochran, J.R. Targeted drug delivery with an integrin-binding knottin-Fc-MMAF conjugate produced by cell-free protein synthesis. Mol. Cancer Ther., 2016, 15(6), 1291-1300.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0881] [PMID: 27197305]
[396]
Junttila, M.R.; Mao, W.; Wang, X.; Wang, B.E.; Pham, T.; Flygare, J.; Yu, S.F.; Yee, S.; Goldenberg, D.; Fields, C.; Eastham-Anderson, J.; Singh, M.; Vij, R.; Hongo, J.A.; Firestein, R.; Schutten, M.; Flagella, K.; Polakis, P.; Polson, A.G. Targeting LGR5+ cells with an antibody-drug conjugate for the treatment of colon cancer. Sci. Transl. Med., 2015, 7(314), 314ra186.
[http://dx.doi.org/10.1126/scitranslmed.aac7433] [PMID: 26582901]
[397]
Gong, X.; Azhdarinia, A.; Ghosh, S.C.; Xiong, W.; An, Z.; Liu, Q.; Carmon, K.S. LGR5-targeted antibody-drug conjugate eradicates gastrointestinal tumors and prevents recurrence. Mol. Cancer Ther., 2016, 15(7), 1580-1590.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0114] [PMID: 27207778]
[398]
Deng, M.; Gui, X.; Kim, J.; Xie, L.; Chen, W.; Li, Z.; He, L.; Chen, Y.; Chen, H.; Luo, W.; Lu, Z.; Xie, J.; Churchill, H.; Xu, Y.; Zhou, Z.; Wu, G.; Yu, C.; John, S.; Hirayasu, K.; Nguyen, N.; Liu, X.; Huang, F.; Li, L.; Deng, H.; Tang, H.; Sadek, A.H.; Zhang, L.; Huang, T.; Zou, Y.; Chen, B.; Zhu, H.; Arase, H.; Xia, N.; Jiang, Y.; Collins, R.; You, M.J.; Homsi, J.; Unni, N.; Lewis, C.; Chen, G.Q.; Fu, Y.X.; Liao, X.C.; An, Z.; Zheng, J.; Zhang, N.; Zhang, C.C. LILRB4 signalling in leukaemia cells mediates T cell suppression and tumour infiltration. Nature, 2018, 562(7728), 605-609.
[http://dx.doi.org/10.1038/s41586-018-0615-z] [PMID: 30333625]
[399]
Anami, Y.; Deng, M.; Gui, X.; Yamaguchi, A.; Yamazaki, C.M.; Zhang, N.; Zhang, C.C.; An, Z.; Tsuchikama, K. LILRB4-targeting antibody-drug conjugates for the treatment of acute myeloid leukemia. Mol. Cancer Ther., 2020, 19(11), 2330-2339.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0407] [PMID: 32879051]
[400]
Sussman, D.; Smith, L.M.; Anderson, M.E.; Duniho, S.; Hunter, J.H.; Kostner, H.; Miyamoto, J.B.; Nesterova, A.; Westendorf, L.; Van Epps, H.A.; Whiting, N.; Benjamin, D.R. SGN-LIV1A: A novel antibody-drug conjugate targeting LIV-1 for the treatment of metastatic breast cancer. Mol. Cancer Ther., 2014, 13(12), 2991-3000.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0896] [PMID: 25253783]
[401]
Kostic, A.; Anderson, M.; Duniho, S.; Miyamoto, J.; Nesterova, A.; Sussman, D. SGN-LIV1A, an antibody-drug conjugate (ADC), in patients with LIV-1-positive breast cancer. J. Clin. Oncol., 2014, 32(Suppl.), TPS1143.
[402]
Modi, S. 2016 San Antonio Breast Cancer Symposium, 2016, PD3-PD14.
[403]
Han, H.S.; Alemany, C.A.; Brown-Glaberman, U.A.; Pluard, T.J.; Sinha, R.; Sterrenberg, D.; Albain, K.S.; Basho, R.K.; Biggs, D.; Boni, V.; Diab, S.; Tsai, M.L.; Tkaczuk, K.H.; Wang, Y.; Wang, Z.; Meisel, J.L. SGNLVA-002: Single-arm, open label phase Ib/II study of Ladiratuzumab Vedotin (LV) in combination with pembrolizumab for first-line treatment of patients with unresectable locally advanced or metastatic triple-negative breast cancer. J. Clin. Oncol., 2019, 37(Suppl.), TPS1110.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS1110]
[404]
Anderson, I.C.; Wang, Y.; Wang, Z.; Sanborn, R.E. Sgnlva-005: Open-label, phase II study of Ladiratuzumab Vedotin (LV) for advanced aerodigestive tract malignancies. J. Clin. Oncol., 2020, 38(Suppl.), TPS469.
[http://dx.doi.org/10.1200/JCO.2020.38.4_suppl.TPS469]
[405]
Purcell, J.W.; Tanlimco, S.G.; Hickson, J.; Fox, M.; Sho, M.; Durkin, L.; Uziel, T.; Powers, R.; Foster, K.; McGonigal, T.; Kumar, S.; Samayoa, J.; Zhang, D.; Palma, J.P.; Mishra, S.; Hollenbaugh, D.; Gish, K.; Morgan-Lappe, S.E.; Hsi, E.D.; Chao, D.T. LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Cancer Res., 2018, 78(14), 4059-4072.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0327] [PMID: 29764866]
[406]
Ben-Ami, E.; Perret, R.; Huang, Y.; Courgeon, F.; Gokhale, P.C.; Laroche-Clary, A.; Eschle, B.K.; Velasco, V.; Le Loarer, F.; Algeo, M.P.; Purcell, J.; Demetri, G.D.; Italiano, A. LRRC15 targeting in soft-tissue sarcomas: Biological and clinical implications. Cancers (Basel), 2020, 12(3), 757.
[http://dx.doi.org/10.3390/cancers12030757] [PMID: 32210091]
[407]
Slemmons, K.K.; Mukherjee, S.; Meltzer, P.; Purcell, J.W.; Helman, L.J. LRRC15 antibody-drug conjugates show promise as osteosarcoma therapeutics in preclinical studies. Pediatr. Blood Cancer, 2021, 68(2), e28771.
[http://dx.doi.org/10.1002/pbc.28771] [PMID: 33063919]
[408]
Demetri, G.D.; Luke, J.J.; Hollebecque, A.; Powderly, J.D.; Spira, A.I.; Subbiah, V. First-in-human phase 1 study of ABBV-085, an antibody-drug conjugate (ADC) targeting LRRC15, in sarcomas and other advanced solid tumors. J. Clin. Oncol., 2019, 37(Suppl.), 3004.
[409]
Hingorani, P.; Roth, M.E.; Wang, Y.; Zhang, W.; Gill, J.B.; Harrison, D.J.; Teicher, B.; Erickson, S.; Gatto, G.; Smith, M.A.; Kolb, E.A.; Gorlick, R. ABBV-085, antibody-drug conjugate targeting LRRC15, is effective in osteosarcoma: A report by the Pediatric Preclinical Testing Consortium. Mol. Cancer Ther., 2021, 20(3), 535-540.
[http://dx.doi.org/10.1158/1535-7163.MCT-20-0406] [PMID: 33298592]
[410]
Hassan, R.; Bera, T.; Pastan, I. Mesothelin: A new target for immunotherapy. Clin. Cancer Res., 2004, 10(12 Pt 1), 3937-3942.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0801] [PMID: 15217923]
[411]
Bendell, J.; Blumenschein, G.; Zinner, R.; Hong, D.; Jones, S.; Infante, J.; Burris, H. First-in-human phase I dose-escalation study of a novel anti-mesothelin antibody drug conjugate, BAY 94-9343, in patients with advanced solid tumors. Proc. Am. Assoc. Cancer Res., 2013, LB-291.
[412]
Golfier, S.; Kopitz, C.; Kahnert, A.; Heisler, I.; Schatz, C.A.; Stelte-Ludwig, B.; Mayer-Bartschmid, A.; Unterschemmann, K.; Bruder, S.; Linden, L.; Harrenga, A.; Hauff, P.; Scholle, F.D.; Müller-Tiemann, B.; Kreft, B.; Ziegelbauer, K. Anetumab ravtansine: A novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol. Cancer Ther., 2014, 13(6), 1537-1548.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0926] [PMID: 24714131]
[413]
Lindenberg, L.; Thomas, A.; Adler, S.; Mena, E.; Kurdziel, K.; Maltzman, J.; Wallin, B.; Hoffman, K.; Pastan, I.; Paik, C.H.; Choyke, P.; Hassan, R. Safety and biodistribution of 111In-amatuximab in patients with mesothelin expressing cancers using single photon emission computed tomography-computed tomography (SPECT-CT) imaging. Oncotarget, 2015, 6(6), 4496-4504.
[http://dx.doi.org/10.18632/oncotarget.2883] [PMID: 25756664]
[414]
Mason-Osann, E.; Hollevoet, K.; Niederfellner, G.; Pastan, I. Quantification of recombinant immunotoxin delivery to solid tumors allows for direct comparison of in vivo and in vitro results. Sci. Rep., 2015, 5, 10832.
[http://dx.doi.org/10.1038/srep10832] [PMID: 26111884]
[415]
Lamberts, L.E. Menke-van der Houven van Oordt, C.W.; ter Weele, E.J.; Bensch, F.; Smeenk, M.M.; Voortman, J.; Hoekstra, O.S.; Williams, S.P.; Fine, B.M.; Maslyar, D.; de Jong, J.R.; Gietema, J.A.; Schröder, C.P.; Bongaerts, A.H.; Lub-de Hooge, M.N.; Verheul, H.M.; Sanabria Bohorquez, S.M.; Glaudemans, A.W.; de Vries, E.G. ImmunoPET with anti-mesothelin antibody in patients with Pancreatic and ovarian cancer before anti-mesothelin antibody-drug conjugate treatment. Clin. Cancer Res., 2016, 22(7), 1642-1652.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1272] [PMID: 26589435]
[416]
Weekes, C.D.; Lamberts, L.E.; Borad, M.J.; Voortman, J.; McWilliams, R.R.; Diamond, J.R.; de Vries, E.G.E.; Verheul, H.M.; Lieu, C.H.; Kim, G.P.; Wang, Y.; Scales, S.J.; Samineni, D.; Brunstein, F.; Choi, Y.; Maslyar, D.J.; Colon-Otero, G. Phase I study of DMOT4039A, an antibody-drug conjugate targeting mesothelin, in patients with unresectable pancreatic or platinum-resistant ovarian cancer. Mol. Cancer Ther., 2016, 15(3), 439-447.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0693] [PMID: 26823490]
[417]
Quanz, M.; Hagemann, U.B.; Zitzmann-Kolbe, S.; Stelte-Ludwig, B.; Golfier, S.; Elbi, C.; Mumberg, D.; Ziegelbauer, K.; Schatz, C.A. Anetumab ravtansine inhibits tumor growth and shows additive effect in combination with targeted agents and chemotherapy in mesothelin-expressing human ovarian cancer models. Oncotarget, 2018, 9(75), 34103-34121.
[http://dx.doi.org/10.18632/oncotarget.26135] [PMID: 30344925]
[418]
Hassan, R.; Blumenschein, G.R., Jr; Moore, K.N.; Santin, A.D.; Kindler, H.L.; Nemunaitis, J.J.; Seward, S.M.; Thomas, A.; Kim, S.K.; Rajagopalan, P.; Walter, A.O.; Laurent, D.; Childs, B.H.; Sarapa, N.; Elbi, C.; Bendell, J.C. MD, Bendell JC. First-in-human, multicenter, phase I dose-escalation and expansion study of anti-mesothelin antibody–drug conjugate anetumab ravtansine in advanced or metastatic solid tumors. J. Clin. Oncol., 2020, 38(16), 1824-1835.
[http://dx.doi.org/10.1200/JCO.19.02085] [PMID: 32213105]
[419]
Lazzerini, L.; Jöhrens, K.; Sehouli, J.; Cichon, G. Favorable therapeutic response after anti-Mesothelin antibody-drug conjugate treatment requires high expression of Mesothelin in tumor cells. Arch. Gynecol. Obstet., 2020, 302(5), 1255-1262.
[http://dx.doi.org/10.1007/s00404-020-05734-9] [PMID: 32815024]
[420]
Moentenich, V.; Comut, E.; Gebauer, F.; Tuchscherer, A.; Bruns, C.; Schroeder, W.; Buettner, R.; Alakus, H.; Loeser, H.; Zander, T.; Quaas, A. Mesothelin expression in esophageal adenocarcinoma and squamous cell carcinoma and its possible impact on future treatment strategies. Ther. Adv. Med. Oncol., 2020, 12, 1758835920917571.
[http://dx.doi.org/10.1177/1758835920917571] [PMID: 32547645]
[421]
Pascual, M.H.; Verdier, P.; Malette, P.; Mnich, J.; Ozoux, M.L. Validation of an immunoassay to selectively quantify the naked antibody of a new Antibody Drug Conjugate--SAR566658--for pharmacokinetic interpretation improvement. J. Immunol. Methods, 2013, 396(1-2), 140-146.
[http://dx.doi.org/10.1016/j.jim.2013.06.012] [PMID: 23892158]
[422]
Gomez-Roca, C.A.; Boni, V.; Moreno, V.; Morris, J.C.; Delord, J.P.; Calvo, E.; Papadopoulos, K.P.; Rixe, O.; Cohen, P.; Tellier, A.; Ziti-Ljajic, S.; Tolcher, A.W. A phase I study of SAR566658, an anti CA6-antibody drug conjugate (ADC), in patients (Pts) with CA6-positive advanced solid tumors (STs)(NCT01156870). J. Clin. Oncol., 2016, 34(Suppl.), 2511.
[423]
Panchamoorthy, G.; Jin, C.; Raina, D.; Bharti, A.; Yamamoto, M.; Adeebge, D.; Zhao, Q.; Bronson, R.; Jiang, S.; Li, L.; Suzuki, Y.; Tagde, A.; Ghoroghchian, P.P.; Wong, K.K.; Kharbanda, S.; Kufe, D. Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI Insight, 2018, 3(12), e99880.
[http://dx.doi.org/10.1172/jci.insight.99880] [PMID: 29925694]
[424]
Lin, K.; Rubinfeld, B.; Zhang, C.; Firestein, R.; Harstad, E.; Roth, L.; Tsai, S.P.; Schutten, M.; Xu, K.; Hristopoulos, M.; Polakis, P. Preclinical development of an anti-NaPi2β (SLC34A2) antibody-drug conjugate as a therapeutic for non-small cell lung and ovarian cancers. Clin. Cancer Res., 2015, 21(22), 5139-5150.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3383] [PMID: 26156394]
[425]
Burris, H.A.; Gordon, M.S.; Gerber, D.E.; Spigel, D.R.; Mendelson, D.S.; Schiller, J.H. A phase I study of DNIB0600A, an Antibody-Drug Conjugate (ADC) targeting NaPi2β in patients with Non-Small Cell Lung Cancer (NSCLC) or platinum-resistant Ovarian Cancer (OC). J. Clin. Oncol., 2014, 32(Suppl.), 2504.
[426]
Banerjee, S.; Oza, A.M.; Birrer, M.J.; Hamilton, E.P.; Hasan, J.; Leary, A.; Moore, K.N.; Mackowiak-Matejczyk, B.; Pikiel, J.; Ray-Coquard, I.; Trask, P.; Lin, K.; Schuth, E.; Vaze, A.; Choi, Y.; Marsters, J.C.; Maslyar, D.J.; Lemahieu, V.; Wang, Y.; Humke, E.W.; Liu, J.F. Anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) compared with pegylated liposomal doxorubicin in patients with platinum-resistant ovarian cancer in a randomized, open-label, phase II study. Ann. Oncol., 2018, 29(4), 917-923.
[http://dx.doi.org/10.1093/annonc/mdy023] [PMID: 29401246]
[427]
Gerber, D.E.; Infante, J.R.; Gordon, M.S.; Goldberg, S.B.; Martin, M.; Felip, E.; Garcia, M.M.; Schiller, J.H.; Spige, D.R.; Cordova, J.; Westcott, V.; Wang, Y.; Shames, D.S.; Choi, Y.J.; Kahn, R.; Dere, R.C.; Samineni, D.; Xu, J.; Lin, K.; Wood, K.; Royer-Joo, S.R.; Lemahieu, V.; Schuth, E.; Vaze, A.; Maslyar, D.; Humke, E.W.; Burris, H.A. Phase Ia study of anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin DNIB0600A in non-small cell Lung cancer and platinum-resistant ovarian cancer patients. Clin. Cancer Res., 2020, 26, 364-372.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3965] [PMID: 31540980]
[428]
Moore, K.N.; Birrer, M.J.; Marsters, J.; Wang, Y. choi YJ, Royer-Joo S, Lemahieu V, Armstrong K, Cordova J, Samineni D, Schuth E, Vaze A, Maslyar D, Hunke EW, Hamilton EP, Liu JF. Phase Ib study of anti-NaPi2b antibody-drug conjugate lifastuzumab vedotin (DNIB0600A) in patients with platinum-sensitive recurrent ovarian cancer. Gynecol. Oncol., 2020, 158, 631-639.
[http://dx.doi.org/10.1016/j.ygyno.2020.05.039] [PMID: 32534811]
[429]
Yu, H.; Mosher, R.; Ellison, K.; Shaw, P.; Dziadziuszko, R.; Hailman, E.; Rivard, C.; Hirsch, F. P2.09-24 MERS67 is a novel anti-NaPi2b antibody and demonstrates differential expression patterns in lung cancer histologic subtypes. Thoracic Oncol, 2018, 13, S770.
[http://dx.doi.org/10.1016/j.jtho.2018.08.1321]
[430]
Fessler, S.; Dirksen, A.; Collins, S.D.; Xu, L.; Lee, W.; Wang, J.; Eydelloth, R.; Ter-Ovanesyen, E.; Zurita, J.; Ditty, E.; Nehilla, B.; Clardy, S.; Carter, T.; Avocetien, K.; Nazzaro, M.; Le, N.; Catcott, K.C.; Uttard, A.; Du, B.; Chin, C.N.; Mosher, R.; Slocum, K.; Qin, L.; Lee, D.; Toader, D.; Damelin, M.; Lowinger, T.B. XMT-1592, a site-specific Dolasynthen-based NaPi2b-targeted antibody-drug conjugate for the treatment of ovarian cancer and lung adenocarcinoma. Cancer Res., 2020, 80(Suppl.), 2894.
[431]
Boswell, C.A.; Mundo, E.E.; Zhang, C.; Bumbaca, D.; Valle, N.R.; Kozak, K.R.; Fourie, A.; Chuh, J.; Koppada, N.; Saad, O.; Gill, H.; Shen, B.Q.; Rubinfeld, B.; Tibbitts, J.; Kaur, S.; Theil, F.P.; Fielder, P.J.; Khawli, L.A.; Lin, K. Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjug. Chem., 2011, 22(10), 1994-2004.
[http://dx.doi.org/10.1021/bc200212a] [PMID: 21913715]
[432]
Danila, D.C.; Scher, H.I.; Szafer-Glusman, E.; Herkal, A.; Suttmann, R.; Fleisher, M.; Schreiber, N.A. Predictive biomarkers of tumor sensitivity to STEAP1 Antibody-Drug Conjugate (ADC) in patients (pts) with metastatic Castration Resistant Prostate Cancer (mCRPC). Proc. AACR, 2015, 75(15), 4310.
[433]
Danila, D.C.; Fleisher, M.; Carrasquillo, J.A.; Gilbert, H.; Morris, M.J.; Bellomo, L.P.; Hendrix, P.J. STEAP1 as a predictive biomarker for antibody-drug conjugate (ADC) activity in metastatic castration resistant prostate cancer (mCRPC). J. Clin. Oncol., 2015, 33(Suppl.), 5029.
[434]
Williams, S.P.; Ogasawara, A.; Tinianow, J.N.; Flores, J.E.; Kan, D.; Lau, J.; Go, M.; Vanderbilt, A.N.; Gill, H.S.; Miao, L.; Goldsmith, J.; Rubinfeld, B.; Mao, W.; Firestein, R.; Yu, S.F.; Marik, J.; Terwisscha van Scheltinga, A.G. ImmunoPET helps predicting the efficacy of antibody-drug conjugates targeting TENB2 and STEAP1. Oncotarget, 2016, 7(18), 25103-25112.
[http://dx.doi.org/10.18632/oncotarget.8390] [PMID: 27029064]
[435]
Sukumaran, S.; Zhang, C.; Leipold, D.D.; Saad, O.M.; Xu, K.; Gadkar, K.; Samineni, D.; Wang, B.; Milojic-Blair, M.; Carrasco-Triguero, M.; Rubinfeld, B.; Fielder, P.; Lin, K.; Ramanujan, S. Development and translational application of an integrated, mechanistic model of antibody-drug conjugate pharmacokinetics. AAPS J., 2017, 19(1), 130-140.
[http://dx.doi.org/10.1208/s12248-016-9993-z] [PMID: 27679517]
[436]
Ma, D.; Hopf, C.E.; Malewicz, A.D.; Donovan, G.P.; Senter, P.D.; Goeckeler, W.F.; Maddon, P.J.; Olson, W.C. Potent antitumor activity of an auristatin-conjugated, fully human monoclonal antibody to prostate-specific membrane antigen. Clin. Cancer Res., 2006, 12(8), 2591-2596.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2107] [PMID: 16638870]
[437]
Ma, D.; Zhang, H.; Maddon, P.; Parsons, T.; Olson, W. PSMA ADC improved survival and reduced measurable tumor burden in a subcutaneous mouse xenograft models of human prostate cancer. Cancer Res., 2008, 68(9), 4058.
[438]
Ma, D.; Zhang, H.; Buonagurio, B.; Maddon, P.; Olson, W. Forced resistance to PSMA ADC, a novel targeted therapy for prostate cancer, does not confer cross-resistance to docetaxel or other cytotoxic agents. Proc. AACR, 2007, 48, 4102.
[439]
DiPippo, V.A.; Nguyen, H.M.; Brown, L.G.; Olson, W.C.; Vessella, R.L.; Corey, E. In vivo efficacy of PSMA ADC in combination with enzalutamide in castration-resistant prostate cancer. Cancer Res., 2015, 75, 1685.
[440]
Ejadi, S.; Vogelzang, N.J.; Sartor, A.O.; Habbe, A.; Nguyen, B.; Tolcher, A.W. Phase 1 study of the PSMA-tubulysin small-molecule drug conjugate EC1169 in pts with metastatic castrate-resistant prostate cancer (mCRPC). J. Clin. Oncol., 2015, 33(Suppl.), e13527.
[441]
Cho, S.; Zammarchi, F.; Williams, D.G.; Havenith, C.E.G.; Monks, N.R.; Tyrer, P.; D’Hooge, F.; Fleming, R.; Vashisht, K.; Dimasi, N.; Bertelli, F.; Corbett, S.; Adams, L.; Reinert, H.W.; Dissanayake, S.; Britten, C.E.; King, W.; Dacosta, K.; Tammali, R.; Schifferli, K.; Strout, P.; Korade, M., III; Masson Hinrichs, M.J.; Chivers, S.; Corey, E.; Liu, H.; Kim, S.; Bander, N.H.; Howard, P.W.; Hartley, J.A.; Coats, S.; Tice, D.A.; Herbst, R.; van Berkel, P.H. Antitumor activity of MEDI3726 (ADCT-401), a pyrrolobenzodiazepine antibody-drug conjugate targeting PSMA, in pre-clinical models of prostate cancer. Mol. Cancer Ther., 2018, 17(10), 2176-2186.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0982] [PMID: 30065100]
[442]
Danila, D.C.; Szmulewitz, R.Z.; Vaishampayan, U.; Higano, C.S.; Baron, A.D.; Gilbert, H.N.; Brunstein, F.; Milojic-Blair, M.; Wang, B.; Kabbarah, O.; Mamounas, M.; Fine, B.M.; Maslyar, D.J.; Ungewickell, A.; Scher, H.I. Phase I study of DSTP3086S, an antibody-drug conjugate targeting six-transmembrane epithelial antigen of prostate 1, in metastatic castration-resistant prostate cancer. J. Clin. Oncol., 2019, 37(36), 3518-3527.
[http://dx.doi.org/10.1200/JCO.19.00646] [PMID: 31689155]
[443]
Petrylak, D.P.; Vogelzang, N.J.; Chatta, G.S.; Fleming, M.T.; Smith, D.C.; Appleman, L.J. A phase 2 study of prostate specific membrane antigen antibody drug conjugate (PSMA ADC) in patients (pts) with progressive metastatic castration-resistant prostate cancer (mCRPC) following abiraterone and/or enzalutamide (abi/enz). J. Clin. Oncol., 2020, 38(Suppl.), 144.
[444]
De Bono, J.S.; Fleming, M.T.; Wang, J.S.Z.; Cathomas, R.; Williams, M.; Bothos, J.G. MEDI3726, a Prostate-Specific Membrane Antigen (PSMA)-targeted Antibody-Drug Conjugate (ADC) in mCRPC after failure of abiraterone or enzalutamide. J. Clin. Oncol., 2020, 38(Suppl.), 99.
[445]
Milowsky, M.I.; Galsky, M.D.; Morris, M.J.; Crona, D.J.; George, D.J.; Dreicer, R.; Tse, K.; Petruck, J.; Webb, I.J.; Bander, N.H.; Nanus, D.M.; Scher, H.I.; Scher, H.I. Phase 1/2 multiple ascending dose trial of the prostate-specific membrane antigen-targeted antibody drug conjugate MLN2704 in metastatic castration-resistant prostate cancer. Urol. Oncol., 2016, 34(12), 530.e15-530.e21.
[http://dx.doi.org/10.1016/j.urolonc.2016.07.005] [PMID: 27765518]
[446]
Niaz, M.O.; Sun, M.; Ramirez-Fort, M.K.; Niaz, M.J. Prostate-specific membrane antigen-based antibody-drug conjugates for metastatic castration-resistance prostate cancer. Cureus, 2020, 12(2), e7147.
[http://dx.doi.org/10.7759/cureus.7147] [PMID: 32257692]
[447]
Afar, D.E.H.; Bhaskar, V.; Ibsen, E.; Breinberg, D.; Henshall, S.M.; Kench, J.G.; Drobnjak, M.; Powers, R.; Wong, M.; Evangelista, F.; O’Hara, C.; Powers, D.; DuBridge, R.B.; Caras, I.; Winter, R.; Anderson, T.; Solvason, N.; Stricker, P.D.; Cordon-Cardo, C.; Scher, H.I.; Grygiel, J.J.; Sutherland, R.L.; Murray, R.; Ramakrishnan, V.; Law, D.A. Preclinical validation of anti-TMEFF2-auristatin E-conjugated antibodies in the treatment of prostate cancer. Mol. Cancer Ther., 2004, 3(8), 921-932.
[PMID: 15299075]
[448]
Law, D.A.; Afar, D.; Bhaskar, V.; Ibsen, E.; Powers, R.; Breinberg, D.; Wong, M.; Dubridge, R.; Ramakrishnan, V.; Murray, R. Identification and validation of anti-TMEFF2-auristatin E conjugated antibodies in the treatment of prostate cancer. J. Clin. Oncol., 2004, 22, 2557.
[449]
Boswell, C.A.; Yadav, D.B.; Mundo, E.E.; Yu, S.F.; Lacap, J.A.; Fourie-O’Donohue, A.; Kozak, K.R.; Ferl, G.Z.; Zhang, C.; Ho, J.; Ulufatu, S.; Khawli, L.A.; Lin, K. Biodistribution and efficacy of an anti-TENB2 antibody-drug conjugate in a patient-derived model of prostate cancer. Oncotarget, 2019, 10(58), 6234-6244.
[http://dx.doi.org/10.18632/oncotarget.27263] [PMID: 31692898]
[450]
Mathur, R.; Weiner, G.J. Picking the optimal target for antibodydrug conjugates. ASCO EdBook, 2013, e103-e107.
[http://dx.doi.org/10.14694/EdBook_AM.2013.33.e103]
[451]
Kurkjian, C.; LoRusso, P.; Sankhala, K.K.; Birrer, M.J.; Kirby, M.; Ladd, S.; Hawes, S.; Running, K.L.; O’Leary, J.J.; Moore, K.N. A phase I, first-in-human study to evaluate the safety, Pharmacokinetics (PK), and Pharmacodynamics (PD) of IMGN853 in patients (Pts) with Epithelial Ovarian Cancer (EOC) and other FOLR1-positive solid tumors. J. Clin. Oncol., 2013, 31(Suppl.), 2573.
[452]
Yoder, N.C.; Bai, C.; Tavares, D.; Widdison, W.C.; Ab, O.; Whiteman, K.R.; Wilhelm, A.; Maloney, E.K. Stability and efficacy comparison of site-specific and lysine-linked maytansinoid antibody-drug conjugates. Cancer Res., 2015, 75, 645.
[http://dx.doi.org/10.1158/1538-7445.AM2015-645]
[453]
Challita-Eid, P.M.; Satpayev, D.; Yang, P.; An, Z.; Morrison, K.; Shostak, Y.; Raitano, A.; Nadell, R.; Liu, W.; Lortie, D.R.; Capo, L.; Verlinsky, A.; Leavitt, M.; Malik, F.; Aviña, H.; Guevara, C.I.; Dinh, N.; Karki, S.; Anand, B.S.; Pereira, D.S.; Joseph, I.B.; Doñate, F.; Morrison, K.; Stover, D.R. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res., 2016, 76(10), 3003-3013.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1313] [PMID: 27013195]
[454]
M-Rabet,M.; Cabaud, O.; Josselin, E.; Finetti, P.; Castellano, R.; Farina, A.; Agavnian-Couquiaud, E.; Saviane, G.; Collette, Y.; Viens, P.; Gonçalves, A.; Ginestier, C.; Charafe-Jauffret, E.; Birnbaum, D.; Olive, D.; Bertucci, F.; Lopez, M. Nectin-4: A new prognostic biomarker for efficient therapeutic targeting of primary and metastatic triple-negative breast cancer. Ann. Oncol., 2017, 28(4), 769-776.
[http://dx.doi.org/10.1093/annonc/mdw678] [PMID: 27998973]
[455]
Boylan, K.L.; Buchanan, P.C.; Manion, R.D.; Shukla, D.M.; Braumberger, K.; Bruggemeyer, C.; Skubitz, A.P. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget, 2017, 8(6), 9717-9738.
[http://dx.doi.org/10.18632/oncotarget.14206] [PMID: 28038455]
[456]
Petrylak, D.P.; Perez, R.P.; Zhang, J.; Smith, D.C.; Ruether, J.D.; Sridhar, S.S. A phase I study of enfortumab vedotin (ASG-22CE; ASG-22ME): updated analysis of patients with metastatic urothelial cancer. J. Clin. Oncol., 2017, 35(Suppl.), 106.
[457]
Powles, T.; Rosenberg, J.E.; Sonpavde, G.P.; Loriot, Y.; Durán, I.; Lee, J.L.; Matsubara, N.; Vulsteke, C.; Castellano, D.; Wu, C.; Campbell, M.; Matsangou, M.; Petrylak, D.P. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N. Engl. J. Med., 2021, 384(12), 1125-1135.
[http://dx.doi.org/10.1056/NEJMoa2035807] [PMID: 33577729]
[458]
McGregor, B.A.; Sonpavde, G. Enfortumab Vedotin, a fully human monoclonal antibody against Nectin 4 conjugated to monomethyl auristatin E for metastatic urothelial Carcinoma. Expert Opin. Investig. Drugs, 2019, 28(10), 821-826.
[http://dx.doi.org/10.1080/13543784.2019.1667332] [PMID: 31526130]
[459]
Vlachostergios, P.J.; Jakubowski, C.D.; Niaz, M.J.; Lee, A.; Thomas, C.; Hackett, A.L.; Patel, P.; Rashid, N.; Tagawa, S.T. Antibody-drug conjugates in bladder cancer. Bladder Cancer, 2018, 4(3), 247-259.
[http://dx.doi.org/10.3233/BLC-180169] [PMID: 30112436]
[460]
Sarfaty, M.; Rosenberg, J.E. Antibody-drug conjugates in urothelial carcinomas. Curr. Oncol. Rep., 2020, 22(2), 13.
[http://dx.doi.org/10.1007/s11912-020-0879-y] [PMID: 32008109]
[461]
Rosenberg, J.E.; O’Donnell, P.H.; Balar, A.V.; McGregor, B.A.; Heath, E.I.; Yu, E.Y.; Galsky, M.D.; Hahn, N.M.; Gartner, E.M.; Pinelli, J.M.; Liang, S.Y.; Melhem-Bertrandt, A.; Petrylak, D.P. Pivotal trial of enfortumab vedotin in urothelial carcinoma after platinum and anti-programmed death 1/programmed death ligand 1 therapy. J. Clin. Oncol., 2019, 37(29), 2592-2600.
[http://dx.doi.org/10.1200/JCO.19.01140] [PMID: 31356140]
[462]
Chang, E.; Weinstock, C.; Zhang, L.; Charlab, R.; Dorff, S.E.; Gong, Y.; Hsu, V.; Li, F.; Ricks, T.K.; Song, P.; Tang, S.; Waldron, P.E.; Yu, J.; Zahalka, E.; Goldberg, K.B.; Pazdur, R.; Theoret, M.R.; Ibrahim, A.; Beaver, J.A. FDA approval summary: enfortumab vedotin for locally advanced or metastatic urothelial carcinoma. Clin. Cancer Res., 2021, 27(4), 922-927.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-2275] [PMID: 32962979]
[463]
Geles, K.G.; Gao, Y.; Sridharan, L.; Giannakou, A.; Yamin, T.T.; Golas, J.; Lucas, J.; Charati, M.; Li, X.; Guffroy, M.; Nichols, T. therapeutic targeting the NOTCH3 receptor with antibody-drug conjugates. Proc. AACR, 2015, 1697.
[464]
Katoh, M.; Katoh, M. Precision medicine for human cancers with Notch signaling dysregulation (Review). Int. J. Mol. Med., 2020, 45(2), 279-297.
[PMID: 31894255]
[465]
Rosen, L.S.; Wesolowski, R.; Baffa, R.; Liao, K.H.; Hua, S.Y.; Gibson, B.L.; Pirie-Shepherd, S.; Tolcher, A.W. A phase I, dose-escalation study of PF-06650808, an anti-Notch3 antibody-drug conjugate, in patients with breast cancer and other advanced solid tumors. Invest. New Drugs, 2020, 38(1), 120-130.
[http://dx.doi.org/10.1007/s10637-019-00754-y] [PMID: 30887250]
[466]
Damelin, M.; Bankovich, A.; Bernstein, J.; Lucas, J.; Chen, L.; Williams, S.; Park, A.; Aguilar, J.; Ernstoff, E.; Charati, M.; Dushin, R.; Aujay, M.; Lee, C.; Ramoth, H.; Milton, M.; Hampl, J.; Lazetic, S.; Pulito, V.; Rosfjord, E.; Sun, Y.; King, L.; Barletta, F.; Betts, A.; Guffroy, M.; Falahatpisheh, H.; O’Donnell, C.J.; Stull, R.; Pysz, M.; Escarpe, P.; Liu, D.; Foord, O.; Gerber, H.P.; Sapra, P.; Dylla, S.J.A. PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions. Sci. Transl. Med., 2017, 9(372), eaag2611.
[http://dx.doi.org/10.1126/scitranslmed.aag2611] [PMID: 28077676]
[467]
Sachdev, J.C.; Maitland, M.L.; Sharma, M.; Moreno, V.; Boni, V.; Kummar, S. PF-06647020 (PF-7020), an antibody-drug conjugate (ADC) targeting protein tyrosine kinase 7 (PTK7), in patients (pts) with advanced solid tumors: Results of a phase I dose escalation and expansion study. J. Clin. Oncol., 2018, 36(Suppl.), 5565.
[468]
Coveler, A.L.; Von Hoff, D.D.; Ko, A.H.; Whiting, N.C.; Zhao, B.; Wolpin, B.M. A phase I study of ASG-5ME, a novel antibody-drug conjugate, in pancreatic ductal adenocarcinoma. J. Clin. Oncol., 2013, 31(Suppl.), 176.
[469]
Mattie, M.; Raitano, A.; Morrison, K.; Morrison, K.; An, Z.; Capo, L.; Verlinsky, A.; Leavitt, M.; Ou, J.; Nadell, R.; Aviña, H.; Guevara, C.; Malik, F.; Moser, R.; Duniho, S.; Coleman, J.; Li, Y.; Pereira, D.S.; Doñate, F.; Joseph, I.B.; Challita-Eid, P.; Benjamin, D.; Stover, D.R. The discovery and preclinical development of ASG-5ME, an antibody-drug conjugate targeting SLC44A4-positive epithelial tumors including pancreatic and prostate cancer. Mol. Cancer Ther., 2016, 15(11), 2679-2687.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0225] [PMID: 27550944]
[470]
McHugh, D.; Eisenberger, M.; Heath, E.I.; Bruce, J.; Danila, D.C.; Rathkopf, D.E.; Feldman, J.; Slovin, S.F.; Anand, B.; Chu, R.; Lackey, J.; Reyno, L.; Antonarakis, E.S.; Morris, M.J. A phase I study of the antibody drug conjugate ASG-5ME, an SLC44A4-targeting antibody carrying auristatin E, in metastatic castration-resistant prostate cancer. Invest. New Drugs, 2019, 37(5), 1052-1060.
[http://dx.doi.org/10.1007/s10637-019-00731-5] [PMID: 30725389]
[471]
Hamblett, K.J.; Jacob, A.P.; Gurgel, J.L.; Tometsko, M.E.; Rock, B.M.; Patel, S.K.; Milburn, R.R.; Siu, S.; Ragan, S.P.; Rock, D.A.; Borths, C.J.; O’Neill, J.W.; Chang, W.S.; Weidner, M.F.; Bio, M.M.; Quon, K.C.; Fanslow, W.C. SLC46A3 is required to transport catabolites of noncleavable antibody maytansine conjugates from the lysosome to the cytoplasm. Cancer Res., 2015, 75(24), 5329-5340.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-1610] [PMID: 26631267]
[472]
Kinneer, K.; Meekin, J.; Tiberghien, A.C.; Tai, Y.T.; Phipps, S.; Kiefer, C.M.; Rebelatto, M.C.; Dimasi, N.; Moriarty, A.; Papadopoulos, K.P.; Sridhar, S.; Gregson, S.J.; Wick, M.J.; Masterson, L.; Anderson, K.C.; Herbst, R.; Howard, P.W.; Tice, D.A. SLC46A3 as a potential predictive biomarker for antibody-drug conjugates bearing non-cleavable linked maytansinoid and pyrrolobenzodiazepine warheads. Clin. Cancer Res., 2018, 24(24), 6570-6582.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1300] [PMID: 30131388]
[473]
Morrison, K.; Challita-Eid, P.M.; Raitano, A.; An, Z.; Yang, P.; Abad, J.D.; Liu, W.; Lortie, D.R.; Snyder, J.T.; Capo, L.; Verlinsky, A.; Aviña, H.; Doñate, F.; Joseph, I.B.J.; Pereira, D.S.; Morrison, K.; Stover, D.R. Development of ASG-15ME, a novel antibody-drug conjugate targeting SLITRK6, a new urothelial cancer biomarker. Mol. Cancer Ther., 2016, 15(6), 1301-1310.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0570] [PMID: 26944921]
[474]
Thomas, L.J.; Vitale, L.; O’Neill, T.; Dolnick, R.Y.; Wallace, P.K.; Minderman, H.; Gergel, L.E.; Forsberg, E.M.; Boyer, J.M.; Storey, J.R.; Pilsmaker, C.D.; Hammond, R.A.; Widger, J.; Sundarapandiyan, K.; Crocker, A.; Marsh, H.C., Jr; Keler, T. Development of a novel antibody-drug conjugate for the potential treatment of ovarian, lung and renal cell carcinoma expressing TIM-1. Mol. Cancer Ther., 2016, 15(12), 2946-2954.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0393] [PMID: 27671527]
[475]
Kishimoto, W.; Nishikori, M.; Arima, H.; Miyoshi, H.; Sasaki, Y.; Kitawaki, T.; Shirakawa, K.; Kato, T.; Imaizumi, Y.; Ishikawa, T.; Ohno, H.; Haga, H.; Ohshima, K.; Takaori-Kondo, A. Expression of Tim-1 in primary CNS lymphoma. Cancer Med., 2016, 5(11), 3235-3245.
[http://dx.doi.org/10.1002/cam4.930] [PMID: 27709813]
[476]
McGregor, B.A.; Gordon, M.; Flippot, R.; Agarwal, N.; George, S.; Quinn, D.I.; Rogalski, M.; Hawthorne, T.; Keler, T.; Choueiri, T.K. Safety and efficacy of CDX-014, an antibody-drug conjugate directed against T cell immunoglobulin mucin-1 in advanced renal cell carcinoma. Invest. New Drugs, 2020, 38(6), 1807-1814.
[http://dx.doi.org/10.1007/s10637-020-00945-y] [PMID: 32472319]
[477]
de Goeij, B.E.C.G.; Satijn, D.; Freitag, C.M.; Wubbolts, R.; Bleeker, W.K.; Khasanov, A.; Zhu, T.; Chen, G.; Miao, D.; van Berkel, P.H.; Parren, P.W. High turnover of tissue factor enables efficient intracellular delivery of antibody-drug conjugates. Mol. Cancer Ther., 2015, 14(5), 1130-1140.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0798] [PMID: 25724665]
[478]
Lassen, U.N.; Hong, D.S.; Diamantis, N.; Subbiah, V.; Kumar, R.; Sorensen, M.; Lisby, S. A phase I, first-in-human study to evaluate the tolerability, pharmacokinetics and preliminary efficacy of HuMax-tissue factor-ADC (TF-ADC) in patients with solid tumors. J. Clin. Oncol., 2015, 33(Suppl.), 2570.
[479]
Theunissen, J.W.; Cai, A.G.; Bhatti, M.M.; Cooper, A.B.; Avery, A.D.; Dorfman, R.; Guelman, S.; Levashova, Z.; Migone, T.S. Treating tissue factor–positive cancers with antibody-drug conjugates that do not affect blood clotting. Mol. Cancer Ther., 2018, 17(11), 2412-2426.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0471] [PMID: 30126944]
[480]
de Bono, J.S.; Concin, N.; Hong, D.S.; Thistlethwaite, F.C.; Machiels, J.P.; Arkenau, H.T.; Plummer, R.; Jones, R.H.; Nielsen, D.; Windfeld, K.; Ghatta, S.; Slomovitz, B.M.; Spicer, J.F.; Yachnin, J.; Ang, J.E.; Mau-Sørensen, P.M.; Forster, M.D.; Collins, D.; Dean, E.; Rangwala, R.A.; Lassen, U. Tisotumab vedotin in patients with advanced or metastatic solid tumours (InnovaTV 201): A first-in-human, multicentre, phase 1-2 trial. Lancet Oncol., 2019, 20(3), 383-393.
[http://dx.doi.org/10.1016/S1470-2045(18)30859-3] [PMID: 30745090]
[481]
Hong, D.S.; Concin, N.; Vergote, I.; de Bono, J.S.; Slomovitz, B.M.; Drew, Y.; Arkenau, H.T.; Machiels, J.P.; Spicer, J.F.; Jones, R.; Forster, M.D.; Cornez, N.; Gennigens, C.; Johnson, M.L.; Thistlethwaite, F.C.; Rangwala, R.A.; Ghatta, S.; Windfeld, K.; Harris, J.R.; Lassen, U.N.; Coleman, R.L. Tisotumab vedotin in previously treated recurrent or metastatic cervical cancer. Clin. Cancer Res., 2020, 26(6), 1220-1228.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2962] [PMID: 31796521]
[482]
Vergote, I.; Concin, N.; Mirza, M.R.; Andreassen, C.M.; Lorusso, D.; Gennigens, C.N. Phase Ib/II trial of tisotumab vedotin (TV) ± bevacizumab (BEV), pembrolizumab (PEM), or carboplatin (CBP) in recurrent or metastatic cervical cancer (innovaTV 205/ENGOT-cx8/GOG-3024). J. Clin. Oncol., 2020, 38(Suppl.), TPS6095.
[http://dx.doi.org/10.1200/JCO.2020.38.15_suppl.TPS6095]
[483]
Mahdi, H.; Schuster, S.R.; O’Malley, D.M.; McNamara, D.M.; Rangwala, R.A.; Liang, S.Y. Phase 2 trial of tisotumab vedotin in platinum-resistant ovarian cancer (innovaTV 208). J. Clin. Oncol., 2019, 37(15)(Suppl.), TPS5602.
[http://dx.doi.org/10.1200/JCO.2019.37.15_suppl.TPS5602]
[484]
Goldenberg, D.M.; Sharkey, R.M. Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: A case study of anti-TROP-2 sacituzumab govitecan. MAbs, 2019, 11(6), 987-995.
[http://dx.doi.org/10.1080/19420862.2019.1632115] [PMID: 31208270]
[485]
Sharkey, R.M.; McBride, W.J.; Cardillo, T.M.; Govindan, S.V.; Wang, Y.; Rossi, E.A.; Chang, C.H.; Goldenberg, D.M. Enhanced delivery of SN-38 to human tumor xenografts with an anti-Trop-2-SN-38 antibody conjugate (Sacituzumab govitecan). Clin. Cancer Res., 2015, 21(22), 5131-5138.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0670] [PMID: 26106073]
[486]
Strop, P.; Tran, T.T.; Dorywalska, M.; Delaria, K.; Dushin, R.; Wong, O.K.; Ho, W.H.; Zhou, D.; Wu, A.; Kraynov, E.; Aschenbrenner, L.; Han, B.; O’Donnell, C.J.; Pons, J.; Rajpal, A.; Shelton, D.L.; Liu, S.H. RN927C, a site-specific Trop-2 Antibody-Drug Conjugate (ADC) with enhanced stability, is highly efficacious in preclinical solid tumor models. Mol. Cancer Ther., 2016, 15(11), 2698-2708.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0431] [PMID: 27582525]
[487]
Cardillo, T.M.; Sharkey, R.M.; Rossi, D.L.; Arrojo, R.; Mostafa, A.A.; Goldenberg, D.M. Synthetic lethality exploitation by an anti-Trop-2-SN-38 antibody-drug conjugate, IMMU-132, plus PARP-inhibitors in BRCA1/2-wild-type triple-negative breast cancer. Clin. Cancer Res., 2017, 23(13), 3405-3415.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2401] [PMID: 28069724]
[488]
Gray, J.E.; Heist, R.S.; Starodub, A.N.; Camidge, D.R.; Kio, E.A.; Masters, G.A.; Purcell, W.T.; Guarino, M.J.; Misleh, J.; Schneider, C.J.; Schneider, B.J.; Ocean, A.; Johnson, T.; Gandhi, L.; Kalinsky, K.; Scheff, R.; Messersmith, W.A.; Govindan, S.V.; Maliakal, P.P.; Mudenda, B.; Wegener, W.A.; Sharkey, R.M.; Goldenberg, D.M. Therapy of Small-Cell Lung Cancer (SCLC) with a topoisomerase-inhibiting Antibody-Drug Conjugate (ADC) targeting trop-2, sacituzumab govitecan. Clin. Cancer Res., 2017, 23(19), 5711-5719.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0933] [PMID: 28679770]
[489]
Bardia, A.; Mayer, I.A.; Vahdat, L.T.; Tolaney, S.M.; Isakoff, S.J.; Diamond, J.R.; O’Shaughnessy, J.; Moroose, R.L.; Santin, A.D.; Abramson, V.G.; Shah, N.C.; Rugo, H.S.; Goldenberg, D.M.; Sweidan, A.M.; Iannone, R.; Washkowitz, S.; Sharkey, R.M.; Wegener, W.A.; Kalinsky, K. Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N. Engl. J. Med., 2019, 380(8), 741-751.
[http://dx.doi.org/10.1056/NEJMoa1814213] [PMID: 30786188]
[490]
Wahby, S.; Fashoyin-Aje, L.; Osgood, C.L.; Cheng, J.; Fiero, M.H.; Zhang, L.; Tang, S.; Hamed, S.S.; Song, P.; Charlab, R.; Dorff, S.E.; Ricks, T.K.; Barnett-Ringgold, K.; Dinin, J.; Goldberg, K.B.; Theoret, M.R.; Pazdur, R.; Amiri-Kordestani, L.; Beaver, J.A. FDA approval summary: Accelerated approval of sacituzumab govitecan-hziy for third line treatment of metastatic triple-negative breast cancer (mTNBC). Clin. Cancer Res., 2021, 27(7), 1850-1854.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-3119] [PMID: 33168656]
[491]
Syed, Y.Y. Sacituzumab govitecan: First approval. Drugs, 2020, 80(10), 1019-1025.
[http://dx.doi.org/10.1007/s40265-020-01337-5] [PMID: 32529410]
[492]
Starodub, A.N.; Ocean, A.J.; Shah, M.A.; Guarino, M.J.; Picozzi, V.J., Jr; Vahdat, L.T.; Thomas, S.S.; Govindan, S.V.; Maliakal, P.P.; Wegener, W.A.; Hamburger, S.A.; Sharkey, R.M.; Goldenberg, D.M. First-in-human trial of a novel anti-Trop-2 antibody-SN-38 conjugate sacituzumab govitecan, for the treatment of diverse metastatic solid tumors. Clin. Cancer Res., 2015, 21(17), 3870-3878.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-3321] [PMID: 25944802]
[493]
Guarino, M.J.; Starodub, A.N.; Masters, G.A.; Heist, R.S.; Messersmith, W.A.; Bardia, A.; Ocean, A.J. Therapy of advanced metastatic lung cancer with an anti-trop-2-SN-38 antibody-drug conjugate (ADC), sacituzumab govitecan (IMMU-132): phase I/II clinical experience. J. Clin. Oncol., 2015, 33(Suppl.), 2504.
[494]
Starodub, A.N.; Ocean, A.J.; Messersmith, W.A.; Picozzi, V.J.; Guarino, M.J.; Bardia, A.; Thomas, S. Therapy of gastrointestinal malignancies with an anti-trop-2-SN-38 antibody-drug conjugate (ADC) (sacituzumab govitecan): Phase I/II clinical experience. J. Clin. Oncol., 2015, 33(Suppl.), 3546.
[495]
Bardia, A.; Vahdat, L.T.; Diamond, J.R.; Starodub, A.; Moroose, R.L.; Isakoff, S.J.; Ocean, A.J.; Berlin, J. Therapy of refractory/relapsed metastatic triple-negative breast cancer (TNBC) with an anti-trop-2-SN-38 antibody-drug conjugate (ADC), sacituzumab govitecan (IMMU-132): Phase I/II clinical experience. J. Clin. Oncol., 2015, 33(Suppl.), 1016.
[496]
Asundi, J.; Crocker, L.; Tremayne, J.; Chang, P.; Sakanaka, C.; Tanguay, J.; Spencer, S.; Chalasani, S.; Luis, E.; Gascoigne, K.; Desai, R.; Raja, R.; Friedman, B.A.; Haverty, P.M.; Polakis, P.; Firestein, R. An antibody-drug conjugate directed against lymphocyte antigen 6 complex, locus E (LY6E) provides robust tumor killing in a wide range of solid tumor malignancies. Clin. Cancer Res., 2015, 21(14), 3252-3262.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0156] [PMID: 25862760]
[497]
Tolaney, S.M.; Do, K.T.; Eder, J.P.; LoRusso, P.M.; Weekes, C.D.; Chandarlapaty, S.; Chang, C.W.; Chen, S.C.; Nazzal, D.; Schuth, E.; Brunstein, F.; Carrasco-Triguero, M.; Darbonne, W.C.; Giltnane, J.M.; Flanagan, W.M.; Commerford, S.R.; Ungewickell, A.; Shapiro, G.I.; Modi, S. 1 Shanu Modi. A Phase I study of DLYE5953A, an anti-LY6E antibody covalently linked to monomethyl auristatin E, in patients with refractory solid tumors. Clin. Cancer Res., 2020, 26(21), 5588-5597.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-1067] [PMID: 32694157]
[498]
Sandhu, S.; McNeil, C.M.; LoRusso, P.; Patel, M.R.; Kabbarah, O.; Li, C.; Sanabria, S.; Flanagan, W.M.; Yeh, R.F.; Brunstein, F.; Nazzal, D.; Hicks, R.; Lemahieu, V.; Meng, R.; Hamid, O.; Infante, J.R. Phase I study of the anti-endothelin B receptor antibody-drug conjugate DEDN6526A in patients with metastatic or unresectable cutaneous, mucosal, or uveal melanoma. Invest. New Drugs, 2020, 38(3), 844-854.
[http://dx.doi.org/10.1007/s10637-019-00832-1] [PMID: 31385109]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy