Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Neonatal Arterial Ischaemic Stroke: Advances in Pathologic Neural Death, Diagnosis, Treatment, and Prognosis

Author(s): Yang He, Junjie Ying, Jun Tang*, Ruixi Zhou, Haibo Qu, Yi Qu and Dezhi Mu*

Volume 20, Issue 12, 2022

Published on: 02 June, 2022

Page: [2248 - 2266] Pages: 19

DOI: 10.2174/1570159X20666220222144744

Price: $65

Abstract

Neonatal arterial ischaemic stroke (NAIS) is caused by focal arterial occlusion and often leads to severe neurological sequelae. Neural deaths after NAIS mainly include necrosis, apoptosis, necroptosis, autophagy, ferroptosis, and pyroptosis. These neural deaths are mainly caused by upstream stimulations, including excitotoxicity, oxidative stress, inflammation, and death receptor pathways. The current clinical approaches to managing NAIS mainly focus on supportive treatments, including seizure control and anticoagulation. In recent years, research on the pathology, early diagnosis, and potential therapeutic targets of NAIS has progressed. In this review, we summarise the latest progress of research on the pathology, diagnosis, treatment, and prognosis of NAIS and highlight newly potential diagnostic and treatment approaches.

Keywords: NAIS, pathology, diagnosis, treatment, prognosis, therapeutic targets.

Graphical Abstract

[1]
Sorg, A.L.; Klemme, M.; von Kries, R.; Felderhoff-Müser, U.; Flemmer, A.W.; Gerstl, L.; Dzietko, M. Clinical diversity of cerebral sinovenous thrombosis and arterial ischaemic stroke in the neonate: A surveillance study. Neonatology, 2021, 118(5), 530-536.
[http://dx.doi.org/10.1159/000512526] [PMID: 33784682]
[2]
Dunbar, M.; Mineyko, A.; Hill, M.; Hodge, J.; Floer, A.; Kirton, A. Population based birth prevalence of disease-specific perinatal stroke. Pediatrics, 2020, 146(5), e2020013201.
[http://dx.doi.org/10.1542/peds.2020-013201] [PMID: 33115795]
[3]
Benders, M.J.; Groenendaal, F.; Uiterwaal, C.S.; de Vries, L.S. Perinatal arterial stroke in the preterm infant. Semin. Perinatol., 2008, 32(5), 344-349.
[http://dx.doi.org/10.1053/j.semperi.2008.07.003] [PMID: 18929157]
[4]
Lynch, J.K. Epidemiology and classification of perinatal stroke. Semin. Fetal Neonatal Med., 2009, 14(5), 245-249.
[http://dx.doi.org/10.1016/j.siny.2009.07.001] [PMID: 19664976]
[5]
Gardner, M.A.; Hills, N.K.; Sidney, S.; Johnston, S.C.; Fullerton, H.J. The 5-year direct medical cost of neonatal and childhood stroke in a population-based cohort. Neurology, 2010, 74(5), 372-378.
[http://dx.doi.org/10.1212/WNL.0b013e3181cbcd48] [PMID: 20054007]
[6]
Li, C.; Miao, J.K.; Xu, Y.; Hua, Y.Y.; Ma, Q.; Zhou, L.L.; Liu, H.J.; Chen, Q.X. Prenatal, perinatal and neonatal risk factors for perinatal arterial ischaemic stroke: a systematic review and meta-analysis. Eur. J. Neurol., 2017, 24(8), 1006-1015.
[http://dx.doi.org/10.1111/ene.13337] [PMID: 28646492]
[7]
Sherman, V.; Martino, R.; Bhathal, I.; DeVeber, G.; Dlamini, N.; MacGregor, D.; Pulcine, E.; Beal, D.S.; Thorpe, K.E.; Moharir, M. Swallowing, oral motor, motor speech, and language impairments following acute pediatric ischemic stroke. Stroke, 2021, 52(4), 1309-1318.
[http://dx.doi.org/10.1161/STROKEAHA.120.031893] [PMID: 33641384]
[8]
Mukherjee, D.; Kalita, D.; Das, D.; Kumar, T.; Kundu, R. Clinico-epidemiological profile, etiology, and imaging in neonatal stroke: An observational study from eastern India. Neurol. India, 2021, 69(1), 62-65.
[http://dx.doi.org/10.4103/0028-3886.310081] [PMID: 33642272]
[9]
Arnaez, J.; Garcia-Alix, A. Extracerebral thrombosis in symptomatic neonatal arterial ischemic stroke. Eur. J. Paediatr. Neurol., 2017, 21(4), 687-688.
[http://dx.doi.org/10.1016/j.ejpn.2017.05.004] [PMID: 28552317]
[10]
Guiraut, C.; Cauchon, N.; Lepage, M.; Sébire, G. Perinatal arterial ischemic stroke is associated to materno-fetal immune activation and intracranial arteritis. Int. J. Mol. Sci., 2016, 17(12), 1980.
[http://dx.doi.org/10.3390/ijms17121980] [PMID: 27898024]
[11]
Fluss, J.; Dinomais, M.; Chabrier, S. Perinatal stroke syndromes: Similarities and diversities in aetiology, outcome and management. Eur. J. Paediatr. Neurol., 2019, 23(3), 368-383.
[http://dx.doi.org/10.1016/j.ejpn.2019.02.013] [PMID: 30879961]
[12]
Govaert, P.; Ramenghi, L.; Taal, R.; Dudink, J.; Lequin, M. Diagnosis of perinatal stroke II: Mechanisms and clinical phenotypes. Acta Paediatr., 2009, 98(11), 1720-1726.
[http://dx.doi.org/10.1111/j.1651-2227.2009.01462.x] [PMID: 19673723]
[13]
Dunbar, M.; Kirton, A. Perinatal stroke: Mechanisms, management, and outcomes of early cerebrovascular brain injury. Lancet Child Adolesc. Health, 2018, 2(9), 666-676.
[http://dx.doi.org/10.1016/S2352-4642(18)30173-1] [PMID: 30119760]
[14]
Bernson-Leung, M.E.; Boyd, T.K.; Meserve, E.E.; Danehy, A.R.; Kapur, K.; Trenor 3rd, C.C.; Lehman, L.L.; Rivkin, M.J. Placental pathology in neonatal stroke: A retrospective case-control study. J. Pediatr., 2018, 195, 39-47.e5.
[http://dx.doi.org/10.1016/j.jpeds.2017.11.061] [PMID: 29397159]
[15]
Chabrier, S.; Saliba, E. Nguyen The Tich, S.; Charollais, A.; Varlet, M.N.; Tardy, B.; Presles, E.; Renaud, C.; Allard, D.; Husson, B.; Landrieu, P. Obstetrical and neonatal characteristics vary with birthweight in a cohort of 100 term newborns with symptomatic arterial ischemic stroke. Eur. J. Paediatr. Neurol., 2010, 14(3), 206-213.
[http://dx.doi.org/10.1016/j.ejpn.2009.05.004] [PMID: 19541515]
[16]
Kirton, A.; Armstrong-Wells, J.; Chang, T.; Deveber, G.; Rivkin, M.J.; Hernandez, M.; Carpenter, J.; Yager, J.Y.; Lynch, J.K.; Ferriero, D.M. Symptomatic neonatal arterial ischemic stroke: the International Pediatric Stroke Study. Pediatrics, 2011, 128(6), e1402-e1410.
[http://dx.doi.org/10.1542/peds.2011-1148] [PMID: 22123886]
[17]
Husson, B.; Hertz-Pannier, L.; Adamsbaum, C.; Renaud, C.; Presles, E.; Dinomais, M.; Kossorotoff, M.; Landrieu, P.; Chabrier, S. MR angiography findings in infants with neonatal arterial ischemic stroke in the middle cerebral artery territory: A prospective study using circle of Willis MR angiography. Eur. J. Radiol., 2016, 85(7), 1329-1335.
[http://dx.doi.org/10.1016/j.ejrad.2016.05.002] [PMID: 27235881]
[18]
Fluss, J.; Garcia-Tarodo, S.; Granier, M.; Villega, F.; Ferey, S.; Husson, B.; Kossorotoff, M.; Muehlethaler, V.; Lebon, S.; Chabrier, S. Perinatal arterial ischemic stroke related to carotid artery occlusion. Eur. J. Paediatr. Neurol., 2016, 20(4), 639-648.
[http://dx.doi.org/10.1016/j.ejpn.2016.03.003] [PMID: 27025300]
[19]
Dudink, J.; Counsell, S.J.; Lequin, M.H.; Govaert, P.P. DTI reveals network injury in perinatal stroke. Arch. Dis. Child. Fetal Neonatal Ed., 2012, 97(5), F362-F364.
[http://dx.doi.org/10.1136/archdischild-2011-300121] [PMID: 22016328]
[20]
Tortora, D.; Severino, M.; Rossi, A. Arterial spin labeling perfusion in neonates. Semin. Fetal Neonatal Med., 2020, 25(5), 101130.
[http://dx.doi.org/10.1016/j.siny.2020.101130] [PMID: 32591228]
[21]
Descloux, C.; Ginet, V.; Clarke, P.G.; Puyal, J.; Truttmann, A.C. Neuronal death after perinatal cerebral hypoxia-ischemia: Focus on autophagy-mediated cell death. Int. J. Dev. Neurosci., 2015, 45, 75-85.
[http://dx.doi.org/10.1016/j.ijdevneu.2015.06.008] [PMID: 26225751]
[22]
Fernández-López, D.; Natarajan, N.; Ashwal, S.; Vexler, Z.S. Mechanisms of perinatal arterial ischemic stroke. J. Cereb. Blood Flow Metab., 2014, 34(6), 921-932.
[http://dx.doi.org/10.1038/jcbfm.2014.41] [PMID: 24667913]
[23]
Vexler, Z.S.; Yenari, M.A. Does inflammation after stroke affect the developing brain differently than adult brain? Dev. Neurosci., 2009, 31(5), 378-393.
[http://dx.doi.org/10.1159/000232556] [PMID: 19672067]
[24]
Ramos-Cabrer, P.; Campos, F.; Sobrino, T.; Castillo, J. Targeting the ischemic penumbra. Stroke, 2011, 42(1)(Suppl.), S7-S11.
[PMID: 21164112]
[25]
Yang, S.H.; Liu, R. Four decades of ischemic penumbra and its implication for ischemic stroke. Transl. Stroke Res., 2021, 12(6), 937-945.
[http://dx.doi.org/10.1007/s12975-021-00916-2] [PMID: 34224106]
[26]
Tuo, Q.Z.; Zhang, S.T.; Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev., 2022, 42(1), 259-305.
[http://dx.doi.org/10.1002/med.21817] [PMID: 33957000]
[27]
Wu, Y.; Song, J.; Wang, Y.; Wang, X.; Culmsee, C.; Zhu, C. The potential role of ferroptosis in neonatal brain injury. Front. Neurosci., 2019, 13, 115.
[http://dx.doi.org/10.3389/fnins.2019.00115] [PMID: 30837832]
[28]
Qu, Y.; Shi, J.; Tang, Y.; Zhao, F.; Li, S.; Meng, J.; Tang, J.; Lin, X.; Peng, X.; Mu, D. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain. Exp. Neurol., 2016, 279, 223-231.
[http://dx.doi.org/10.1016/j.expneurol.2016.03.011] [PMID: 26980487]
[29]
Chavez-Valdez, R.; Martin, L.J.; Northington, F.J. Programmed necrosis: A prominent mechanism of cell death following neonatal brain injury. Neurol. Res. Int., 2012, 2012, 257563.
[http://dx.doi.org/10.1155/2012/257563] [PMID: 22666585]
[30]
Yu, Z.; Jiang, N.; Su, W.; Zhuo, Y. Necroptosis: A novel pathway in neuroinflammation. Front. Pharmacol., 2021, 12, 701564.
[http://dx.doi.org/10.3389/fphar.2021.701564] [PMID: 34322024]
[31]
Thornton, C.; Rousset, C.I.; Kichev, A.; Miyakuni, Y.; Vontell, R.; Baburamani, A.A.; Fleiss, B.; Gressens, P.; Hagberg, H. Molecular mechanisms of neonatal brain injury. Neurol. Res. Int., 2012, 2012, 506320.
[http://dx.doi.org/10.1155/2012/506320] [PMID: 22363841]
[32]
Fricker, M.; Tolkovsky, A.M.; Borutaite, V.; Coleman, M.; Brown, G.C. Neuronal cell death. Physiol. Rev., 2018, 98(2), 813-880.
[http://dx.doi.org/10.1152/physrev.00011.2017] [PMID: 29488822]
[33]
Galluzzi, L.; Kepp, O.; Krautwald, S.; Kroemer, G.; Linkermann, A. Molecular mechanisms of regulated necrosis. Semin. Cell Dev. Biol., 2014, 35, 24-32.
[http://dx.doi.org/10.1016/j.semcdb.2014.02.006] [PMID: 24582829]
[34]
Vandenabeele, P.; Galluzzi, L.; Vanden Berghe, T.; Kroemer, G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat. Rev. Mol. Cell Biol., 2010, 11(10), 700-714.
[http://dx.doi.org/10.1038/nrm2970] [PMID: 20823910]
[35]
Fritsch, M.; Günther, S.D.; Schwarzer, R.; Albert, M.C.; Schorn, F.; Werthenbach, J.P.; Schiffmann, L.M.; Stair, N.; Stocks, H.; Seeger, J.M.; Lamkanfi, M.; Krönke, M.; Pasparakis, M.; Kashkar, H. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature, 2019, 575(7784), 683-687.
[http://dx.doi.org/10.1038/s41586-019-1770-6] [PMID: 31748744]
[36]
Yang, Z.H.; Wu, X.N.; He, P.; Wang, X.; Wu, J.; Ai, T.; Zhong, C.Q.; Wu, X.; Cong, Y.; Zhu, R.; Li, H.; Cai, Z.Y.; Mo, W.; Han, J. A Non-canonical PDK1-RSK signal diminishes pro-caspase-8-mediated necroptosis blockade. Mol. Cell, 2020, 80(2), 296-310.e6.
[http://dx.doi.org/10.1016/j.molcel.2020.09.004] [PMID: 32979304]
[37]
Mizushima, N. Autophagy: process and function. Genes Dev., 2007, 21(22), 2861-2873.
[http://dx.doi.org/10.1101/gad.1599207] [PMID: 18006683]
[38]
Balduini, W.; Carloni, S.; Buonocore, G. Autophagy in hypoxia-ischemia induced brain injury. J. Matern. Fetal Neonatal Med., 2012, 25(Suppl. 1), 30-34.
[http://dx.doi.org/10.3109/14767058.2012.663176] [PMID: 22385271]
[39]
Solenski, N.J.; diPierro, C.G.; Trimmer, P.A.; Kwan, A.L.; Helm, G.A. Ultrastructural changes of neuronal mitochondria after transient and permanent cerebral ischemia. Stroke, 2002, 33(3), 816-824.
[http://dx.doi.org/10.1161/hs0302.104541] [PMID: 11872909]
[40]
Datta, A.; Sarmah, D.; Mounica, L.; Kaur, H.; Kesharwani, R.; Verma, G.; Veeresh, P.; Kotian, V.; Kalia, K.; Borah, A.; Wang, X.; Dave, K.R.; Yavagal, D.R.; Bhattacharya, P. Cell death pathways in ischemic stroke and targeted pharmacotherapy. Transl. Stroke Res., 2020, 11(6), 1185-1202.
[http://dx.doi.org/10.1007/s12975-020-00806-z] [PMID: 32219729]
[41]
Zhao, M.; Zhu, P.; Fujino, M.; Zhuang, J.; Guo, H.; Sheikh, I.; Zhao, L.; Li, X.K. Oxidative stress in hypoxic-ischemic encephalopathy: Molecular mechanisms and therapeutic strategies. Int. J. Mol. Sci., 2016, 17(12), 2078.
[http://dx.doi.org/10.3390/ijms17122078] [PMID: 27973415]
[42]
Zhu, C.; Wang, X.; Xu, F.; Bahr, B.A.; Shibata, M.; Uchiyama, Y.; Hagberg, H.; Blomgren, K. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ., 2005, 12(2), 162-176.
[http://dx.doi.org/10.1038/sj.cdd.4401545] [PMID: 15592434]
[43]
Puyal, J.; Clarke, P.G. Targeting autophagy to prevent neonatal stroke damage. Autophagy, 2009, 5(7), 1060-1061.
[http://dx.doi.org/10.4161/auto.5.7.9728] [PMID: 19713756]
[44]
Carloni, S.; Buonocore, G.; Balduini, W. Protective role of autophagy in neonatal hypoxia-ischemia induced brain injury. Neurobiol. Dis., 2008, 32(3), 329-339.
[http://dx.doi.org/10.1016/j.nbd.2008.07.022] [PMID: 18760364]
[45]
Ajoolabady, A.; Wang, S.; Kroemer, G.; Penninger, J.M.; Uversky, V.N.; Pratico, D.; Henninger, N.; Reiter, R.J.; Bruno, A.; Joshipura, K.; Aslkhodapasandhokmabad, H.; Klionsky, D.J.; Ren, J. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol. Ther., 2021, 225, 107848.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107848] [PMID: 33823204]
[46]
Xie, C.; Ginet, V.; Sun, Y.; Koike, M.; Zhou, K.; Li, T.; Li, H.; Li, Q.; Wang, X.; Uchiyama, Y.; Truttmann, A.C.; Kroemer, G.; Puyal, J.; Blomgren, K.; Zhu, C. Neuroprotection by selective neuronal deletion of Atg7 in neonatal brain injury. Autophagy, 2016, 12(2), 410-423.
[http://dx.doi.org/10.1080/15548627.2015.1132134] [PMID: 26727396]
[47]
Ginet, V.; Spiehlmann, A.; Rummel, C.; Rudinskiy, N.; Grishchuk, Y.; Luthi-Carter, R.; Clarke, P.G.; Truttmann, A.C.; Puyal, J. Involvement of autophagy in hypoxic-excitotoxic neuronal death. Autophagy, 2014, 10(5), 846-860.
[http://dx.doi.org/10.4161/auto.28264] [PMID: 24674959]
[48]
Puyal, J.; Vaslin, A.; Mottier, V.; Clarke, P.G. Postischemic treatment of neonatal cerebral ischemia should target autophagy. Ann. Neurol., 2009, 66(3), 378-389.
[http://dx.doi.org/10.1002/ana.21714] [PMID: 19551849]
[49]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[50]
Neitemeier, S.; Jelinek, A.; Laino, V.; Hoffmann, L.; Eisenbach, I.; Eying, R.; Ganjam, G.K.; Dolga, A.M.; Oppermann, S.; Culmsee, C. BID links ferroptosis to mitochondrial cell death pathways. Redox Biol., 2017, 12, 558-570.
[http://dx.doi.org/10.1016/j.redox.2017.03.007] [PMID: 28384611]
[51]
Ratan, R.R. The chemical biology of ferroptosis in the central nervous system. Cell Chem. Biol., 2020, 27(5), 479-498.
[http://dx.doi.org/10.1016/j.chembiol.2020.03.007] [PMID: 32243811]
[52]
DeGregorio-Rocasolano, N.; Martí-Sistac, O.; Gasull, T. Deciphering the iron side of stroke: neurodegeneration at the crossroads between iron dyshomeostasis, excitotoxicity, and ferroptosis. Front. Neurosci., 2019, 13, 85.
[http://dx.doi.org/10.3389/fnins.2019.00085] [PMID: 30837827]
[53]
Li, J.; Hao, J.H.; Yao, D.; Li, R.; Li, X.F.; Yu, Z.Y.; Luo, X.; Liu, X.H.; Wang, M.H.; Wang, W. Caspase-1 inhibition prevents neuronal death by targeting the canonical inflammasome pathway of pyroptosis in a murine model of cerebral ischemia. CNS Neurosci. Ther., 2020, 26(9), 925-939.
[http://dx.doi.org/10.1111/cns.13384] [PMID: 32343048]
[54]
Lv, Y.; Sun, B.; Lu, X.X.; Liu, Y.L.; Li, M.; Xu, L.X.; Feng, C.X.; Ding, X.; Feng, X. The role of microglia mediated pyroptosis in neonatal hypoxic-ischemic brain damage. Biochem. Biophys. Res. Commun., 2020, 521(4), 933-938.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.003] [PMID: 31718799]
[55]
Zhu, J.J.; Yu, B.Y.; Huang, X.K.; He, M.Z.; Chen, B.W.; Chen, T.T.; Fang, H.Y.; Chen, S.Q.; Fu, X.Q.; Li, P.J.; Lin, Z.L.; Zhu, J.H. Neferine Protects against Hypoxic-Ischemic Brain Damage in Neonatal Rats by Suppressing NLRP3-Mediated Inflammasome Activation. Oxid. Med. Cell. Longev., 2021, 2021, 6654954.
[http://dx.doi.org/10.1155/2021/6654954] [PMID: 34046147]
[56]
Fann, D.Y.; Lee, S.Y.; Manzanero, S.; Chunduri, P.; Sobey, C.G.; Arumugam, T.V. Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res. Rev., 2013, 12(4), 941-966.
[http://dx.doi.org/10.1016/j.arr.2013.09.004] [PMID: 24103368]
[57]
Liu, M.; Xu, Z.; Wang, L.; Zhang, L.; Liu, Y.; Cao, J.; Fu, Q.; Liu, Y.; Li, H.; Lou, J.; Hou, W.; Mi, W.; Ma, Y. Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J. Neuroinflammation, 2020, 17(1), 270.
[http://dx.doi.org/10.1186/s12974-020-01946-7] [PMID: 32917229]
[58]
Vannucci, S.J.; Hagberg, H. Hypoxia-ischemia in the immature brain. J. Exp. Biol., 2004, 207(Pt 18), 3149-3154.
[http://dx.doi.org/10.1242/jeb.01064] [PMID: 15299036]
[59]
Galluzzi, L.; Blomgren, K.; Kroemer, G. Mitochondrial membrane permeabilization in neuronal injury. Nat. Rev. Neurosci., 2009, 10(7), 481-494.
[http://dx.doi.org/10.1038/nrn2665] [PMID: 19543220]
[60]
Qin, X.; Cheng, J.; Zhong, Y.; Mahgoub, O.K.; Akter, F.; Fan, Y.; Aldughaim, M.; Xie, Q.; Qin, L.; Gu, L.; Jian, Z.; Xiong, X.; Liu, R. Mechanism and treatment related to oxidative stress in neonatal hypoxic-ischemic encephalopathy. Front. Mol. Neurosci., 2019, 12, 88.
[http://dx.doi.org/10.3389/fnmol.2019.00088] [PMID: 31031592]
[61]
Singh-Mallah, G.; Nair, S.; Sandberg, M.; Mallard, C.; Hagberg, H. The Role of Mitochondrial and Endoplasmic Reticulum Reactive Oxygen Species Production in Models of Perinatal Brain Injury. Antioxid. Redox Signal., 2019, 31(9), 643-663.
[http://dx.doi.org/10.1089/ars.2019.7779] [PMID: 30957515]
[62]
Weston, R.M.; Lin, B.; Dusting, G.J.; Roulston, C.L. Targeting oxidative stress injury after ischemic stroke in conscious rats: limited benefits with apocynin highlight the need to incorporate long term recovery. Stroke Res. Treat., 2013, 2013, 648061.
[http://dx.doi.org/10.1155/2013/648061] [PMID: 23401848]
[63]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[64]
Cojocaru, I.M.; Cojocaru, M.; Sapira, V.; Ionescu, A. Evaluation of oxidative stress in patients with acute ischemic stroke. Rom. J. Intern. Med., 2013, 51(2), 97-106.
[PMID: 24294813]
[65]
Chan, P.H. Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab., 2001, 21(1), 2-14.
[http://dx.doi.org/10.1097/00004647-200101000-00002] [PMID: 11149664]
[66]
Sethi, S.; Singh, M.P.; Dikshit, M. Mechanisms involved in the augmentation of arachidonic acid-induced free-radical generation from rat neutrophils following hypoxia-reoxygenation. Thromb. Res., 2000, 98(5), 445-450.
[http://dx.doi.org/10.1016/S0049-3848(00)00209-7] [PMID: 10828484]
[67]
Ohtsubo, T.; Rovira, I.I.; Starost, M.F.; Liu, C.; Finkel, T. Xanthine oxidoreductase is an endogenous regulator of cyclooxygenase-2. Circ. Res., 2004, 95(11), 1118-1124.
[http://dx.doi.org/10.1161/01.RES.0000149571.96304.36] [PMID: 15528468]
[68]
Woodruff, T.M.; Thundyil, J.; Tang, S.C.; Sobey, C.G.; Taylor, S.M.; Arumugam, T.V. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol. Neurodegener., 2011, 6(1), 11.
[http://dx.doi.org/10.1186/1750-1326-6-11] [PMID: 21266064]
[69]
Gelderblom, M.; Sobey, C.G.; Kleinschnitz, C.; Magnus, T. Danger signals in stroke. Ageing Res Rev., 2015, 24(Pt A), 77-82.
[http://dx.doi.org/10.1016/j.arr.2015.07.004] [PMID: 26210897]
[70]
Clausen, B.H.; Lambertsen, K.L.; Babcock, A.A.; Holm, T.H.; Dagnaes-Hansen, F.; Finsen, B. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J. Neuroinflammation, 2008, 5, 46.
[http://dx.doi.org/10.1186/1742-2094-5-46] [PMID: 18947400]
[71]
Nourbakhsh, F.; Read, M.I.; Barreto, G.E.; Sahebkar, A. Astrocytes and inflammasome: A possible crosstalk in neurological diseases. Curr. Med. Chem., 2021, 28(24), 4972-4994.
[http://dx.doi.org/10.2174/0929867328666210301105422] [PMID: 33645473]
[72]
Revuelta, M.; Elicegui, A.; Moreno-Cugnon, L.; Bührer, C.; Matheu, A.; Schmitz, T. Ischemic stroke in neonatal and adult astrocytes. Mech. Ageing Dev., 2019, 183, 111147.
[http://dx.doi.org/10.1016/j.mad.2019.111147] [PMID: 31493435]
[73]
Kratzer, I.; Chip, S.; Vexler, Z.S. Barrier mechanisms in neonatal stroke. Front. Neurosci., 2014, 8, 359.
[http://dx.doi.org/10.3389/fnins.2014.00359] [PMID: 25426016]
[74]
Fernández-López, D.; Faustino, J.; Daneman, R.; Zhou, L.; Lee, S.Y.; Derugin, N.; Wendland, M.F.; Vexler, Z.S. Blood-brain barrier permeability is increased after acute adult stroke but not neonatal stroke in the rat. J. Neurosci., 2012, 32(28), 9588-9600.
[http://dx.doi.org/10.1523/JNEUROSCI.5977-11.2012] [PMID: 22787045]
[75]
Colton, C.A. Heterogeneity of microglial activation in the innate immune response in the brain. J. Neuroimmune Pharmacol., 2009, 4(4), 399-418.
[http://dx.doi.org/10.1007/s11481-009-9164-4] [PMID: 19655259]
[76]
Krady, J.K.; Lin, H.W.; Liberto, C.M.; Basu, A.; Kremlev, S.G.; Levison, S.W. Ciliary neurotrophic factor and interleukin-6 differentially activate microglia. J. Neurosci. Res., 2008, 86(7), 1538-1547.
[http://dx.doi.org/10.1002/jnr.21620] [PMID: 18214991]
[77]
Cantarella, G.; Pignataro, G.; Di Benedetto, G.; Anzilotti, S.; Vinciguerra, A.; Cuomo, O.; Di Renzo, G.F.; Parenti, C.; Annunziato, L.; Bernardini, R. Ischemic tolerance modulates TRAIL expression and its receptors and generates a neuroprotected phenotype. Cell Death Dis., 2014, 5(7), e1331.
[http://dx.doi.org/10.1038/cddis.2014.286] [PMID: 25032854]
[78]
Cantarella, G.; Uberti, D.; Carsana, T.; Lombardo, G.; Bernardini, R.; Memo, M. Neutralization of TRAIL death pathway protects human neuronal cell line from beta-amyloid toxicity. Cell Death Differ., 2003, 10(1), 134-141.
[http://dx.doi.org/10.1038/sj.cdd.4401143] [PMID: 12655302]
[79]
Northington, F.J.; Chavez-Valdez, R.; Martin, L.J. Neuronal cell death in neonatal hypoxia-ischemia. Ann. Neurol., 2011, 69(5), 743-758.
[http://dx.doi.org/10.1002/ana.22419] [PMID: 21520238]
[80]
Dong, X.X.; Wang, Y.R.; Qin, S.; Liang, Z.Q.; Liu, B.H.; Qin, Z.H.; Wang, Y. p53 mediates autophagy activation and mitochondria dysfunction in kainic acid-induced excitotoxicity in primary striatal neurons. Neuroscience, 2012, 207, 52-64.
[http://dx.doi.org/10.1016/j.neuroscience.2012.01.018] [PMID: 22330834]
[81]
Chang, C.F.; Huang, H.J.; Lee, H.C.; Hung, K.C.; Wu, R.T.; Lin, A.M. Melatonin attenuates kainic acid-induced neurotoxicity in mouse hippocampus via inhibition of autophagy and α-synuclein aggregation. J. Pineal Res., 2012, 52(3), 312-321.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00945.x] [PMID: 22212051]
[82]
Galluzzi, L.; Bravo-San Pedro, J.M.; Blomgren, K.; Kroemer, G. Autophagy in acute brain injury. Nat. Rev. Neurosci., 2016, 17(8), 467-484.
[http://dx.doi.org/10.1038/nrn.2016.51] [PMID: 27256553]
[83]
Broughton, B.R.; Reutens, D.C.; Sobey, C.G. Apoptotic mechanisms after cerebral ischemia. Stroke, 2009, 40(5), e331-e339.
[http://dx.doi.org/10.1161/STROKEAHA.108.531632] [PMID: 19182083]
[84]
Jiang, M.; Qi, L.; Li, L.; Wu, Y.; Song, D.; Li, Y. Caspase-8: A key protein of cross-talk signal way in “PANoptosis” in cancer. Int. J. Cancer, 2021, 149(7), 1408-1420.
[http://dx.doi.org/10.1002/ijc.33698] [PMID: 34028029]
[85]
Martinez-Biarge, M.; Ferriero, D.M.; Cowan, F.M. Perinatal arterial ischemic stroke. Handb. Clin. Neurol., 2019, 162, 239-266.
[http://dx.doi.org/10.1016/B978-0-444-64029-1.00011-4] [PMID: 31324313]
[86]
Fernández-López, D.; Faustino, J.; Derugin, N.; Vexler, Z.S. Acute and chronic vascular responses to experimental focal arterial stroke in the neonate rat. Transl. Stroke Res., 2013, 4(2), 179-188.
[http://dx.doi.org/10.1007/s12975-012-0214-5] [PMID: 23730350]
[87]
Hayashi, T.; Noshita, N.; Sugawara, T.; Chan, P.H. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J. Cereb. Blood Flow Metab., 2003, 23(2), 166-180.
[http://dx.doi.org/10.1097/01.WCB.0000041283.53351.CB] [PMID: 12571448]
[88]
Ohab, J.J.; Fleming, S.; Blesch, A.; Carmichael, S.T. A neurovascular niche for neurogenesis after stroke. J. Neurosci., 2006, 26(50), 13007-13016.
[http://dx.doi.org/10.1523/JNEUROSCI.4323-06.2006] [PMID: 17167090]
[89]
Kadam, S.D.; Mulholland, J.D.; McDonald, J.W.; Comi, A.M. Neurogenesis and neuronal commitment following ischemia in a new mouse model for neonatal stroke. Brain Res., 2008, 1208, 35-45.
[http://dx.doi.org/10.1016/j.brainres.2008.02.037] [PMID: 18387598]
[90]
Spadafora, R.; Gonzalez, F.F.; Derugin, N.; Wendland, M.; Ferriero, D.; McQuillen, P. Altered fate of subventricular zone progenitor cells and reduced neurogenesis following neonatal stroke. Dev. Neurosci., 2010, 32(2), 101-113.
[http://dx.doi.org/10.1159/000279654] [PMID: 20453463]
[91]
Raju, T.N.; Nelson, K.B.; Ferriero, D.; Lynch, J.K. Ischemic perinatal stroke: summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke. Pediatrics, 2007, 120(3), 609-616.
[http://dx.doi.org/10.1542/peds.2007-0336] [PMID: 17766535]
[92]
Lee, S.; Mirsky, D.M.; Beslow, L.A.; Amlie-Lefond, C.; Danehy, A.R.; Lehman, L.; Stence, N.V.; Vossough, A.; Wintermark, M.; Rivkin, M.J. Pathways for neuroimaging of neonatal stroke. Pediatr. Neurol., 2017, 69, 37-48.
[http://dx.doi.org/10.1016/j.pediatrneurol.2016.12.008] [PMID: 28262550]
[93]
Ferriero, D.M.; Fullerton, H.J.; Bernard, T.J.; Billinghurst, L.; Daniels, S.R.; DeBaun, M.R.; deVeber, G.; Ichord, R.N.; Jordan, L.C.; Massicotte, P.; Meldau, J.; Roach, E.S.; Smith, E.R. Management of stroke in neonates and children: A scientific statement from the American heart association/American stroke association. Stroke, 2019, 50(3), e51-e96.
[http://dx.doi.org/10.1161/STR.0000000000000183] [PMID: 30686119]
[94]
Lequin, M.H.; Dudink, J.; Tong, K.A.; Obenaus, A. Magnetic resonance imaging in neonatal stroke. Semin. Fetal Neonatal Med., 2009, 14(5), 299-310.
[http://dx.doi.org/10.1016/j.siny.2009.07.005] [PMID: 19632909]
[95]
Shi, J.; Li, L.; Mu, D. Experts’ consensus on the diagnosis and treatment of neonatal arterial ischemic stroke. Zhongguo Dang Dai Er Ke Za Zhi, 2017, 19(6), 611-613.
[PMID: 28606224]
[96]
Husson, B.; Durand, C.; Hertz-Pannier, L. Recommandations concernant l’imagerie de l’accident vasculaire cérébral ischémique du nouveau-né. Arch Pediatr., 2017, 24(9S), 9S19-9S27.
[http://dx.doi.org/10.1016/S0929-693X(17)30327-5]
[97]
van der Aa, N.E.; Leemans, A.; Northington, F.J.; van Straaten, H.L.; van Haastert, I.C.; Groenendaal, F.; Benders, M.J.; de Vries, L.S. Does diffusion tensor imaging-based tractography at 3 months of age contribute to the prediction of motor outcome after perinatal arterial ischemic stroke? Stroke, 2011, 42(12), 3410-3414.
[http://dx.doi.org/10.1161/STROKEAHA.111.624858] [PMID: 22020032]
[98]
van der Aa, N.E.; Benders, M.J.; Vincken, K.L.; Groenendaal, F.; de Vries, L.S. The course of apparent diffusion coefficient values following perinatal arterial ischemic stroke. PLoS One, 2013, 8(2), e56784.
[http://dx.doi.org/10.1371/journal.pone.0056784] [PMID: 23457613]
[99]
Dudink, J.; Mercuri, E.; Al-Nakib, L.; Govaert, P.; Counsell, S.J.; Rutherford, M.A.; Cowan, F.M. Evolution of unilateral perinatal arterial ischemic stroke on conventional and diffusion-weighted MR imaging. AJNR Am. J. Neuroradiol., 2009, 30(5), 998-1004.
[http://dx.doi.org/10.3174/ajnr.A1480] [PMID: 19193752]
[100]
Counsell, S.J.; Dyet, L.E.; Larkman, D.J.; Nunes, R.G.; Boardman, J.P.; Allsop, J.M.; Fitzpatrick, J.; Srinivasan, L.; Cowan, F.M.; Hajnal, J.V.; Rutherford, M.A.; Edwards, A.D. Thalamo-cortical connectivity in children born preterm mapped using probabilistic magnetic resonance tractography. Neuroimage, 2007, 34(3), 896-904.
[http://dx.doi.org/10.1016/j.neuroimage.2006.09.036] [PMID: 17174575]
[101]
Koenraads, Y.; Porro, G.L.; Braun, K.P.J.; Groenendaal, F.; de Vries, L.S.; van der Aa, N.E. Prediction of visual field defects in newborn infants with perinatal arterial ischemic stroke using early MRI and DTI-based tractography of the optic radiation. Eur. J. Paediatr. Neurol., 2016, 20(2), 309-318.
[http://dx.doi.org/10.1016/j.ejpn.2015.11.010] [PMID: 26708504]
[102]
De Vis, J.B.; Petersen, E.T.; Kersbergen, K.J.; Alderliesten, T.; de Vries, L.S.; van Bel, F.; Groenendaal, F.; Lemmers, P.M.; Hendrikse, J.; Benders, M.J. Evaluation of perinatal arterial ischemic stroke using noninvasive arterial spin labeling perfusion MRI. Pediatr. Res., 2013, 74(3), 307-313.
[http://dx.doi.org/10.1038/pr.2013.111] [PMID: 23797533]
[103]
Craig, B.T.; Hilderley, A.; Kirton, A.; Carlson, H.L. Imaging developmental and interventional plasticity following perinatal stroke. Can. J. Neurol. Sci., 2021, 48(2), 157-171.
[http://dx.doi.org/10.1017/cjn.2020.166] [PMID: 32727626]
[104]
Kirton, A.; Metzler, M.J.; Craig, B.T.; Hilderley, A.; Dunbar, M.; Giuffre, A.; Wrightson, J.; Zewdie, E.; Carlson, H.L. Perinatal stroke: mapping and modulating developmental plasticity. Nat. Rev. Neurol., 2021, 17(7), 415-432.
[http://dx.doi.org/10.1038/s41582-021-00503-x] [PMID: 34127850]
[105]
Golomb, M.R.; Dick, P.T.; MacGregor, D.L.; Armstrong, D.C.; DeVeber, G.A. Cranial ultrasonography has a low sensitivity for detecting arterial ischemic stroke in term neonates. J. Child Neurol., 2003, 18(2), 98-103.
[http://dx.doi.org/10.1177/08830738030180021401] [PMID: 12693775]
[106]
Olivé, G.; Agut, T.; Echeverría-Palacio, C.M.; Arca, G.; García-Alix, A. Usefulness of cranial ultrasound for detecting neonatal middle cerebral artery stroke. Ultrasound Med. Biol., 2019, 45(3), 885-890.
[http://dx.doi.org/10.1016/j.ultrasmedbio.2018.11.004] [PMID: 30642660]
[107]
Ecury-Goossen, G.M.; Raets, M.M.; Lequin, M.; Feijen-Roon, M.; Govaert, P.; Dudink, J. Risk factors, clinical presentation, and neuroimaging findings of neonatal perforator stroke. Stroke, 2013, 44(8), 2115-2120.
[http://dx.doi.org/10.1161/STROKEAHA.113.001064] [PMID: 23723310]
[108]
Biswas, A.; Mankad, K.; Shroff, M.; Hanagandi, P.; Krishnan, P. Neuroimaging perspectives of perinatal arterial ischemic stroke. Pediatr. Neurol., 2020, 113, 56-65.
[http://dx.doi.org/10.1016/j.pediatrneurol.2020.08.011] [PMID: 33038575]
[109]
Tataranno, M.L.; Vijlbrief, D.C.; Dudink, J.; Benders, M.J.N.L. Precision medicine in neonates: A tailored approach to neonatal brain injury. Front Pediatr., 2021, 9, 634092.
[http://dx.doi.org/10.3389/fped.2021.634092] [PMID: 34095022]
[110]
Menéndez-Valladares, P.; Sola-Idígora, N.; Fuerte-Hortigón, A.; Alonso-Pérez, I.; Duque-Sánchez, C.; Domínguez-Mayoral, A.M.; Ybot-González, P.; Montaner, J. Lessons learned from proteome analysis of perinatal neurovascular pathologies. Expert Rev. Proteomics, 2020, 17(6), 469-481.
[http://dx.doi.org/10.1080/14789450.2020.1807335] [PMID: 32877618]
[111]
Kikuchi, K.; Tanaka, E.; Murai, Y.; Tancharoen, S. Clinical trials in acute ischemic stroke. CNS Drugs, 2014, 28(10), 929-938.
[http://dx.doi.org/10.1007/s40263-014-0199-6] [PMID: 25160686]
[112]
Renolleau, S.; Fau, S.; Goyenvalle, C.; Joly, L.M.; Chauvier, D.; Jacotot, E.; Mariani, J.; Charriaut-Marlangue, C. Specific caspase inhibitor Q-VD-OPh prevents neonatal stroke in P7 rat: a role for gender. J. Neurochem., 2007, 100(4), 1062-1071.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04269.x] [PMID: 17166174]
[113]
Zirpoli, H.; Sosunov, S.A.; Niatsetskaya, Z.V.; Mayurasakorn, K.; Manual Kollareth, D.J.; Serhan, C.N.; Ten, V.S.; Deckelbaum, R.J. NPD1 rapidly targets mitochondria-mediated apoptosis after acute injection protecting brain against ischemic injury. Exp. Neurol., 2021, 335, 113495.
[http://dx.doi.org/10.1016/j.expneurol.2020.113495] [PMID: 33038416]
[114]
Xu, X.; Chua, K.W.; Chua, C.C.; Liu, C.F.; Hamdy, R.C.; Chua, B.H. Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Res., 2010, 1355, 189-194.
[http://dx.doi.org/10.1016/j.brainres.2010.07.080] [PMID: 20682300]
[115]
Deng, X.X.; Li, S.S.; Sun, F.Y. Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging Dis., 2019, 10(4), 807-817.
[http://dx.doi.org/10.14336/AD.2018.0728] [PMID: 31440386]
[116]
Zhu, Y.M.; Lin, L.; Wei, C.; Guo, Y.; Qin, Y.; Li, Z.S.; Kent, T.A.; McCoy, C.E.; Wang, Z.X.; Ni, Y.; Zhou, X.Y.; Zhang, H.L. The key regulator of necroptosis, RIP1 kinase, contributes to the formation of astrogliosis and glial scar in ischemic stroke. Transl. Stroke Res., 2021, 12(6), 991-1017.
[http://dx.doi.org/10.1007/s12975-021-00888-3] [PMID: 33629276]
[117]
Sun, L.; Wang, H.; Wang, Z.; He, S.; Chen, S.; Liao, D.; Wang, L.; Yan, J.; Liu, W.; Lei, X.; Wang, X. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 2012, 148(1-2), 213-227.
[http://dx.doi.org/10.1016/j.cell.2011.11.031] [PMID: 22265413]
[118]
Zhou, Y.; Zhou, B.; Tu, H.; Tang, Y.; Xu, C.; Chen, Y.; Zhao, Z.; Miao, Z. The degradation of mixed lineage kinase domain-like protein promotes neuroprotection after ischemic brain injury. Oncotarget, 2017, 8(40), 68393-68401.
[http://dx.doi.org/10.18632/oncotarget.19416] [PMID: 28978125]
[119]
Shen, L.; Lin, D.; Li, X.; Wu, H.; Lenahan, C.; Pan, Y.; Xu, W.; Chen, Y.; Shao, A.; Zhang, J. Ferroptosis in acute central nervous system injuries: The future direction? Front. Cell Dev. Biol., 2020, 8, 594.
[http://dx.doi.org/10.3389/fcell.2020.00594] [PMID: 32760721]
[120]
Guan, X.; Li, X.; Yang, X.; Yan, J.; Shi, P.; Ba, L.; Cao, Y.; Wang, P. The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci., 2019, 235, 116795.
[http://dx.doi.org/10.1016/j.lfs.2019.116795] [PMID: 31470002]
[121]
Abdul, Y.; Li, W.; Ward, R.; Abdelsaid, M.; Hafez, S.; Dong, G.; Jamil, S.; Wolf, V.; Johnson, M.H.; Fagan, S.C.; Ergul, A. Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: Role of endothelial ferroptosis. Transl. Stroke Res., 2021, 12(4), 615-630.
[http://dx.doi.org/10.1007/s12975-020-00844-7] [PMID: 32875455]
[122]
Guardia Clausi, M.; Paez, P.M.; Campagnoni, A.T.; Pasquini, L.A.; Pasquini, J.M. Intranasal administration of aTf protects and repairs the neonatal white matter after a cerebral hypoxic-ischemic event. Glia, 2012, 60(10), 1540-1554.
[http://dx.doi.org/10.1002/glia.22374] [PMID: 22736466]
[123]
Van der Loo, L.E.; Aquarius, R.; Teernstra, O.; Klijn, K.; Menovsky, T.; van Dijk, J.M.C.; Bartels, R.; Boogaarts, H.D. Iron chelators for acute stroke. Cochrane Database Syst. Rev., 2020, 11(11), CD009280.
[PMID: 33236783]
[124]
Liu, S.B.; Mi, W.L.; Wang, Y.Q. Research progress on the NLRP3 inflammasome and its role in the central nervous system. Neurosci. Bull., 2013, 29(6), 779-787.
[http://dx.doi.org/10.1007/s12264-013-1328-9] [PMID: 23512739]
[125]
Ismael, S.; Zhao, L.; Nasoohi, S.; Ishrat, T. Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Sci. Rep., 2018, 8(1), 5971.
[http://dx.doi.org/10.1038/s41598-018-24350-x] [PMID: 29654318]
[126]
Wang, H.; Zhong, D.; Chen, H.; Jin, J.; Liu, Q.; Li, G. NLRP3 inflammasome activates interleukin-23/interleukin-17 axis during ischaemia-reperfusion injury in cerebral ischaemia in mice. Life Sci., 2019, 227, 101-113.
[http://dx.doi.org/10.1016/j.lfs.2019.04.031] [PMID: 31002919]
[127]
Widiapradja, A.; Vegh, V.; Lok, K.Z.; Manzanero, S.; Thundyil, J.; Gelderblom, M.; Cheng, Y.L.; Pavlovski, D.; Tang, S.C.; Jo, D.G.; Magnus, T.; Chan, S.L.; Sobey, C.G.; Reutens, D.; Basta, M.; Mattson, M.P.; Arumugam, T.V. Intravenous immunoglobulin protects neurons against amyloid beta-peptide toxicity and ischemic stroke by attenuating multiple cell death pathways. J. Neurochem., 2012, 122(2), 321-332.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07754.x] [PMID: 22494053]
[128]
Fann, D.Y.; Lim, Y.A.; Cheng, Y.L.; Lok, K.Z.; Chunduri, P.; Baik, S.H.; Drummond, G.R.; Dheen, S.T.; Sobey, C.G.; Jo, D.G.; Chen, C.L.; Arumugam, T.V. Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke. Mol. Neurobiol., 2018, 55(2), 1082-1096.
[http://dx.doi.org/10.1007/s12035-017-0394-9] [PMID: 28092085]
[129]
Liang, Y.; Song, P.; Chen, W.; Xie, X.; Luo, R.; Su, J.; Zhu, Y.; Xu, J.; Liu, R.; Zhu, P.; Zhang, Y.; Huang, M. Inhibition of caspase-1 ameliorates ischemia-associated blood-brain barrier dysfunction and integrity by suppressing pyroptosis activation. Front. Cell. Neurosci., 2021, 14, 540669.
[http://dx.doi.org/10.3389/fncel.2020.540669] [PMID: 33584203]
[130]
Paoletti, P.; Bellone, C.; Zhou, Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci., 2013, 14(6), 383-400.
[http://dx.doi.org/10.1038/nrn3504] [PMID: 23686171]
[131]
Kleteckova, L.; Tsenov, G.; Kubova, H.; Stuchlik, A.; Vales, K. Neuroprotective effect of the 3α5β-pregnanolone glutamate treatment in the model of focal cerebral ischemia in immature rats. Neurosci. Lett., 2014, 564, 11-15.
[http://dx.doi.org/10.1016/j.neulet.2014.01.057] [PMID: 24513236]
[132]
Forrest, D.; Yuzaki, M.; Soares, H.D.; Ng, L.; Luk, D.C.; Sheng, M.; Stewart, C.L.; Morgan, J.I.; Connor, J.A.; Curran, T. Targeted disruption of NMDA receptor 1 gene abolishes NMDA response and results in neonatal death. Neuron, 1994, 13(2), 325-338.
[http://dx.doi.org/10.1016/0896-6273(94)90350-6] [PMID: 8060614]
[133]
Monyer, H.; Burnashev, N.; Laurie, D.J.; Sakmann, B.; Seeburg, P.H. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 1994, 12(3), 529-540.
[http://dx.doi.org/10.1016/0896-6273(94)90210-0] [PMID: 7512349]
[134]
Knox, R.; Zhao, C.; Miguel-Perez, D.; Wang, S.; Yuan, J.; Ferriero, D.; Jiang, X. Enhanced NMDA receptor tyrosine phosphorylation and increased brain injury following neonatal hypoxia-ischemia in mice with neuronal Fyn overexpression. Neurobiol. Dis., 2013, 51, 113-119.
[http://dx.doi.org/10.1016/j.nbd.2012.10.024] [PMID: 23127881]
[135]
Chen, M.; Lu, T.J.; Chen, X.J.; Zhou, Y.; Chen, Q.; Feng, X.Y.; Xu, L.; Duan, W.H.; Xiong, Z.Q. Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke, 2008, 39(11), 3042-3048.
[http://dx.doi.org/10.1161/STROKEAHA.108.521898] [PMID: 18688011]
[136]
Hill, M.D.; Martin, R.H.; Mikulis, D.; Wong, J.H.; Silver, F.L.; Terbrugge, K.G.; Milot, G.; Clark, W.M.; Macdonald, R.L.; Kelly, M.E.; Boulton, M.; Fleetwood, I.; McDougall, C.; Gunnarsson, T.; Chow, M.; Lum, C.; Dodd, R.; Poublanc, J.; Krings, T.; Demchuk, A.M.; Goyal, M.; Anderson, R.; Bishop, J.; Garman, D.; Tymianski, M. Safety and efficacy of NA-1 in patients with iatrogenic stroke after endovascular aneurysm repair (ENACT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2012, 11(11), 942-950.
[http://dx.doi.org/10.1016/S1474-4422(12)70225-9] [PMID: 23051991]
[137]
Liu, X.B.; Murray, K.D.; Jones, E.G. Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J. Neurosci., 2004, 24(40), 8885-8895.
[http://dx.doi.org/10.1523/JNEUROSCI.2476-04.2004] [PMID: 15470155]
[138]
Furuie, H.; Yamada, M. Neonatal blockade of NR2A-containing but not NR2B-containing NMDA receptor induces spatial working memory deficits in adult rats. Neurosci Res., 2021, S0168- 0102(21), 00213-20233.
[http://dx.doi.org/10.1016/j.neures.2021.10.005] [PMID: 34656645]
[139]
Cerullo, P.; Brancaccio, P.; Anzilotti, S.; Vinciguerra, A.; Cuomo, O.; Fiorino, F.; Severino, B.; Di Vaio, P.; Di Renzo, G.; Annunziato, L.; Pignataro, G. Acute and long-term NCX activation reduces brain injury and restores behavioral functions in mice subjected to neonatal brain ischemia. Neuropharmacology, 2018, 135, 180-191.
[http://dx.doi.org/10.1016/j.neuropharm.2018.03.017] [PMID: 29551690]
[140]
Zhang, J.; Liu, J.; Li, D.; Zhang, C.; Liu, M. Calcium antagonists for acute ischemic stroke. Cochrane Database Syst. Rev., 2019, 2(2), CD001928.
[PMID: 30758052]
[141]
Noor, J.I.; Ueda, Y.; Ikeda, T.; Ikenoue, T. Edaravone inhibits lipid peroxidation in neonatal hypoxic-ischemic rats: An in vivo microdialysis study. Neurosci. Lett., 2007, 414(1), 5-9.
[http://dx.doi.org/10.1016/j.neulet.2006.10.024] [PMID: 17280782]
[142]
Moss, H.G.; Brown, T.R.; Wiest, D.B.; Jenkins, D.D. N-Acetylcysteine rapidly replenishes central nervous system glutathione measured via magnetic resonance spectroscopy in human neonates with hypoxic-ischemic encephalopathy. J. Cereb. Blood Flow Metab., 2018, 38(6), 950-958.
[http://dx.doi.org/10.1177/0271678X18765828] [PMID: 29561203]
[143]
Moretti, R.; Leger, P.L.; Besson, V.C.; Csaba, Z.; Pansiot, J.; Di Criscio, L.; Gentili, A.; Titomanlio, L.; Bonnin, P.; Baud, O.; Charriaut-Marlangue, C. Sildenafil, a cyclic GMP phosphodiesterase inhibitor, induces microglial modulation after focal ischemia in the neonatal mouse brain. J. Neuroinflammation, 2016, 13(1), 95.
[http://dx.doi.org/10.1186/s12974-016-0560-4] [PMID: 27126393]
[144]
Fernández-López, D.; Faustino, J.; Derugin, N.; Wendland, M.; Lizasoain, I.; Moro, M.A.; Vexler, Z.S. Reduced infarct size and accumulation of microglia in rats treated with WIN 55,212-2 after neonatal stroke. Neuroscience, 2012, 207, 307-315.
[http://dx.doi.org/10.1016/j.neuroscience.2012.01.008] [PMID: 22285309]
[145]
Villapol, S.; Fau, S.; Renolleau, S.; Biran, V.; Charriaut-Marlangue, C.; Baud, O. Melatonin promotes myelination by decreasing white matter inflammation after neonatal stroke. Pediatr. Res., 2011, 69(1), 51-55.
[http://dx.doi.org/10.1203/PDR.0b013e3181fcb40b] [PMID: 20856166]
[146]
Fox, C.; Dingman, A.; Derugin, N.; Wendland, M.F.; Manabat, C.; Ji, S.; Ferriero, D.M.; Vexler, Z.S. Minocycline confers early but transient protection in the immature brain following focal cerebral ischemia-reperfusion. J. Cereb. Blood Flow Metab., 2005, 25(9), 1138-1149.
[http://dx.doi.org/10.1038/sj.jcbfm.9600121] [PMID: 15874975]
[147]
Altamentova, S.; Rumajogee, P.; Hong, J.; Beldick, S.R.; Park, S.J.; Yee, A.; Fehlings, M.G. Methylprednisolone reduces persistent post-ischemic inflammation in a rat hypoxia-ischemia model of perinatal stroke. Transl. Stroke Res., 2020, 11(5), 1117-1136.
[http://dx.doi.org/10.1007/s12975-020-00792-2] [PMID: 32140998]
[148]
Xiong, T.; Yang, X.; Qu, Y.; Chen, H.; Yue, Y.; Wang, H.; Zhao, F.; Li, S.; Zou, R.; Zhang, L.; Mu, D. Erythropoietin induces synaptogenesis and neurite repair after hypoxia ischemia-mediated brain injury in neonatal rats. Neuroreport, 2019, 30(11), 783-789.
[http://dx.doi.org/10.1097/WNR.0000000000001285] [PMID: 31261238]
[149]
Gonzalez, F.F.; Larpthaveesarp, A.; McQuillen, P.; Derugin, N.; Wendland, M.; Spadafora, R.; Ferriero, D.M. Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke, 2013, 44(3), 753-758.
[http://dx.doi.org/10.1161/STROKEAHA.111.000104] [PMID: 23391775]
[150]
Gonzalez, F.F.; Abel, R.; Almli, C.R.; Mu, D.; Wendland, M.; Ferriero, D.M. Erythropoietin sustains cognitive function and brain volume after neonatal stroke. Dev. Neurosci., 2009, 31(5), 403-411.
[http://dx.doi.org/10.1159/000232558] [PMID: 19672069]
[151]
Larpthaveesarp, A.; Georgevits, M.; Ferriero, D.M.; Gonzalez, F.F. Delayed erythropoietin therapy improves histological and behavioral outcomes after transient neonatal stroke. Neurobiol. Dis., 2016, 93, 57-63.
[http://dx.doi.org/10.1016/j.nbd.2016.04.006] [PMID: 27142685]
[152]
Larpthaveesarp, A.; Pathipati, P.; Ostrin, S.; Rajah, A.; Ferriero, D.; Gonzalez, F.F. Enhanced mesenchymal stromal cells or erythropoietin provide long-term functional benefit after neonatal stroke. Stroke, 2021, 52(1), 284-293.
[http://dx.doi.org/10.1161/STROKEAHA.120.031191] [PMID: 33349013]
[153]
Benders, M.J.; van der Aa, N.E.; Roks, M.; van Straaten, H.L.; Isgum, I.; Viergever, M.A.; Groenendaal, F.; de Vries, L.S.; van Bel, F. Feasibility and safety of erythropoietin for neuroprotection after perinatal arterial ischemic stroke. J Pediatr., 2014, 164(3), 481-486.e1-2.
[http://dx.doi.org/10.1016/j.jpeds.2013.10.084] [PMID: 24321539]
[154]
Ruddy, R.M.; Adams, K.V.; Morshead, C.M. Age- and sexdependent effects of metformin on neural precursor cells and cognitive recovery in a model of neonatal stroke. Sci Adv., 2019, 5(9), eaax1912.
[http://dx.doi.org/10.1126/sciadv.aax1912] [PMID: 31535024]
[155]
Charriaut-Marlangue, C.; Bonnin, P.; Gharib, A.; Leger, P.L.; Villapol, S.; Pocard, M.; Gressens, P.; Renolleau, S.; Baud, O. Inhaled nitric oxide reduces brain damage by collateral recruitment in a neonatal stroke model. Stroke, 2012, 43(11), 3078-3084.
[http://dx.doi.org/10.1161/STROKEAHA.112.664243] [PMID: 22949477]
[156]
Bonnin, P.; Pansiot, J.; Baud, O.; Charriaut-Marlangue, C. Prostaglandin E1-mediated collateral recruitment is delayed in a neonatal rat stroke model. Int. J. Mol. Sci., 2018, 19(10), 2995.
[http://dx.doi.org/10.3390/ijms19102995] [PMID: 30274381]
[157]
Bonnin, P.; Vitalis, T.; Schwendimann, L.; Boutigny, A.; Mohamedi, N.; Besson, V.C.; Charriaut-Marlangue, C. Poly(ADP-ribose) polymerase inhibitor PJ34 reduces brain damage after stroke in the neonatal mouse brain. Curr. Issues Mol. Biol., 2021, 43(1), 301-312.
[http://dx.doi.org/10.3390/cimb43010025] [PMID: 34200155]
[158]
Kim, E.S.; Ahn, S.Y.; Im, G.H.; Sung, D.K.; Park, Y.R.; Choi, S.H.; Choi, S.J.; Chang, Y.S.; Oh, W.; Lee, J.H.; Park, W.S. Human umbilical cord blood-derived mesenchymal stem cell transplantation attenuates severe brain injury by permanent middle cerebral artery occlusion in newborn rats. Pediatr. Res., 2012, 72(3), 277-284.
[http://dx.doi.org/10.1038/pr.2012.71] [PMID: 22669296]
[159]
Pathipati, P.; Lecuyer, M.; Faustino, J.; Strivelli, J.; Phinney, D.G.; Vexler, Z.S. Mesenchymal stem cell (MSC)-derived extracellular vesicles protect from neonatal stroke by interacting with microglial cells. Neurotherapeutics, 2021, 18(3), 1939-1952.
[http://dx.doi.org/10.1007/s13311-021-01076-9] [PMID: 34235636]
[160]
Tanaka, E.; Ogawa, Y.; Mukai, T.; Sato, Y.; Hamazaki, T.; Nagamura-Inoue, T.; Harada-Shiba, M.; Shintaku, H.; Tsuji, M. Dose-dependent effect of intravenous administration of human umbilical cord-derived mesenchymal stem cells in neonatal stroke mice. Front. Neurol., 2018, 9, 133.
[http://dx.doi.org/10.3389/fneur.2018.00133] [PMID: 29568282]
[161]
van Velthoven, C.T.; Sheldon, R.A.; Kavelaars, A.; Derugin, N.; Vexler, Z.S.; Willemen, H.L.; Maas, M.; Heijnen, C.J.; Ferriero, D.M. Mesenchymal stem cell transplantation attenuates brain injury after neonatal stroke. Stroke, 2013, 44(5), 1426-1432.
[http://dx.doi.org/10.1161/STROKEAHA.111.000326] [PMID: 23539530]
[162]
Chakkarapani, A.A.; Aly, H.; Benders, M.; Cotten, C.M.; El-Dib, M.; Gressens, P.; Hagberg, H.; Sabir, H.; Wintermark, P.; Robertson, N.J. Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury. Semin. Fetal Neonatal Med., 2021, 26(5), 101256.
[http://dx.doi.org/10.1016/j.siny.2021.101256] [PMID: 34154945]
[163]
Wusthoff, C.J.; Kessler, S.K.; Vossough, A.; Ichord, R.; Zelonis, S.; Halperin, A.; Gordon, D.; Vargas, G.; Licht, D.J.; Smith, S.E. Risk of later seizure after perinatal arterial ischemic stroke: a prospective cohort study. Pediatrics, 2011, 127(6), e1550-e1557.
[http://dx.doi.org/10.1542/peds.2010-1577] [PMID: 21576305]
[164]
Lee, C.C.; Lin, J.J.; Lin, K-L.; Lim, W.H.; Hsu, K.H.; Hsu, J.F.; Fu, R.H.; Chiang, M.C.; Chu, S.M.; Lien, R. Clinical Manifestations, Outcomes, and Etiologies of Perinatal Stroke in Taiwan: Comparisons between Ischemic, and Hemorrhagic Stroke Based on 10-year Experience in A Single Institute. Pediatr. Neonatol., 2017, 58(3), 270-277.
[http://dx.doi.org/10.1016/j.pedneo.2016.07.005] [PMID: 28087259]
[165]
Armstrong-Wells, J.; Ferriero, D.M. Diagnosis and acute management of perinatal arterial ischemic stroke. Neurol. Clin. Pract., 2014, 4(5), 378-385.
[http://dx.doi.org/10.1212/CPJ.0000000000000077] [PMID: 25317375]
[166]
Sharpe, C.; Reiner, G.E.; Davis, S.L.; Nespeca, M.; Gold, J.J.; Rasmussen, M.; Kuperman, R.; Harbert, M.J.; Michelson, D.; Joe, P.; Wang, S.; Rismanchi, N.; Le, N.M.; Mower, A.; Kim, J.; Battin, M.R.; Lane, B.; Honold, J.; Knodel, E.; Arnell, K.; Bridge, R.; Lee, L.; Ernstrom, K.; Raman, R.; Haas, R.H. Levetiracetam versus phenobarbital for neonatal seizures: A randomized controlled trial. Pediatrics, 2020, 145(6), e20193182.
[http://dx.doi.org/10.1542/peds.2019-3182] [PMID: 32385134]
[167]
Monagle, P.; Chan, A.K.C.; Goldenberg, N.A.; Ichord, R.N.; Journeycake, J.M.; Nowak-Göttl, U.; Vesely, S.K. Antithrombotic therapy in neonates and children: Antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines.Chest; , 2012, 141, pp. (2)(Suppl.)e737S-e801S.
[http://dx.doi.org/10.1378/chest.11-2308] [PMID: 22315277]
[168]
Lehman, L.L.; Beaute, J.; Kapur, K.; Danehy, A.R.; Bernson-Leung, M.E.; Malkin, H.; Rivkin, M.J.; Trenor, C.C., III Workup for perinatal stroke does not predict recurrence. Stroke, 2017, 48(8), 2078-2083.
[http://dx.doi.org/10.1161/STROKEAHA.117.017356] [PMID: 28706112]
[169]
Sakzewski, L.; Ziviani, J.; Abbott, D.F.; Macdonell, R.A.; Jackson, G.D.; Boyd, R.N. Randomized trial of constraint-induced movement therapy and bimanual training on activity outcomes for children with congenital hemiplegia. Dev. Med. Child Neurol., 2011, 53(4), 313-320.
[http://dx.doi.org/10.1111/j.1469-8749.2010.03859.x] [PMID: 21401585]
[170]
Fedrizzi, E.; Rosa-Rizzotto, M.; Turconi, A.C.; Pagliano, E.; Fazzi, E.; Pozza, L.V.; Facchin, P. Unimanual and bimanual intensive training in children with hemiplegic cerebral palsy and persistence in time of hand function improvement: 6-month follow-up results of a multisite clinical trial. J. Child Neurol., 2013, 28(2), 161-175.
[http://dx.doi.org/10.1177/0883073812443004] [PMID: 22580904]
[171]
Dong, V.A.; Fong, K.N.; Chen, Y.F.; Tseng, S.S.; Wong, L.M. ‘Remind-to-move’ treatment versus constraint-induced movement therapy for children with hemiplegic cerebral palsy: a randomized controlled trial. Dev. Med. Child Neurol., 2017, 59(2), 160-167.
[http://dx.doi.org/10.1111/dmcn.13216] [PMID: 27503605]
[172]
Tervahauta, M.H.; Girolami, G.L.; Øberg, G.K. Efficacy of constraint-induced movement therapy compared with bimanual intensive training in children with unilateral cerebral palsy: a systematic review. Clin. Rehabil., 2017, 31(11), 1445-1456.
[http://dx.doi.org/10.1177/0269215517698834] [PMID: 29050511]
[173]
Krishnan, C.; Santos, L.; Peterson, M.D.; Ehinger, M. Safety of noninvasive brain stimulation in children and adolescents. Brain Stimul., 2015, 8(1), 76-87.
[http://dx.doi.org/10.1016/j.brs.2014.10.012] [PMID: 25499471]
[174]
Hilderley, A.J.; Metzler, M.J.; Kirton, A. Noninvasive neuromodulation to promote motor skill gains after perinatal stroke. Stroke, 2019, 50(2), 233-239.
[http://dx.doi.org/10.1161/STROKEAHA.118.020477] [PMID: 30661493]
[175]
Ciechanski, P.; Kirton, A. Transcranial direct-current stimulation can enhance motor learning in children. Cereb. Cortex, 2017, 27(5), 2758-2767.
[PMID: 27166171]
[176]
Moura, R.C.F.; Santos, C.; Collange Grecco, L.; Albertini, G.; Cimolin, V.; Galli, M.; Oliveira, C. Effects of a single session of transcranial direct current stimulation on upper limb movements in children with cerebral palsy: A randomized, sham-controlled study. Dev. Neurorehabil., 2017, 20(6), 368-375.
[http://dx.doi.org/10.1080/17518423.2017.1282050] [PMID: 28632467]
[177]
van der Aa, N.E.; Benders, M.J.; Nikkels, P.G.; Groenendaal, F.; de Vries, L.S. Cortical sparing in preterm ischemic arterial stroke. Stroke, 2016, 47(3), 869-871.
[http://dx.doi.org/10.1161/STROKEAHA.115.011605] [PMID: 26757751]
[178]
Yu, S.; Carlson, H.L.; Mineyko, A.; Brooks, B.L.; Kuczynski, A.; Hodge, J.; Dukelow, S.; Kirton, A. Bihemispheric alterations in myelination in children following unilateral perinatal stroke. Neuroimage Clin., 2018, 20, 7-15.
[http://dx.doi.org/10.1016/j.nicl.2018.06.028] [PMID: 29988959]
[179]
Chabrier, S.; Peyric, E.; Drutel, L.; Deron, J.; Kossorotoff, M.; Dinomais, M.; Lazaro, L.; Lefranc, J.; Thébault, G.; Dray, G.; Fluss, J.; Renaud, C. Nguyen The Tich, S. Multimodal outcome at 7 years of age after neonatal arterial ischemic stroke. J. Pediatr., 2016, 172, 156-161.e3.
[http://dx.doi.org/10.1016/j.jpeds.2016.01.069] [PMID: 26968833]
[180]
deVeber, G.A.; MacGregor, D.; Curtis, R.; Mayank, S. Neurologic outcome in survivors of childhood arterial ischemic stroke and sinovenous thrombosis. J. Child Neurol., 2000, 15(5), 316-324.
[http://dx.doi.org/10.1177/088307380001500508] [PMID: 10830198]
[181]
Rodan, L.; McCrindle, B.W.; Manlhiot, C.; MacGregor, D.L.; Askalan, R.; Moharir, M.; deVeber, G. Stroke recurrence in children with congenital heart disease. Ann. Neurol., 2012, 72(1), 103-111.
[http://dx.doi.org/10.1002/ana.23574] [PMID: 22829272]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy