Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Research Article

Role of Natural Plant Products Against Hemagglutinin-esterase (HE) of Human Coronavirus

Author(s): Mantasha I., Mohd. Shahid, Falaq Naz and Yasir Hasan Siddique*

Volume 3, Issue 2, 2022

Published on: 10 May, 2022

Article ID: e230222201366 Pages: 23

DOI: 10.2174/2665978603666220223093343

Price: $65

Abstract

Background: COVID-19 has spread worldwide and become a great cause of economic and social loss. Due to the non-availability of effective medicine/drug, its control has become a difficult task.

Objective: In the present study, the effect of some selected natural plant products was studied on the Hemagglutinin-esterase of the human coronavirus by performing molecular docking.

Methods: Molecular docking study for some selected natural plant products against Hemagglutininesterase (HE) of human coronavirus was performed using the HEX 8.0.0 software.

Results: The free binding energy ranged from -298.14 to -161, with that of curcumin being the highest.

Conclusions: The results suggest that the natural plant products could act as possible anti-viral agents and may be used as natural therapeutic agents.

Keywords: Coronavirus, natural plant products, molecular docking, hemagglutinin-esterase, non-covalent interactions, proteinligand.

Graphical Abstract

[1]
van der Hoek, L.; Pyrc, K.; Jebbink, M.F.; Vermeulen-Oost, W.; Berkhout, R.J.; Wolthers, K.C.; Wertheim-van Dillen, P.M.; Kaandorp, J.; Spaargaren, J.; Berkhout, B. Identification of a new human coronavirus. Nat. Med., 2004, 10(4), 368-373.
[http://dx.doi.org/10.1038/nm1024] [PMID: 15034574]
[2]
Guy, J.S.; Breslin, J.J.; Breuhaus, B.; Vivrette, S.; Smith, L.G. Characterization of a coronavirus isolated from a diarrheic foal. J. Clin. Microbiol., 2000, 38(12), 4523-4526.
[http://dx.doi.org/10.1128/JCM.38.12.4523-4526.2000] [PMID: 11101590]
[3]
Weiss, S.R. Forty years with coronaviruses. J. Exp. Med., 2020, 217(5), 1-4.
[http://dx.doi.org/10.1084/jem.20200537] [PMID: 32232339]
[4]
Wang, W.; Tang, J.; Wei, F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J. Med. Virol., 2020, 92(4), 441-447.
[http://dx.doi.org/10.1002/jmv.25689] [PMID: 31994742]
[5]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[6]
Perlman, S.; Netland, J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat. Rev. Microbiol., 2009, 7(6), 439-450.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[7]
Zeng, Q.; Langereis, M.A.; van Vliet, A.L.; Huizinga, E.G.; de Groot, R.J. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9065-9069.
[http://dx.doi.org/10.1073/pnas.0800502105] [PMID: 18550812]
[8]
Ritchie, D.W.; Venkatraman, V. Ultra-fast FFT protein docking on graphics processors. Bioinform., 2010, 26(19), 2398-2405.
[http://dx.doi.org/10.1093/bioinformatics/btq444] [PMID: 20685958]
[9]
Shahid, M.; Siddique, A.; Ashafaq, M.; Raizada, M.; Sama, F.; Ahamad, M.N.; Mantasha, I.; Ansari, I.A.; Khan, I.M.; Kumar, P.; Fatma, K. Spectroscopic investigations on La3+, Pr3+, Nd3+ and Gd3+ complexes with a multidentate ligating system: Luminescence properties and biological activities. J. Mol. Struct., 2018, 1173, 918-930.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.035]
[10]
Sama, F.; Raizada, M.; Ashafaq, M.; Ahamad, M.N.; Mantasha, I.; Iman, K.; Shahid, M.; Arif, R.; Shah, N.A.; Saleh, H.A. Synthesis, structure and DNA binding properties of a homodinuclear Cu (II) complex: An experimental and theoretical approach. J. Mol. Struct., 2019, 1176, 283-289.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.081]
[11]
Akhtar, M.N.; AlDamen, M.A.; Zierkiewicz, W.; Michalczyk, M.; Khalid, M.; Idrisi, M.; Shahid, M. Synthesis, crystal structure, DFT calculations, molecular docking study and Hirshfeld surface analysis of alkoxido-bridged dinuclear iron (III) complex. Res. Chem. Intermed., 2020, 46, 4155-4171.
[http://dx.doi.org/10.1007/s11164-020-04198-5]
[12]
Siddique, Y.H. Rahul; Mantasha, I.; Shahid, M. Effect of cabergoline on cognitive impairments in transgenic drosophila model of Parkinson’s disease. Lett. Drug Des. Discov., 2020, 17(10), 1261-1269.
[http://dx.doi.org/10.2174/1570180817999200514100917]
[13]
Mantasha, I.; Shahid, M.; Kumar, M.; Ansari, A.; Akhtar, M.N.; AlDamen, M.A.; Song, Y.; Ahmad, M.; Khan, I.M. Exploring solvent dependent catecholase activity in transition metal complexes: An experimental and theoretical approach. New J. Chem., 2020, 44(4), 1371-1388.
[http://dx.doi.org/10.1039/C9NJ04374H]
[14]
Kunchandy, E.; Rao, M.N.A. Oxygen radical scavenging activity of curcumin. Int. J. Pharm., 1990, 58(3), 237-240.
[http://dx.doi.org/10.1016/0378-5173(90)90201-E]
[15]
Zhang, D.; Hou, L.; Peng, W. Tangeritin attenuates oxidative stress, apoptosis and inflammation in cadmium-induced cardiotoxicity in rats by activating Nrf2 signaling pathway. Trop. J. Pharm. Res., 2018, 17(12), 2421-2426.
[http://dx.doi.org/10.4314/tjpr.v17i12.16]
[16]
Fatima, A.; Khanam, S.; Rahul, R.; Jyoti, S.; Naz, F.; Ali, F.; Siddique, Y.H. Protective effect of tangeritin in transgenic Drosophila model of Parkinson’s disease. Front. Biosci. (Elite Ed.), 2017, 9, 44-53.
[http://dx.doi.org/10.2741/e784] [PMID: 27814588]
[17]
Ong, K.C.; Khoo, H.E. Biological effects of myricetin. Gen. Pharmacol., 1997, 29(2), 121-126.
[http://dx.doi.org/10.1016/S0306-3623(96)00421-1] [PMID: 9251891]
[18]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050] [PMID: 18991571]
[19]
Calderón-Montaño, J.M.; Burgos-Morón, E.; Pérez-Guerrero, C.; López-Lázaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem., 2011, 11(4), 298-344.
[http://dx.doi.org/10.2174/138955711795305335] [PMID: 21428901]
[20]
Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3106-3112.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[21]
Avallone, R.; Zanoli, P.; Puia, G.; Kleinschnitz, M.; Schreier, P.; Baraldi, M. Pharmacological profile of apigenin, a flavonoid isolated from Matricaria chamomilla. Biochem. Pharmacol., 2000, 59(11), 1387-1394.
[http://dx.doi.org/10.1016/S0006-2952(00)00264-1] [PMID: 10751547]
[22]
Garg, A.; Garg, S.; Zaneveld, L.J.; Singla, A.K. Chemistry and pharmacology of the citrus bioflavonoid hesperidin. Phytother. Res., 2001, 15(8), 655-669.
[http://dx.doi.org/10.1002/ptr.1074] [PMID: 11746857]
[23]
Terao, J.; Piskula, M.; Yao, Q. Protective effect of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipid bilayers. Arch. Biochem. Biophys., 1994, 308(1), 278-284.
[http://dx.doi.org/10.1006/abbi.1994.1039] [PMID: 8311465]
[24]
Frémont, L. Biological effects of resveratrol. Life Sci., 2000, 66(8), 663-673.
[http://dx.doi.org/10.1016/S0024-3205(99)00410-5] [PMID: 10680575]
[25]
Baur, J.A.; Sinclair, D.A. Therapeutic potential of resveratrol: the in vivo evidence. Nat. Rev. Drug Discov., 2006, 5(6), 493-506.
[http://dx.doi.org/10.1038/nrd2060] [PMID: 16732220]
[26]
Verdrengh, M.; Jonsson, I.M.; Holmdahl, R.; Tarkowski, A. Genistein as an anti-inflammatory agent. Inflamm. Res., 2003, 52(8), 341-346.
[http://dx.doi.org/10.1007/s00011-003-1182-8] [PMID: 14504672]
[27]
Sarkar, F.H.; Li, Y. Mechanisms of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev., 2002, 21(3-4), 265-280.
[http://dx.doi.org/10.1023/A:1021210910821] [PMID: 12549765]
[28]
Badary, O.A.; Abdel-Maksoud, S.; Ahmed, W.A.; Owieda, G.H. Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci., 2005, 76(18), 2125-2135.
[http://dx.doi.org/10.1016/j.lfs.2004.11.005] [PMID: 15826879]
[29]
Kanaze, F.I.; Bounartzi, M.I.; Georgarakis, M.; Niopas, I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur. J. Clin. Nutr., 2007, 61(4), 472-477.
[http://dx.doi.org/10.1038/sj.ejcn.1602543] [PMID: 17047689]
[30]
Salari, H.; Braquet, P.; Borgeat, P. Comparative effects of indomethacin, acetylenic acids, 15-HETE, nordihydroguaiaretic acid and BW755C on the metabolism of arachidonic acid in human leukocytes and platelets. Prostaglandins Leukot. Med., 1984, 13(1), 53-60.
[http://dx.doi.org/10.1016/0262-1746(84)90102-1] [PMID: 6424136]
[31]
Onawunmi, G.O. Evaluation of the antimicrobial activity of citral. Lett. Appl. Microbiol., 1989, 9(3), 105-108.
[http://dx.doi.org/10.1111/j.1472-765X.1989.tb00301.x]
[32]
Liu, H.; Wang, Y.; Cao, J.; Jiang, H.; Yao, J.; Gong, G.; Chen, X.; Xu, W.; He, X. Antimicrobial activity and virulence attenuation of citral against the fish pathogen Vibrio alginolyticus. Aquaculture, 2020, 515, 1-10.
[http://dx.doi.org/10.1016/j.aquaculture.2019.734578]
[33]
Lira, M.H.; Andrade Júnior, F.P.; Moraes, G.F.; Macena, G.D.; Pereira, F.D.; Lima, I.O. Antimicrobial activity of geraniol: An integrative review. J. Essent. Oil Res., 2020, 32(3), 187-197.
[http://dx.doi.org/10.1080/10412905.2020.1745697]
[34]
Hosseini, S.M.; Hejazian, L.B.; Amani, R.; Siahchehreh Badeli, N. Geraniol attenuates oxidative stress, bioaccumulation, serological and histopathological changes during aluminum chloride-hepatopancreatic toxicity in male Wistar rats. Environ. Sci. Pollut. Res. Int., 2020, 27(16), 20076-20089.
[http://dx.doi.org/10.1007/s11356-020-08128-1] [PMID: 32232762]
[35]
Karki, N.; Aggarwal, S.; Laine, R.A.; Greenway, F.; Losso, J.N. Cytotoxicity of juglone and thymoquinone against pancreatic cancer cells. Chem. Biol. Interact., 2020, 109142, 1-43.
[http://dx.doi.org/10.1016/j.cbi.2020.109142] [PMID: 32610056]
[36]
Woo, C.C.; Kumar, A.P.; Sethi, G.; Tan, K.H. Thymoquinone: Potential cure for inflammatory disorders and cancer. Biochem. Pharmacol., 2012, 83(4), 443-451.
[http://dx.doi.org/10.1016/j.bcp.2011.09.029] [PMID: 22005518]
[37]
Gupta, J.; Siddique, Y.H.; Beg, T.; Ara, G.; Afzal, M. A review on the beneficial effects of tea polyphenols on human health. Int. J. Pharmacol., 2008, 4(5), 314-338.
[http://dx.doi.org/10.3923/ijp.2008.314.338]
[38]
Siddique, Y.H.; Beg, T.; Afzal, M. Antigenotoxic effect of apigenin against anti-cancerous drugs. Toxicol. In Vitro, 2008, 22(3), 625-631.
[http://dx.doi.org/10.1016/j.tiv.2007.12.002] [PMID: 18206345]
[39]
Siddique, Y.H.; Jyoti, S.; Naz, F. Effect of epicatechin gallate dietary supplementation on transgenic Drosophila model of Parkinson’s disease. J. Diet. Suppl., 2014, 11(2), 121-130.
[http://dx.doi.org/10.3109/19390211.2013.859207] [PMID: 24670116]
[40]
Ali, F. Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Health functionality of apigenin: A review. Int. J. Food Prop., 2017, 20(6), 1197-1238.
[http://dx.doi.org/10.1080/10942912.2016.1207188]
[41]
Siddique, Y.H.; Beg, T.; Afzal, M. Protective effect of nordihydroguaiaretic acid (NDGA) against norgestrel induced genotoxic damage. Toxicol. In Vitro, 2006, 20(2), 227-233.
[http://dx.doi.org/10.1016/j.tiv.2005.06.027] [PMID: 16061348]
[42]
Siddique, Y.H.; Ara, G.; Jyoti, S.; Afzal, M. Protective effect of curcumin in transgenic Drosophila melanogaster model of Parkinson’s disease. Alt. Med. Stud., 2012, 2(1), 1-7.
[http://dx.doi.org/10.4081/ams.2012.e3]
[43]
Siddique, Y.H.; Naz, F.; Jyoti, S. Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson’s disease. BioMed Res. Int., 2014, 2014, 606928.
[http://dx.doi.org/10.1155/2014/606928] [PMID: 24860828]
[44]
Siddique, Y.H.; Naz, F.; Jyoti, S.; Ali, F.; Fatima, A. Rahul; Khanam, S. Protective effect of Geraniol on the transgenic Drosophila model of Parkinson’s disease. Environ. Toxicol. Pharmacol., 2016, 43, 225-231.
[http://dx.doi.org/10.1016/j.etap.2016.03.018] [PMID: 27026137]
[45]
Beg, T.; Jyoti, S.; Naz, F. Rahul; Ali, F.; Ali, S.K.; Reyad, A.M.; Siddique, Y.H. Protective effect of kaempferol on the transgenic Drosophila model of Alzheimer’s disease. CNS Neurol. Dis. Drug Tar., 2018, 17(6), 421-429.
[http://dx.doi.org/10.2174/1871527317666180508123050] [PMID: 29745345]
[46]
Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res., 2020, 284, 197989.
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[47]
Newman, D.J.; Cragg, G.M. natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy