Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

DNA Methylation in Depression and Depressive-Like Phenotype: Biomarker or Target of Pharmacological Intervention?

Author(s): Caterina Paoli, Paulina Misztak, Giulia Mazzini and Laura Musazzi*

Volume 20, Issue 12, 2022

Published on: 14 April, 2022

Page: [2267 - 2291] Pages: 25

DOI: 10.2174/1570159X20666220201084536

open access plus

Abstract

Major depressive disorder (MDD) is a debilitating psychiatric disorder, the third leading global cause of disability. Regarding aetiopathogenetic mechanisms involved in the onset of depressive disorders, the interaction between genetic vulnerability traits and environmental factors is believed to play a major role. Although much is still to be elucidated about the mechanisms through which the environment can interact with genetic background shaping the disease risk, there is a general agreement about a key role of epigenetic marking. In this narrative review, we focused on the association between changes in DNA methylation patterns and MDD or depressive-like phenotype in animal models, as well as mechanisms of response to antidepressant drugs. We discussed studies presenting DNA methylation changes at specific genes of interest and profiling analyses in both patients and animal models of depression. Overall, we collected evidence showing that DNA methylation could not only be considered as a promising epigenetic biomarker of pathology but could also help in predicting antidepressant treatment efficacy. Finally, we discussed the hypothesis that specific changes in DNA methylation signature could play a role in aetiopathogenetic processes as well as in the induction of antidepressant effect.

Keywords: Depression, DNA methylation, antidepressant, epigenetics, animal model, biomarker.

Graphical Abstract

[1]
Malhi, G.S.; Mann, J.J. Depression. Lancet, 2018, 392(10161), 2299-2312.
[http://dx.doi.org/10.1016/S0140-6736(18)31948-2] [PMID: 30396512]
[2]
Effertz, T.; Mann, K. The burden and cost of disorders of the brain in Europe with the inclusion of harmful alcohol use and nicotine addiction. Eur. Neuropsychopharmacol., 2013, 23(7), 742-748.
[http://dx.doi.org/10.1016/j.euroneuro.2012.07.010] [PMID: 22901735]
[3]
Thase, M.E.; Denko, T. Pharmacotherapy of mood disorders. Annu. Rev. Clin. Psychol., 2008, 4(1), 53-91.
[http://dx.doi.org/10.1146/annurev.clinpsy.2.022305.095301] [PMID: 18370614]
[4]
James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd Allah, F.; Abdela, J.; Abdelalim, A.; Abdollahpour, I.; Abdulkader, R.S.; Abebe, Z.; Abera, S.F.; Abil, O.Z.; Abraha, H.N.; Abu, R.L.J.; Abu Rmeileh, N.M.E.; Accrombessi, M.M.K.; Acharya, D.; Acharya, P.; Ackerman, I.N.; Adamu, A.A.; Adebayo, O.M.; Adekanmbi, V.; Adetokunboh, O.O.; Adib, M.G.; Adsuar, J.C.; Afanvi, K.A.; Afarideh, M.; Afshin, A.; Agarwal, G.; Agesa, K.M.; Aggarwal, R.; Aghayan, S.A.; Agrawal, S.; Ahmadi, A.; Ahmadi, M.; Ahmadieh, H.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemiju, T.; Akseer, N.; Al Aly, Z.; Al Eyadhy, A.; Al Mekhlafi, H.M.; Al Raddadi, R.M.; Alahdab, F.; Alam, K.; Alam, T.; Alashi, A.; Alavian, S.M.; Alene, K.A.; Alijanzadeh, M.; Alizadeh Navaei, R.; Aljunid, S.M.; Alkerwi, A.; Alla, F.; Allebeck, P.; Alouani, M.M.L.; Altirkawi, K.; Alvis Guzman, N.; Amare, A.T.; Aminde, L.N.; Ammar, W.; Amoako, Y.A.; Anber, N.H.; Andrei, C.L.; Androudi, S.; Animut, M.D.; Anjomshoa, M.; Ansha, M.G.; Antonio, C.A.T.; Anwari, P.; Arabloo, J.; Arauz, A.; Aremu, O.; Ariani, F.; Armoon, B.; Ärnlöv, J.; Arora, A.; Artaman, A.; Aryal, K.K.; Asayesh, H.; Asghar, R.J.; Ataro, Z.; Atre, S.R.; Ausloos, M.; Avila, B.L.; Avokpaho, E.F.G.A.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayer, R.; Azzopardi, P.S.; Babazadeh, A.; Badali, H.; Badawi, A.; Bali, A.G.; Ballesteros, K.E.; Ballew, S.H.; Banach, M.; Banoub, J.A.M.; Banstola, A.; Barac, A.; Barboza, M.A.; Barker Collo, S.L.; Bärnighausen, T.W.; Barrero, L.H.; Baune, B.T.; Bazargan, H.S.; Bedi, N.; Beghi, E.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Belachew, A.B.; Belay, Y.A.; Bell, M.L.; Bello, A.K.; Bensenor, I.M.; Bernabe, E.; Bernstein, R.S.; Beuran, M.; Beyranvand, T.; Bhala, N.; Bhattarai, S.; Bhaumik, S.; Bhutta, Z.A.; Biadgo, B.; Bijani, A.; Bikbov, B.; Bilano, V.; Bililign, N.; Bin Sayeed, M.S.; Bisanzio, D.; Blacker, B.F.; Blyth, F.M.; Bou Orm, I.R.; Boufous, S.; Bourne, R.; Brady, O.J.; Brainin, M.; Brant, L.C.; Brazinova, A.; Breitborde, N.J.K.; Brenner, H.; Briant, P.S.; Briggs, A.M.; Briko, A.N.; Britton, G.; Brugha, T.; Buchbinder, R.; Busse, R.; Butt, Z.A.; Cahuana, H.L.; Cano, J.; Cárdenas, R.; Carrero, J.J.; Carter, A.; Carvalho, F.; Castañeda, O.C.A.; Castillo, R.J.; Castro, F.; Catalá, L.F.; Cercy, K.M.; Cerin, E.; Chaiah, Y.; Chang, A.R.; Chang, H.Y.; Chang, J.C.; Charlson, F.J.; Chattopadhyay, A.; Chattu, V.K.; Chaturvedi, P.; Chiang, P.P.C.; Chin, K.L.; Chitheer, A.; Choi, J.Y.J.; Chowdhury, R.; Christensen, H.; Christopher, D.J.; Cicuttini, F.M.; Ciobanu, L.G.; Cirillo, M.; Claro, R.M.; Collado, M.D.; Cooper, C.; Coresh, J.; Cortesi, P.A.; Cortinovis, M.; Costa, M.; Cousin, E.; Criqui, M.H.; Cromwell, E.A.; Cross, M.; Crump, J.A.; Dadi, A.F.; Dandona, L.; Dandona, R.; Dargan, P.I.; Daryani, A.; Das Gupta, R.; Das Neves, J.; Dasa, T.T.; Davey, G.; Davis, A.C.; Davitoiu, D.V.; De Courten, B.; De La Hoz, F.P.; De Leo, D.; De Neve, J.W.; Degefa, M.G.; Degenhardt, L.; Deiparine, S.; Dellavalle, R.P.; Demoz, G.T.; Deribe, K.; Dervenis, N.; Des Jarlais, D.C.; Dessie, G.A.; Dey, S.; Dharmaratne, S.D.; Dinberu, M.T.; Dirac, M.A.; Djalalinia, S.; Doan, L.; Dokova, K.; Doku, D.T.; Dorsey, E.R.; Doyle, K.E.; Driscoll, T.R.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Duncan, B.B.; Duraes, A.R.; Ebrahimi, H.; Ebrahimpour, S.; Echko, M.M.; Edvardsson, D.; Effiong, A.; Ehrlich, J.R.; El Bcheraoui, C.; El Sayed Zaki, M.; El Khatib, Z.; Elkout, H.; Elyazar, I.R.F.; Enayati, A.; Endries, A.Y.; Er, B.; Erskine, H.E.; Eshrati, B.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Fakhim, H.; Fallah Omrani, V.; Faramarzi, M.; Fareed, M.; Farhadi, F.; Farid, T.A.; Farinha, C.S.E.; Farioli, A.; Faro, A.; Farvid, M.S.; Farzadfar, F.; Feigin, V.L.; Fentahun, N.; Fereshtehnejad, S.M.; Fernandes, E.; Fernandes, J.C.; Ferrari, A.J.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fitzmaurice, C.; Foigt, N.A.; Foreman, K.J.; Fox, J.; Frank, T.D.; Fukumoto, T.; Fullman, N.; Fürst, T.; Furtado, J.M.; Futran, N.D.; Gall, S.; Ganji, M.; Gankpe, F.G.; Garcia Basteiro, A.L.; Gardner, W.M.; Gebre, A.K.; Gebremedhin, A.T.; Gebremichael, T.G.; Gelano, T.F.; Geleijnse, J.M.; Genova Maleras, R.; Geramo, Y.C.D.; Gething, P.W.; Gezae, K.E.; Ghadiri, K.; Ghasemi, F.K.; Ghasemi, K.M.; Ghimire, M.; Ghosh, R.; Ghoshal, A.G.; Giampaoli, S.; Gill, P.S.; Gill, T.K.; Ginawi, I.A.; Giussani, G.; Gnedovskaya, E.V.; Goldberg, E.M.; Goli, S.; Gómez-Dantés, H.; Gona, P.N.; Gopalani, S.V.; Gorman, T.M.; Goulart, A.C.; Goulart, B.N.G.; Grada, A.; Grams, M.E.; Grosso, G.; Gugnani, H.C.; Guo, Y.; Gupta, P.C.; Gupta, R.; Gupta, R.; Gupta, T.; Gyawali, B.; Haagsma, J.A.; Hachinski, V.; Hafezi, N.N.; Haghparast, B.H.; Hagos, T.B.; Hailu, G.B.; Haj Mirzaian, A.; Haj Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Handal, A.J.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Harikrishnan, S.; Haro, J.M.; Hasan, M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hawley, C.N.; Hay, R.J.; Hay, S.I.; Hedayatizadeh, O.A.; Heibati, B.; Hendrie, D.; Henok, A.; Herteliu, C.; Heydarpour, S.; Hibstu, D.T.; Hoang, H.T.; Hoek, H.W.; Hoffman, H.J.; Hole, M.K.; Homaie, R.E.; Hoogar, P.; Hosgood, H.D.; Hosseini, S.M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Hotez, P.J.; Hoy, D.G.; Hsairi, M.; Htet, A.S.; Hu, G.; Huang, J.J.; Huynh, C.K.; Iburg, K.M.; Ikeda, C.T.; Ileanu, B.; Ilesanmi, O.S.; Iqbal, U.; Irvani, S.S.N.; Irvine, C.M.S.; Mohammed, S.; Islam, S.; Islami, F.; Jacobsen, K.H.; Jahangiry, L.; Jahanmehr, N.; Jain, S.K.; Jakovljevic, M.; Javanbakht, M.; Jayatilleke, A.U.; Jeemon, P.; Jha, R.P.; Jha, V.; Ji, J.S.; Johnson, C.O.; Jonas, J.B.; Jozwiak, J.J.; Jungari, S.B.; Jürisson, M.; Kabir, Z.; Kadel, R.; Kahsay, A.; Kalani, R.; Kanchan, T.; Karami, M.; Karami, M.B.; Karch, A.; Karema, C.; Karimi, N.; Karimi, S.M.; Kasaeian, A.; Kassa, D.H.; Kassa, G.M.; Kassa, T.D.; Kassebaum, N.J.; Katikireddi, S.V.; Kawakami, N.; Kazemi Karyani, A.; Keighobadi, M.M.; Keiyoro, P.N.; Kemmer, L.; Kemp, G.R.; Kengne, A.P.; Keren, A.; Khader, Y.S.; Khafaei, B.; Khafaie, M.A.; Khajavi, A.; Khalil, I.A.; Khan, E.A.; Khan, M.S.; Khan, M.A.; Khang, Y.H.; Khazaei, M.; Khoja, A.T.; Khosravi, A.; Khosravi, M.H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, C. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet, 2018, 392(10159), 1789-1858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[5]
Bareeqa, S.B.; Ahmed, S.I.; Samar, S.S.; Yasin, W.; Zehra, S.; Monese, G.M.; Gouthro, R.V. Prevalence of depression, anxiety and stress in china during COVID-19 pandemic: A systematic review with meta-analysis. Int. J. Psychiatry Med., 2021, 56(4), 210-227.
[http://dx.doi.org/10.1177/0091217420978005] [PMID: 33243029]
[6]
Hoffart, A.; Johnson, S.U.; Ebrahimi, O.V. Loneliness and social distancing during the COVID-19 pandemic: Risk factors and associations with psychopathology. Front. Psychiatry, 2020, 11, 589127.
[http://dx.doi.org/10.3389/fpsyt.2020.589127] [PMID: 33329136]
[7]
Coleman, J.R.I.; Peyrot, W.J.; Purves, K.L.; Davis, K.A.S.; Rayner, C.; Choi, S.W.; Hübel, C.; Gaspar, H.A.; Kan, C.; Van der Auwera, S.; Adams, M.J.; Lyall, D.M.; Choi, K.W.; Dunn, E.C.; Vassos, E.; Danese, A.; Maughan, B.; Grabe, H.J.; Lewis, C.M.; O’Reilly, P.F.; McIntosh, A.M.; Smith, D.J.; Wray, N.R.; Hotopf, M.; Eley, T.C.; Breen, G. Genome-wide gene-environment analyses of major depressive disorder and reported lifetime traumatic experiences in UK Biobank. Mol. Psychiatry, 2020, 25(7), 1430-1446.
[http://dx.doi.org/10.1038/s41380-019-0546-6] [PMID: 31969693]
[8]
Menke, A.; Binder, E.B. Epigenetic alterations in depression and antidepressant treatment. Dialogues Clin. Neurosci., 2014, 16(3), 395-404.
[http://dx.doi.org/10.31887/DCNS.2014.16.3/amenke] [PMID: 25364288]
[9]
Howard, D.M.; Adams, M.J.; Clarke, T.K.; Hafferty, J.D.; Gibson, J.; Shirali, M.; Coleman, J.R.I.; Hagenaars, S.P.; Ward, J.; Wigmore, E.M.; Alloza, C.; Shen, X.; Barbu, M.C.; Xu, E.Y.; Whalley, H.C.; Marioni, R.E.; Porteous, D.J.; Davies, G.; Deary, I.J.; Hemani, G.; Berger, K.; Teismann, H.; Rawal, R.; Arolt, V.; Baune, B.T.; Dannlowski, U.; Domschke, K.; Tian, C.; Hinds, D.A.; Trzaskowski, M.; Byrne, E.M.; Ripke, S.; Smith, D.J.; Sullivan, P.F.; Wray, N.R.; Breen, G.; Lewis, C.M.; McIntosh, A.M. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci., 2019, 22(3), 343-352.
[http://dx.doi.org/10.1038/s41593-018-0326-7] [PMID: 30718901]
[10]
Wray, N.R.; Ripke, S.; Mattheisen, M.; Trzaskowski, M.; Byrne, E.M.; Abdellaoui, A.; Adams, M.J.; Agerbo, E.; Air, T.M.; Andlauer, T.M.F.; Bacanu, S.A.; Bækvad-Hansen, M.; Beekman, A.F.T.; Bigdeli, T.B.; Binder, E.B.; Blackwood, D.R.H.; Bryois, J.; Buttenschøn, H.N.; Bybjerg-Grauholm, J.; Cai, N.; Castelao, E.; Christensen, J.H.; Clarke, T.K.; Coleman, J.I.R.; Colodro-Conde, L.; Couvy-Duchesne, B.; Craddock, N.; Crawford, G.E.; Crowley, C.A.; Dashti, H.S.; Davies, G.; Deary, I.J.; Degenhardt, F.; Derks, E.M.; Direk, N.; Dolan, C.V.; Dunn, E.C.; Eley, T.C.; Eriksson, N.; Escott-Price, V.; Kiadeh, F.H.F.; Finucane, H.K.; Forstner, A.J.; Frank, J.; Gaspar, H.A.; Gill, M.; Giusti-Rodríguez, P.; Goes, F.S.; Gordon, S.D.; Grove, J.; Hall, L.S.; Hannon, E.; Hansen, C.S.; Hansen, T.F.; Herms, S.; Hickie, I.B.; Hoffmann, P.; Homuth, G.; Horn, C.; Hottenga, J.J.; Hougaard, D.M.; Hu, M.; Hyde, C.L.; Ising, M.; Jansen, R.; Jin, F.; Jorgenson, E.; Knowles, J.A.; Kohane, I.S.; Kraft, J.; Kretzschmar, W.W.; Krogh, J.; Kutalik, Z.; Lane, J.M.; Li, Y.; Li, Y.; Lind, P.A.; Liu, X.; Lu, L.; MacIntyre, D.J.; MacKinnon, D.F.; Maier, R.M.; Maier, W.; Marchini, J.; Mbarek, H.; McGrath, P.; McGuffin, P.; Medland, S.E.; Mehta, D.; Middeldorp, C.M.; Mihailov, E.; Milaneschi, Y.; Milani, L.; Mill, J.; Mondimore, F.M.; Montgomery, G.W.; Mostafavi, S.; Mullins, N.; Nauck, M.; Ng, B.; Nivard, M.G.; Nyholt, D.R.; O’Reilly, P.F.; Oskarsson, H.; Owen, M.J.; Painter, J.N.; Pedersen, C.B.; Pedersen, M.G.; Peterson, R.E.; Pettersson, E.; Peyrot, W.J.; Pistis, G.; Posthuma, D.; Purcell, S.M.; Quiroz, J.A.; Qvist, P.; Rice, J.P.; Riley, B.P.; Rivera, M.; Saeed Mirza, S.; Saxena, R.; Schoevers, R.; Schulte, E.C.; Shen, L.; Shi, J.; Shyn, S.I.; Sigurdsson, E.; Sinnamon, G.B.C.; Smit, J.H.; Smith, D.J.; Stefansson, H.; Steinberg, S.; Stockmeier, C.A.; Streit, F.; Strohmaier, J.; Tansey, K.E.; Teismann, H.; Teumer, A.; Thompson, W.; Thomson, P.A.; Thorgeirsson, T.E.; Tian, C.; Traylor, M.; Treutlein, J.; Trubetskoy, V.; Uitterlinden, A.G.; Umbricht, D.; Van der Auwera, S.; van Hemert, A.M.; Viktorin, A.; Visscher, P.M.; Wang, Y.; Webb, B.T.; Weinsheimer, S.M.; Wellmann, J.; Willemsen, G.; Witt, S.H.; Wu, Y.; Xi, H.S.; Yang, J.; Zhang, F.; Arolt, V.; Baune, B.T.; Berger, K.; Boomsma, D.I.; Cichon, S.; Dannlowski, U.; de Geus, E.C.J.; DePaulo, J.R.; Domenici, E.; Domschke, K.; Esko, T.; Grabe, H.J.; Hamilton, S.P.; Hayward, C.; Heath, A.C.; Hinds, D.A.; Kendler, K.S.; Kloiber, S.; Lewis, G.; Li, Q.S.; Lucae, S.; Madden, P.F.A.; Magnusson, P.K.; Martin, N.G.; McIntosh, A.M.; Metspalu, A.; Mors, O.; Mortensen, P.B.; Müller-Myhsok, B.; Nordentoft, M.; Nöthen, M.M.; O’Donovan, M.C.; Paciga, S.A.; Pedersen, N.L.; Penninx, B.W.J.H.; Perlis, R.H.; Porteous, D.J.; Potash, J.B.; Preisig, M.; Rietschel, M.; Schaefer, C.; Schulze, T.G.; Smoller, J.W.; Stefansson, K.; Tiemeier, H.; Uher, R.; Völzke, H.; Weissman, M.M.; Werge, T.; Winslow, A.R.; Lewis, C.M.; Levinson, D.F.; Breen, G.; Børglum, A.D.; Sullivan, P.F. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet., 2018, 50(5), 668-681.
[http://dx.doi.org/10.1038/s41588-018-0090-3] [PMID: 29700475]
[11]
Webb, L.M.; Phillips, K.E.; Ho, M.C.; Veldic, M.; Blacker, C.J. The relationship between DNA methylation and antidepressant medications: A systematic review. Int. J. Mol. Sci., 2020, 21(3), 826.
[http://dx.doi.org/10.3390/ijms21030826] [PMID: 32012861]
[12]
Palma-Gudiel, H.; Córdova-Palomera, A.; Navarro, V.; Fañanás, L. Twin study designs as a tool to identify new candidate genes for depression: A systematic review of DNA methylation studies. Neurosci. Biobehav. Rev., 2020, 112, 345-352.
[http://dx.doi.org/10.1016/j.neubiorev.2020.02.017] [PMID: 32068032]
[13]
Popoli, M.; Yan, Z.; McEwen, B.S.; Sanacora, G. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci., 2011, 13(1), 22-37.
[http://dx.doi.org/10.1038/nrn3138] [PMID: 22127301]
[14]
Musazzi, L.; Marrocco, J. The many faces of stress: Implications for neuropsychiatric disorders. Neural Plast., 2016, 2016, 8389737.
[http://dx.doi.org/10.1155/2016/8389737] [PMID: 27066275]
[15]
Duman, R.S.; Aghajanian, G.K.; Sanacora, G.; Krystal, J.H. Synaptic plasticity and depression: New insights from stress and rapid acting antidepressants. Nat. Med., 2016, 22(3), 238-249.
[http://dx.doi.org/10.1038/nm.4050] [PMID: 26937618]
[16]
McEwen, B.S.; Bowles, N.P.; Gray, J.D.; Hill, M.N.; Hunter, R.G.; Karatsoreos, I.N.; Nasca, C. Mechanisms of stress in the brain. Nat. Neurosci., 2015, 18(10), 1353-1363.
[http://dx.doi.org/10.1038/nn.4086] [PMID: 26404710]
[17]
Torres-Berrío, A.; Issler, O.; Parise, E.M.; Nestler, E.J. Unraveling the epigenetic landscape of depression: Focus on early life stress. Dialogues Clin. Neurosci., 2019, 21(4), 341-357.
[http://dx.doi.org/10.31887/DCNS.2019.21.4/enestler] [PMID: 31949402]
[18]
Han, K.M.; Won, E.; Sim, Y.; Kang, J.; Han, C.; Kim, Y.K.; Kim, S.H.; Joe, S.H.; Lee, M.S.; Tae, W.S.; Ham, B.J. Influence of FKBP5 polymorphism and DNA methylation on structural changes of the brain in major depressive disorder. Sci. Rep., 2017, 7(1), 42621.
[http://dx.doi.org/10.1038/srep42621] [PMID: 28198448]
[19]
Sanacora, G.; Yan, Z.; Popoli, M. The stressed synapse 2.0: Pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat. Rev. Neurosci., 2022, 23(2), 86-103.
[PMID: 34893785]
[20]
Saavedra, K.; Molina-Márquez, A.M.; Saavedra, N.; Zambrano, T.; Salazar, L.A. Epigenetic modifications of major depressive disorder. Int. J. Mol. Sci., 2016, 17(8), 1279.
[http://dx.doi.org/10.3390/ijms17081279] [PMID: 27527165]
[21]
Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology, 2013, 38(1), 23-38.
[http://dx.doi.org/10.1038/npp.2012.112] [PMID: 22781841]
[22]
Waddington, C.H. Towards a theoretical biology. Nature, 1968, 218(5141), 525-527.
[http://dx.doi.org/10.1038/218525a0] [PMID: 5650959]
[23]
Jang, H.S.; Shin, W.J.; Lee, J.E.; Do, J.T. CpG and non-CpG methylation in epigenetic gene regulation and brain function. Genes (Basel), 2017, 8(6), 148.
[http://dx.doi.org/10.3390/genes8060148] [PMID: 28545252]
[24]
Kanherkar, R.R.; Bhatia Dey, N.; Csoka, A.B. Epigenetics across the human lifespan. Front. Cell Dev. Biol., 2014, 2, 49.
[http://dx.doi.org/10.3389/fcell.2014.00049]
[25]
Wei, J.W.; Huang, K.; Yang, C.; Kang, C.S. Non-coding RNAs as regulators in epigenetics (Review). Oncol. Rep., 2017, 37(1), 3-9.
[http://dx.doi.org/10.3892/or.2016.5236] [PMID: 27841002]
[26]
Skvortsova, K.; Iovino, N. Bogdanović O. Functions and mechanisms of epigenetic inheritance in animals. Nat. Rev. Mol. Cell Biol., 2018, 19(12), 774-790.
[http://dx.doi.org/10.1038/s41580-018-0074-2] [PMID: 30425324]
[27]
Gujar, H.; Weisenberger, D.J.; Liang, G. The roles of human DNA methyltransferases and their isoforms in shaping the epigenome. Genes (Basel), 2019, 10(2), 172.
[http://dx.doi.org/10.3390/genes10020172] [PMID: 30813436]
[28]
Lister, R.; Mukamel, E.A.; Nery, J.R.; Urich, M.; Puddifoot, C.A.; Johnson, N.D.; Lucero, J.; Huang, Y.; Dwork, A.J.; Schultz, M.D.; Yu, M.; Tonti-Filippini, J.; Heyn, H.; Hu, S.; Wu, J.C.; Rao, A.; Esteller, M.; He, C.; Haghighi, F.G.; Sejnowski, T.J.; Behrens, M.M.; Ecker, J.R. Global epigenomic reconfiguration during mammalian brain development. Science, 2013, 341(6146), 1237905.
[http://dx.doi.org/10.1126/science.1237905] [PMID: 23828890]
[29]
Hing, B.; Sathyaputri, L.; Potash, J.B. A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2018, 177(2), 143-167.
[http://dx.doi.org/10.1002/ajmg.b.32616] [PMID: 29243873]
[30]
Lin, C.C.; Huang, T.L. Brain-derived neurotrophic factor and mental disorders. Biomed. J., 2020, 43(2), 134-142.
[http://dx.doi.org/10.1016/j.bj.2020.01.001] [PMID: 32386841]
[31]
Pruunsild, P.; Kazantseva, A.; Aid, T.; Palm, K.; Timmusk, T. Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics, 2007, 90(3), 397-406.
[http://dx.doi.org/10.1016/j.ygeno.2007.05.004] [PMID: 17629449]
[32]
Tongiorgi, E. Activity-dependent expression of brain-derived neurotrophic factor in dendrites: Facts and open questions. Neurosci. Res., 2008, 61(4), 335-346.
[http://dx.doi.org/10.1016/j.neures.2008.04.013] [PMID: 18550187]
[33]
Cattaneo, A.; Cattane, N.; Begni, V.; Pariante, C.M.; Riva, M.A. The human BDNF gene: Peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl. Psychiatry, 2016, 6(11), e958-e958.
[http://dx.doi.org/10.1038/tp.2016.214] [PMID: 27874848]
[34]
Pandey, G.N.; Dwivedi, Y. Neurobiology of Teenage Suicide. The Neurobiological Basis of Suicide; Dwivedi, Y., Ed.; CRC Press/Taylor & Francis: Boca Raton, FL, 2012.
[35]
Fuchikami, M.; Morinobu, S.; Segawa, M.; Okamoto, Y.; Yamawaki, S.; Ozaki, N.; Inoue, T.; Kusumi, I.; Koyama, T.; Tsuchiyama, K.; Terao, T. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One, 2011, 6(8), e23881.
[http://dx.doi.org/10.1371/journal.pone.0023881] [PMID: 21912609]
[36]
D’Addario, C.; Dell’Osso, B.; Galimberti, D.; Palazzo, M.C.; Benatti, B.; Di Francesco, A.; Scarpini, E.; Altamura, A.C.; Maccarrone, M.; Maccarrone, M.; Altamura, A.C. Epigenetic modulation of BDNF gene in patients with major depressive disorder. Biol. Psychiatry, 2013, 73(2), e6-e7.
[http://dx.doi.org/10.1016/j.biopsych.2012.07.009] [PMID: 22901293]
[37]
Carlberg, L.; Scheibelreiter, J.; Hassler, M.R.; Schloegelhofer, M.; Schmoeger, M.; Ludwig, B.; Kasper, S.; Aschauer, H.; Egger, G.; Schosser, A. Brain-derived neurotrophic factor (BDNF)-epigenetic regulation in unipolar and bipolar affective disorder. J. Affect. Disord., 2014, 168, 399-406.
[http://dx.doi.org/10.1016/j.jad.2014.07.022] [PMID: 25106037]
[38]
Dell’Osso, B.; D’Addario, C.; Carlotta Palazzo, M.; Benatti, B.; Camuri, G.; Galimberti, D.; Fenoglio, C.; Scarpini, E.; Di Francesco, A.; Maccarrone, M.; Altamura, A.C. Epigenetic modulation of BDNF gene: Differences in DNA methylation between unipolar and bipolar patients. J. Affect. Disord., 2014, 166, 330-333.
[http://dx.doi.org/10.1016/j.jad.2014.05.020] [PMID: 25012449]
[39]
Song, Y.; Miyaki, K.; Suzuki, T.; Sasaki, Y.; Tsutsumi, A.; Kawakami, N.; Shimazu, A.; Takahashi, M.; Inoue, A.; Kan, C.; Kurioka, S.; Shimbo, T. Altered DNA methylation status of human brain derived neurotrophis factor gene could be useful as biomarker of depression. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2014, 165B(4), 357-364.
[http://dx.doi.org/10.1002/ajmg.b.32238] [PMID: 24801253]
[40]
Januar, V.; Ancelin, M.L.; Ritchie, K.; Saffery, R.; Ryan, J. BDNF promoter methylation and genetic variation in late-life depression. Transl. Psychiatry, 2015, 5(8), e619.
[http://dx.doi.org/10.1038/tp.2015.114] [PMID: 26285129]
[41]
Roy, B.; Shelton, R.C.; Dwivedi, Y. DNA methylation and expression of stress related genes in PBMC of MDD patients with and without serious suicidal ideation. J. Psychiatr. Res., 2017, 89, 115-124.
[http://dx.doi.org/10.1016/j.jpsychires.2017.02.005] [PMID: 28246044]
[42]
Na, K.S.; Won, E.; Kang, J.; Chang, H.S.; Yoon, H.K.; Tae, W.S.; Kim, Y.K.; Lee, M.S.; Joe, S.H.; Kim, H.; Ham, B.J. Brain-derived neurotrophic factor promoter methylation and cortical thickness in recurrent major depressive disorder. Sci. Rep., 2016, 6(1), 21089.
[http://dx.doi.org/10.1038/srep21089] [PMID: 26876488]
[43]
Hsieh, M.T.; Lin, C.C.; Lee, C.T.; Huang, T.L. Abnormal brain-derived neurotrophic factor exon IX promoter methylation, protein, and mRNA levels in patients with major depressive disorder. J. Clin. Med., 2019, 8(5), E568.
[http://dx.doi.org/10.3390/jcm8050568] [PMID: 31027379]
[44]
Kang, H.J.; Kim, J.M.; Stewart, R.; Kim, S.Y.; Bae, K.Y.; Kim, S.W.; Shin, I.S.; Shin, M.G.; Yoon, J.S. Association of SLC6A4 methylation with early adversity, characteristics and outcomes in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 44, 23-28.
[http://dx.doi.org/10.1016/j.pnpbp.2013.01.006] [PMID: 23333376]
[45]
Kim, J.M.; Stewart, R.; Kim, J.W.; Kang, H.J.; Lee, J.Y.; Kim, S.Y.; Kim, S.W.; Shin, I.S.; Hong, Y.J.; Ahn, Y.; Jeong, M.H.; Yoon, J.S. Modifying effects of depression on the association between BDNF methylation and prognosis of acute coronary syndrome. Brain Behav. Immun., 2019, 81, 422-429.
[http://dx.doi.org/10.1016/j.bbi.2019.06.038] [PMID: 31255678]
[46]
Kim, J.M.; Stewart, R.; Kang, H.J.; Bae, K.Y.; Kim, S.W.; Shin, I.S.; Hong, Y.J.; Ahn, Y.; Jeong, M.H.; Yoon, J.S. BDNF methylation and depressive disorder in acute coronary syndrome: The K-DEPACS and EsDEPACS studies. Psychoneuroendocrinology, 2015, 62, 159-165.
[http://dx.doi.org/10.1016/j.psyneuen.2015.08.013] [PMID: 26313133]
[47]
Ferrer, A.; Labad, J.; Salvat-Pujol, N.; Barrachina, M.; Costas, J.; Urretavizcaya, M.; de Arriba-Arnau, A.; Crespo, J.M.; Soriano-Mas, C.; Carracedo, Á.; Menchón, J.M.; Soria, V. BDNF genetic variants and methylation: Effects on cognition in major depressive disorder. Transl. Psychiatry, 2019, 9(1), 265.
[http://dx.doi.org/10.1038/s41398-019-0601-8] [PMID: 31636250]
[48]
Bakusic, J.; Vrieze, E.; Ghosh, M.; Pizzagalli, D.A.; Bekaert, B.; Claes, S.; Godderis, L. Interplay of Val66Met and BDNF methylation: Effect on reward learning and cognitive performance in major depression. Clin. Epigenetics, 2021, 13(1), 149.
[http://dx.doi.org/10.1186/s13148-021-01136-z] [PMID: 34325733]
[49]
Tadić A.; Müller-Engling, L.; Schlicht, K.F.; Kotsiari, A.; Dreimüller, N.; Kleimann, A.; Bleich, S.; Lieb, K.; Frieling, H. Methylation of the promoter of brain-derived neurotrophic factor exon IV and antidepressant response in major depression. Mol. Psychiatry, 2014, 19(3), 281-283.
[http://dx.doi.org/10.1038/mp.2013.58] [PMID: 23670489]
[50]
Lieb, K.; Dreimüller, N.; Wagner, S.; Schlicht, K.; Falter, T.; Neyazi, A.; Müller-Engling, L.; Bleich, S. Tadić A.; Frieling, H. BDNF plasma levels and BDNF exon IV promoter methylation as predictors for antidepressant treatment response. Front. Psychiatry, 2018, 9, 511.
[http://dx.doi.org/10.3389/fpsyt.2018.00511] [PMID: 30459647]
[51]
Duman, R.S.; Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry, 2006, 59(12), 1116-1127.
[http://dx.doi.org/10.1016/j.biopsych.2006.02.013] [PMID: 16631126]
[52]
Castrén, E.; Rantamäki, T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev. Neurobiol., 2010, 70(5), 289-297.
[http://dx.doi.org/10.1002/dneu.20758] [PMID: 20186711]
[53]
Qiao, H.; An, S.C.; Xu, C.; Ma, X.M. Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res., 2017, 1663, 29-37.
[http://dx.doi.org/10.1016/j.brainres.2017.02.020] [PMID: 28284898]
[54]
Zheng, Y.; Fan, W.; Zhang, X.; Dong, E. Gestational stress induces depressive-like and anxiety-like phenotypes through epigenetic regulation of BDNF expression in offspring hippocampus. Epigenetics, 2016, 11(2), 150-162.
[http://dx.doi.org/10.1080/15592294.2016.1146850] [PMID: 26890656]
[55]
Ye, D.; Zhang, L.; Fan, W.; Zhang, X.; Dong, E. Genipin normalizes depression-like behavior induced by prenatal stress through inhibiting DNMT1. Epigenetics, 2018, 13(3), 310-317.
[http://dx.doi.org/10.1080/15592294.2018.1450033] [PMID: 29522357]
[56]
Coley, E.J.L.; Demaestri, C.; Ganguly, P.; Honeycutt, J.A.; Peterzell, S.; Rose, N.; Ahmed, N.; Holschbach, M.; Trivedi, M.; Brenhouse, H.C. Cross-generational transmission of early life stress effects on HPA regulators and Bdnf are mediated by sex, lineage, and upbringing. Front. Behav. Neurosci., 2019, 13, 101.
[http://dx.doi.org/10.3389/fnbeh.2019.00101] [PMID: 31143105]
[57]
Ibi, M.; Liu, J.; Arakawa, N.; Kitaoka, S.; Kawaji, A.; Matsuda, K.I.; Iwata, K.; Matsumoto, M.; Katsuyama, M.; Zhu, K.; Teramukai, S.; Furuyashiki, T.; Yabe-Nishimura, C. Depressive-like behaviors are regulated by NOX1/NADPH oxidase by redox modification of NMDA receptor 1. J. Neurosci., 2017, 37(15), 4200-4212.
[http://dx.doi.org/10.1523/JNEUROSCI.2988-16.2017] [PMID: 28314819]
[58]
Wei, Y.; Melas, P.A.; Wegener, G.; Mathe, A.A.; Lavebratt, C. Bin; Melas, P.A.; Wegener, G.; Mathe, A.A.; Lavebratt, C. Antidepressant-like effect of sodium butyrate is associated with an increase in Tet1 and in 5-hydroxymethylation levels in the BDNF gene. Int. J. Neuropsychopharmacol., 2015, 18(2), 1-10.
[http://dx.doi.org/10.1093/ijnp/pyu032]
[59]
Calabrese, F.; Guidotti, G.; Middelman, A.; Racagni, G.; Homberg, J.; Riva, M.A. Lack of serotonin transporter alters BDNF expression in the rat brain during early postnatal development. Mol. Neurobiol., 2013, 244-256.
[60]
Miao, Z.; Mao, F.; Liang, J.; Szyf, M.; Wang, Y.; Sun, Z.S. Anxiety-related behaviours associated with microRNA-206-3p and BDNF expression in pregnant female mice following psychological social stress. Mol. Neurobiol., 2018, 55(2), 1097-1111.
[http://dx.doi.org/10.1007/s12035-016-0378-1] [PMID: 28092086]
[61]
Xu, H.; Wang, J.; Zhang, K.; Zhao, M.; Ellenbroek, B.; Shao, F.; Wang, W. Effects of adolescent social stress and antidepressant treatment on cognitive inflexibility and Bdnf epigenetic modifications in the mPFC of adult mice. Psychoneuroendocrinology, 2018, 88, 92-101.
[http://dx.doi.org/10.1016/j.psyneuen.2017.11.013] [PMID: 29195162]
[62]
Dell’Osso, L.; Carmassi, C.; Mucci, F.; Marazziti, D. Depression, serotonin and tryptophan. Curr. Pharm. Des., 2016, 22(8), 949-954.
[http://dx.doi.org/10.2174/1381612822666151214104826] [PMID: 26654774]
[63]
Hamon, M.; Blier, P. Monoamine neurocircuitry in depression and strategies for new treatments. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 45, 54-63.
[http://dx.doi.org/10.1016/j.pnpbp.2013.04.009] [PMID: 23602950]
[64]
Kraus, C.; Castrén, E.; Kasper, S.; Lanzenberger, R. Serotonin and neuroplasticity - Links between molecular, functional and structural pathophysiology in depression. Neurosci. Biobehav. Rev., 2017, 77, 317-326.
[http://dx.doi.org/10.1016/j.neubiorev.2017.03.007] [PMID: 28342763]
[65]
Le François, B.; Soo, J.; Millar, A.M.; Daigle, M.; Le Guisquet, A.M.; Leman, S.; Minier, F.; Belzung, C.; Albert, P.R. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site. Neurobiol. Dis., 2015, 82, 332-341.
[http://dx.doi.org/10.1016/j.nbd.2015.07.002] [PMID: 26188176]
[66]
Fratelli, C.; Siqueira, J.; Silva, C.; Ferreira, E.; Silva, I. 5HTTLPR genetic variant and major depressive disorder: A review. Genes (Basel), 2020, 11(11), 1260.
[http://dx.doi.org/10.3390/genes11111260] [PMID: 33114535]
[67]
Kambeitz, J.P.; Howes, O.D. The serotonin transporter in depression: Meta-analysis of in vivo and post mortem findings and implications for understanding and treating depression. J. Affect. Disord., 2015, 186, 358-366.
[http://dx.doi.org/10.1016/j.jad.2015.07.034] [PMID: 26281039]
[68]
Iga, J.; Watanabe, S.Y.; Numata, S.; Umehara, H.; Nishi, A.; Kinoshita, M.; Inoshita, M.; Shimodera, S.; Fujita, H.; Ohmori, T. Association study of polymorphism in the serotonin transporter gene promoter, methylation profiles, and expression in patients with major depressive disorder. Hum. Psychopharmacol., 2016, 31(3), 193-199.
[http://dx.doi.org/10.1002/hup.2527] [PMID: 27005686]
[69]
Iurescia, S.; Seripa, D.; Rinaldi, M. Looking beyond the 5-HTTLPR polymorphism: genetic and epigenetic layers of regulation affecting the serotonin transporter gene expression. Mol. Neurobiol., 2017, 54(10), 8386-8403.
[http://dx.doi.org/10.1007/s12035-016-0304-6] [PMID: 27933583]
[70]
Philibert, R.A.; Sandhu, H.; Hollenbeck, N.; Gunter, T.; Adams, W.; Madan, A. The relationship of 5HTT (SLC6A4) methylation and genotype on mRNA expression and liability to major depression and alcohol dependence in subjects from the Iowa Adoption Studies. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(5), 543-549.
[http://dx.doi.org/10.1002/ajmg.b.30657] [PMID: 17987668]
[71]
Zhao, J.; Goldberg, J.; Bremner, J.D.; Vaccarino, V. Association between promoter methylation of serotonin transporter gene and depressive symptoms: A monozygotic twin study. Psychosom. Med., 2013, 75(6), 523-529.
[http://dx.doi.org/10.1097/PSY.0b013e3182924cf4] [PMID: 23766378]
[72]
Kim, J.M.; Stewart, R.; Kang, H.J.; Kim, S.W.; Shin, I.S.; Kim, H.R.; Shin, M.G.; Kim, J.T.; Park, M.S.; Cho, K.H.; Yoon, J.S. A longitudinal study of SLC6A4 DNA promoter methylation and poststroke depression. J. Psychiatr. Res., 2013, 47(9), 1222-1227.
[http://dx.doi.org/10.1016/j.jpsychires.2013.04.010] [PMID: 23702251]
[73]
Devlin, A.M.; Brain, U.; Austin, J.; Oberlander, T.F. Prenatal exposure to maternal depressed mood and the MTHFR C677T variant affect SLC6A4 methylation in infants at birth. PLoS One, 2010, 5(8), e12201.
[http://dx.doi.org/10.1371/journal.pone.0012201] [PMID: 20808944]
[74]
Olsson, C.A.; Foley, D.L.; Parkinson-Bates, M.; Byrnes, G.; McKenzie, M.; Patton, G.C.; Morley, R.; Anney, R.J.L.; Craig, J.M.; Saffery, R. Prospects for epigenetic research within cohort studies of psychological disorder: A pilot investigation of a peripheral cell marker of epigenetic risk for depression. Biol. Psychol., 2010, 83(2), 159-165.
[http://dx.doi.org/10.1016/j.biopsycho.2009.12.003] [PMID: 20018225]
[75]
Xu, J.; Cheng, Y.Q.; Chen, B.; Bai, R.; Li, S.; Xu, X.F.; Xu, L.; Wen, J.F.; Lu, Z.P.; Zeng, X.F. Depression in systemic lupus erythematosus patients is associated with link-polymorphism but not methylation status of the 5HTT promoter region. Lupus, 2013, 22(10), 1001-1010.
[http://dx.doi.org/10.1177/0961203313498793] [PMID: 23893825]
[76]
Domschke, K.; Tidow, N.; Schwarte, K.; Deckert, J.; Lesch, K.P.; Arolt, V.; Zwanzger, P.; Baune, B.T. Serotonin transporter gene hypomethylation predicts impaired antidepressant treatment response. Int. J. Neuropsychopharmacol., 2014, 17(8), 1167-1176.
[http://dx.doi.org/10.1017/S146114571400039X] [PMID: 24679990]
[77]
Okada, S.; Morinobu, S.; Fuchikami, M.; Segawa, M.; Yokomaku, K.; Kataoka, T.; Okamoto, Y.; Yamawaki, S.; Inoue, T.; Kusumi, I.; Koyama, T.; Tsuchiyama, K.; Terao, T.; Kokubo, Y.; Mimura, M. The potential of SLC6A4 gene methylation analysis for the diagnosis and treatment of major depression. J. Psychiatr. Res., 2014, 53(1), 47-53.
[http://dx.doi.org/10.1016/j.jpsychires.2014.02.002] [PMID: 24657235]
[78]
Booij, L.; Szyf, M.; Carballedo, A.; Frey, E.M.; Morris, D.; Dymov, S.; Vaisheva, F.; Ly, V.; Fahey, C.; Meaney, J.; Gill, M.; Frodl, T. DNA methylation of the serotonin transporter gene in peripheral cells and stress-related changes in hippocampal volume: A study in depressed patients and healthy controls. PLoS One, 2015, 10(3), e0119061.
[http://dx.doi.org/10.1371/journal.pone.0119061] [PMID: 25781010]
[79]
Schiele, M.A.; Zwanzger, P.; Schwarte, K.; Arolt, V.; Baune, B.T.; Domschke, K. Serotonin transporter gene promoter hypomethylation as a predictor of antidepressant treatment response in major depression: A replication study. Int. J. Neuropsychopharmacol., 2021, 24(3), 191-199.
[http://dx.doi.org/10.1093/ijnp/pyaa081] [PMID: 33125470]
[80]
Bakusic, J.; Vrieze, E.; Ghosh, M.; Bekaert, B.; Claes, S.; Godderis, L. Increased methylation of NR3C1 and SLC6A4 is associated with blunted cortisol reactivity to stress in major depression. Neurobiol. Stress, 2020, 13, 100272.
[http://dx.doi.org/10.1016/j.ynstr.2020.100272] [PMID: 33344725]
[81]
Gassó, P.; Rodríguez, N.; Blázquez, A.; Monteagudo, A.; Boloc, D.; Plana, M.T.; Lafuente, A.; Lázaro, L.; Arnaiz, J.A.; Mas, S. Epigenetic and genetic variants in the HTR1B gene and clinical improvement in children and adolescents treated with fluoxetine. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 75, 28-34.
[http://dx.doi.org/10.1016/j.pnpbp.2016.12.003] [PMID: 28025020]
[82]
Wang, P.; Lv, Q.; Mao, Y.; Zhang, C.; Bao, C.; Sun, H.; Chen, H.; Yi, Z.; Cai, W.; Fang, Y. HTR1A/1B DNA methylation may predict escitalopram treatment response in depressed Chinese Han patients. J. Affect. Disord., 2018, 228, 222-228.
[http://dx.doi.org/10.1016/j.jad.2017.12.010] [PMID: 29275155]
[83]
Willner, P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol. Stress, 2016, 6, 78-93.
[http://dx.doi.org/10.1016/j.ynstr.2016.08.002] [PMID: 28229111]
[84]
Zhang, Y.; Chang, Z.; Chen, J.; Ling, Y.; Liu, X.; Feng, Z.; Chen, C.; Xia, M.; Zhao, X.; Ying, W.; Qing, X.; Li, G.; Zhang, C. Methylation of the tryptophan hydroxylase 2 gene is associated with mRNA expression in patients with major depression with suicide attempts. Mol. Med. Rep., 2015, 12(2), 3184-3190.
[http://dx.doi.org/10.3892/mmr.2015.3748] [PMID: 25955598]
[85]
Shen, T.; Li, X.; Chen, L.; Chen, Z.; Tan, T.; Hua, T.; Chen, B.; Yuan, Y.; Zhang, Z.; Kuney, L.; Xu, Z. The relationship of tryptophan hydroxylase-2 methylation to early-life stress and its impact on short-term antidepressant treatment response. J. Affect. Disord., 2020, 276, 850-858.
[http://dx.doi.org/10.1016/j.jad.2020.07.111] [PMID: 32738671]
[86]
Esler, M.; Alvarenga, M.; Pier, C.; Richards, J.; El-Osta, A.; Barton, D.; Haikerwal, D.; Kaye, D.; Schlaich, M.; Guo, L.; Jennings, G.; Socratous, F.; Lambert, G. The neuronal noradrenaline transporter, anxiety and cardiovascular disease. J. Psychopharmacol., 2006, 20(4)(Suppl.), 60-66.
[http://dx.doi.org/10.1177/1359786806066055] [PMID: 16785272]
[87]
Bayles, R.; Baker, E.K.; Jowett, J.B.M.; Barton, D.; Esler, M.; El-Osta, A.; Lambert, G. Methylation of the SLC6a2 gene promoter in major depression and panic disorder. PLoS One, 2013, 8(12), e83223.
[http://dx.doi.org/10.1371/journal.pone.0083223] [PMID: 24312678]
[88]
Melas, P.A.; Wei, Y.; Wong, C.C.; Sjöholm, L.K.; Åberg, E.; Mill, J.; Schalling, M.; Forsell, Y.; Lavebratt, C. Genetic and epigenetic associations of MAOA and NR3C1 with depression and childhood adversities. Int. J. Neuropsychopharmacol., 2013, 16(7), 1513-1528.
[http://dx.doi.org/10.1017/S1461145713000102] [PMID: 23449091]
[89]
Melas, P.A.; Forsell, Y. Hypomethylation of MAOA’s first exon region in depression: A replication study. Psychiatry Res., 2015, 226(1), 389-391.
[http://dx.doi.org/10.1016/j.psychres.2015.01.003] [PMID: 25623016]
[90]
Checknita, D.; Ekström, T.J.; Comasco, E.; Nilsson, K.W.; Tiihonen, J.; Hodgins, S. Associations of monoamine oxidase A gene first exon methylation with sexual abuse and current depression in women. J. Neural Transm. (Vienna), 2018, 125(7), 1053-1064.
[http://dx.doi.org/10.1007/s00702-018-1875-3] [PMID: 29600412]
[91]
Dempster, E.L.; Mill, J.; Craig, I.W.; Collier, D.A. The quantification of COMT mRNA in post mortem cerebellum tissue: Diagnosis, genotype, methylation and expression. BMC Med. Genet., 2006, 7(1), 10.
[http://dx.doi.org/10.1186/1471-2350-7-10] [PMID: 16483362]
[92]
Na, K.S.; Won, E.; Kang, J.; Kim, A.; Choi, S.; Tae, W.S.; Kim, Y.K.; Lee, M.S.; Joe, S.H.; Ham, B.J. Differential effect of COMT gene methylation on the prefrontal connectivity in subjects with depression versus healthy subjects. Neuropharmacology, 2018, 137, 59-70.
[http://dx.doi.org/10.1016/j.neuropharm.2018.04.030] [PMID: 29723539]
[93]
Svenningsson, P.; Kim, Y.; Warner-Schmidt, J.; Oh, Y.S.; Greengard, P. p11 and its role in depression and therapeutic responses to antidepressants. Nat. Rev. Neurosci., 2013, 14(10), 673-680.
[http://dx.doi.org/10.1038/nrn3564] [PMID: 24002251]
[94]
Neyazi, A.; Theilmann, W.; Brandt, C.; Rantamäki, T.; Matsui, N.; Rhein, M.; Kornhuber, J.; Bajbouj, M.; Sperling, W.; Bleich, S.; Frieling, H.; Löscher, W. P11 promoter methylation predicts the antidepressant effect of electroconvulsive therapy. Transl. Psychiatry, 2018, 8(1), 25.
[http://dx.doi.org/10.1038/s41398-017-0077-3] [PMID: 29353887]
[95]
Engelmann, J.; Wagner, S.; Wollschläger, D.; Kaaden, S.; Schlicht, K.F.; Dreimüller, N.; Braus, D.F.; Müller, M.B.; Tüscher, O.; Frieling, H. Tadić A.; Lieb, K. Higher BDNF plasma levels are associated with a normalization of memory dysfunctions during an antidepressant treatment. Eur. Arch. Psychiatry Clin. Neurosci., 2020, 270(2), 183-193.
[http://dx.doi.org/10.1007/s00406-019-01006-z] [PMID: 30929060]
[96]
Melas, P.A.; Rogdaki, M.; Lennartsson, A.; Björk, K.; Qi, H.; Witasp, A.; Werme, M.; Wegener, G.; Mathé, A.A.; Svenningsson, P.; Lavebratt, C. Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int. J. Neuropsychopharmacol., 2012, 15(5), 669-679.
[http://dx.doi.org/10.1017/S1461145711000940] [PMID: 21682946]
[97]
Theilmann, W.; Kleimann, A.; Rhein, M.; Bleich, S.; Frieling, H.; Löscher, W.; Brandt, C. Behavioral differences of male Wistar rats from different vendors in vulnerability and resilience to chronic mild stress are reflected in epigenetic regulation and expression of p11. Brain Res., 2016, 1642, 505-515.
[http://dx.doi.org/10.1016/j.brainres.2016.04.041] [PMID: 27103570]
[98]
Ryoke, R.; Yamada, K.; Ichitani, Y. Long-term effects of traumatic stress on subsequent contextual fear conditioning in rats. Physiol. Behav., 2014, 129, 30-35.
[http://dx.doi.org/10.1016/j.physbeh.2014.02.042] [PMID: 24582672]
[99]
Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci., 2008, 31(9), 464-468.
[http://dx.doi.org/10.1016/j.tins.2008.06.006] [PMID: 18675469]
[100]
Almeida, F.B.; Pinna, G.; Barros, H.M.T. The Role of HPA Axis and Allopregnanolone on the Neurobiology of Major Depressive Disorders and PTSD. Int. J. Mol. Sci., 2021, 22(11), 5495.
[http://dx.doi.org/10.3390/ijms22115495] [PMID: 34071053]
[101]
Zorn, J.V.; Schür, R.R.; Boks, M.P.; Kahn, R.S.; Joëls, M.; Vinkers, C.H. Cortisol stress reactivity across psychiatric disorders: A systematic review and meta-analysis. Psychoneuroendocrinology, 2017, 77, 25-36.
[http://dx.doi.org/10.1016/j.psyneuen.2016.11.036] [PMID: 28012291]
[102]
Tozzi, L.; Farrell, C.; Booij, L.; Doolin, K.; Nemoda, Z.; Szyf, M.; Pomares, F.B.; Chiarella, J.; O’Keane, V.; Frodl, T. Epigenetic changes of FKBP5 as a link connecting genetic and environmental risk factors with structural and functional brain changes in major depression. Neuropsychopharmacology, 2018, 43(5), 1138-1145.
[http://dx.doi.org/10.1038/npp.2017.290] [PMID: 29182159]
[103]
Klinger-König, J.; Hertel, J.; Van der Auwera, S.; Frenzel, S.; Pfeiffer, L.; Waldenberger, M.; Golchert, J.; Teumer, A.; Nauck, M.; Homuth, G.; Völzke, H.; Grabe, H.J. Methylation of the FKBP5 gene in association with FKBP5 genotypes, childhood maltreatment and depression. Neuropsychopharmacology, 2019, 44(5), 930-938.
[http://dx.doi.org/10.1038/s41386-019-0319-6] [PMID: 30700816]
[104]
Joëls, M. Corticosteroids and the brain. J. Endocrinol., 2018, 238(3), R121-R130.
[http://dx.doi.org/10.1530/JOE-18-0226] [PMID: 29875162]
[105]
Klengel, T.; Mehta, D.; Anacker, C.; Rex-Haffner, M.; Pruessner, J.C.; Pariante, C.M.; Pace, T.W.W.; Mercer, K.B.; Mayberg, H.S.; Bradley, B.; Nemeroff, C.B.; Holsboer, F.; Heim, C.M.; Ressler, K.J.; Rein, T.; Binder, E.B. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat. Neurosci., 2013, 16(1), 33-41.
[http://dx.doi.org/10.1038/nn.3275] [PMID: 23201972]
[106]
Klengel, T.; Binder, E.B. FKBP5 allele-specific epigenetic modification in gene by environment interaction. Neuropsychopharmacology, 2015, 40(1), 244-246.
[http://dx.doi.org/10.1038/npp.2014.208] [PMID: 25482174]
[107]
Höhne, N.; Poidinger, M.; Merz, F.; Pfister, H.; Brückl, T.; Zimmermann, P.; Uhr, M.; Holsboer, F.; Ising, M. FKBP5 genotype-dependent DNA methylation and mRNA regulation after psychosocial stress in remitted depression and healthy controls. Int. J. Neuropsychopharmacol., 2014, 18(4), 1-9.
[PMID: 25522420]
[108]
Bustamante, A.C.; Aiello, A.E.; Guffanti, G.; Galea, S.; Wildman, D.E.; Uddin, M. FKBP5 DNA methylation does not mediate the association between childhood maltreatment and depression symptom severity in the Detroit Neighborhood Health Study. J. Psychiatr. Res., 2018, 96, 39-48.
[http://dx.doi.org/10.1016/j.jpsychires.2017.09.016] [PMID: 28961425]
[109]
Farrell, C.; Doolin, K.; O’ Leary, N.; Jairaj, C.; Roddy, D.; Tozzi, L.; Morris, D.; Harkin, A.; Frodl, T.; Nemoda, Z.; Szyf, M.; Booij, L.; O’Keane, V. DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic-pituitary-adrenal axis activity and to early life emotional abuse. Psychiatry Res., 2018, 265, 341-348.
[http://dx.doi.org/10.1016/j.psychres.2018.04.064] [PMID: 29793048]
[110]
Weder, N.; Zhang, H.; Jensen, K.; Yang, B.Z.; Simen, A.; Jackowski, A.; Lipschitz, D.; Douglas-Palumberi, H.; Ge, M.; Perepletchikova, F.; O’Loughlin, K.; Hudziak, J.J.; Gelernter, J.; Kaufman, J. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J. Am. Acad. Child Adolesc. Psychiatry, 2014, 53(4), 417-24.e5.
[http://dx.doi.org/10.1016/j.jaac.2013.12.025] [PMID: 24655651]
[111]
Lee, R.S.; Tamashiro, K.L.K.; Yang, X.; Purcell, R.H.; Harvey, A.; Willour, V.L.; Huo, Y.; Rongione, M.; Wand, G.S.; Potash, J.B. Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology, 2010, 151(9), 4332-4343.
[http://dx.doi.org/10.1210/en.2010-0225] [PMID: 20668026]
[112]
Ewald, E.R.; Wand, G.S.; Seifuddin, F.; Yang, X.; Tamashiro, K.L.; Potash, J.B.; Zandi, P.; Lee, R.S. Alterations in DNA methylation of Fkbp5 as a determinant of blood-brain correlation of glucocorticoid exposure. Psychoneuroendocrinology, 2014, 44, 112-122.
[http://dx.doi.org/10.1016/j.psyneuen.2014.03.003] [PMID: 24767625]
[113]
Humphreys, K.L.; Moore, S.R.; Davis, E.G.; MacIsaac, J.L.; Lin, D.T.S.; Kobor, M.S.; Gotlib, I.H. DNA methylation of HPA-axis genes and the onset of major depressive disorder in adolescent girls: A prospective analysis. Transl. Psychiatry, 2019, 9(1), 245.
[http://dx.doi.org/10.1038/s41398-019-0582-7] [PMID: 31582756]
[114]
Sterrenburg, L.; Gaszner, B.; Boerrigter, J.; Santbergen, L.; Bramini, M.; Elliott, E.; Chen, A.; Peeters, B.W.M.M.; Roubos, E.W.; Kozicz, T. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat. PLoS One, 2011, 6(11), e28128.
[http://dx.doi.org/10.1371/journal.pone.0028128] [PMID: 22132228]
[115]
Xu, Y.J.; Sheng, H.; Wu, T.W.; Bao, Q.Y.; Zheng, Y.; Zhang, Y.M.; Gong, Y.X.; Lu, J.Q.; You, Z.D.; Xia, Y.; Ni, X. CRH/CRHR1 mediates prenatal synthetic glucocorticoid programming of depression-like behavior across 2 generations. FASEB J., 2018, 32(8), 4258-4269.
[http://dx.doi.org/10.1096/fj.201700948RR] [PMID: 29543532]
[116]
Nantharat, M.; Wanitchanon, T.; Amesbutr, M.; Tammachote, R.; Praphanphoj, V. Glucocorticoid receptor gene (NR3C1) promoter is hypermethylated in Thai females with major depressive disorder. Genet. Mol. Res., 2015, 14(4), 19071-19079.
[http://dx.doi.org/10.4238/2015.December.29.15] [PMID: 26782558]
[117]
van der Knaap, L.J.; van Oort, F.V.; Verhulst, F.C.; Oldehinkel, A.J.; Riese, H. Methylation of NR3C1 and SLC6A4 and internalizing problems. The TRAILS study. J. Affect. Disord., 2015, 180, 97-103.
[http://dx.doi.org/10.1016/j.jad.2015.03.056] [PMID: 25889020]
[118]
Alt, S.R.; Turner, J.D.; Klok, M.D.; Meijer, O.C.; Lakke, E.A.J.F.; Derijk, R.H.; Muller, C.P. Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed. Psychoneuroendocrinology, 2010, 35(4), 544-556.
[http://dx.doi.org/10.1016/j.psyneuen.2009.09.001] [PMID: 19782477]
[119]
Tyrka, A.R.; Parade, S.H.; Welch, E.S.; Ridout, K.K.; Price, L.H.; Marsit, C.; Philip, N.S.; Carpenter, L.L. Methylation of the leukocyte glucocorticoid receptor gene promoter in adults: Associations with early adversity and depressive, anxiety and substance-use disorders. Transl. Psychiatry, 2016, 6(7), e848-e848.
[http://dx.doi.org/10.1038/tp.2016.112] [PMID: 27378548]
[120]
Bockmühl, Y.; Patchev, A.V.; Madejska, A.; Hoffmann, A.; Sousa, J.C.; Sousa, N.; Holsboer, F.; Almeida, O.F.X.; Spengler, D. Methylation at the CpG island shore region upregulates Nr3c1 promoter activity after early-life stress. Epigenetics, 2015, 10(3), 247-257.
[http://dx.doi.org/10.1080/15592294.2015.1017199] [PMID: 25793778]
[121]
Tornese, P.; Sala, N.; Bonini, D.; Bonifacino, T.; La Via, L.; Milanese, M.; Treccani, G.; Seguini, M.; Ieraci, A.; Mingardi, J.; Nyengaard, J.R.; Calza, S.; Bonanno, G.; Wegener, G.; Barbon, A.; Popoli, M.; Musazzi, L. Chronic mild stress induces anhedonic behavior and changes in glutamate release, BDNF trafficking and dendrite morphology only in stress vulnerable rats. The rapid restorative action of ketamine. Neurobiol. Stress, 2019, 10, 100160.
[http://dx.doi.org/10.1016/j.ynstr.2019.100160] [PMID: 31193464]
[122]
Zannas, A.S.; West, A.E. Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience, 2014, 264, 157-170.
[http://dx.doi.org/10.1016/j.neuroscience.2013.12.003] [PMID: 24333971]
[123]
Ke, X.; Fu, Q.; Sterrett, J.; Hillard, C.J.; Lane, R.H.; Majnik, A. Adverse maternal environment and western diet impairs cognitive function and alters hippocampal glucocorticoid receptor promoter methylation in male mice. Physiol. Rep., 2020, 8(8), e14407.
[http://dx.doi.org/10.14814/phy2.14407] [PMID: 32333646]
[124]
Daniels, W.M.U.; Fairbairn, L.R.; van Tilburg, G.; McEvoy, C.R.E.; Zigmond, M.J.; Russell, V.A.; Stein, D.J. Maternal separation alters nerve growth factor and corticosterone levels but not the DNA methylation status of the exon 1(7) glucocorticoid receptor promoter region. Metab. Brain Dis., 2009, 24(4), 615-627.
[http://dx.doi.org/10.1007/s11011-009-9163-4] [PMID: 19816761]
[125]
King, L.; Robins, S.; Chen, G.; Yerko, V.; Zhou, Y.; Nagy, C.; Feeley, N.; Gold, I.; Hayton, B.; Turecki, G.; Zelkowitz, P. Perinatal depression and DNA methylation of oxytocin-related genes: A study of mothers and their children. Horm. Behav., 2017, 96, 84-94.
[http://dx.doi.org/10.1016/j.yhbeh.2017.09.006] [PMID: 28918249]
[126]
Sanwald, S.; Widenhorn-Müller, K.; Montag, C.; Kiefer, M. Relation of promoter methylation of the structural oxytocin gene to critical life events in major depression: A case control study. J. Affect. Disord., 2020, 276, 829-838.
[http://dx.doi.org/10.1016/j.jad.2020.07.068] [PMID: 32738668]
[127]
Murgatroyd, C.; Patchev, A.V.; Wu, Y.; Micale, V.; Bockmühl, Y.; Fischer, D.; Holsboer, F.; Wotjak, C.T.; Almeida, O.F.X.; Spengler, D. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat. Neurosci., 2009, 12(12), 1559-1566.
[http://dx.doi.org/10.1038/nn.2436] [PMID: 19898468]
[128]
Zheng, D.; Bi, X.; Zhang, T.; Han, C.; Ma, T.; Wang, L.; Sun, M.; Cui, K.; Yang, L.; Liu, L. Epigenetic alterations of the promoter region of the POMC gene in adolescent depressive disorder patients with nonsuicidal self-injury behaviors. Psychol. Res. Behav. Manag., 2020, 13, 997-1008.
[http://dx.doi.org/10.2147/PRBM.S272445] [PMID: 33235529]
[129]
Wu, Y.; Patchev, A.V.; Daniel, G.; Almeida, O.F.X.; Spengler, D. Early-life stress reduces DNA methylation of the Pomc gene in male mice. Endocrinology, 2014, 155(5), 1751-1762.
[http://dx.doi.org/10.1210/en.2013-1868] [PMID: 24506071]
[130]
Reiner, A.; Levitz, J. Glutamatergic signaling in the central nervous system: Ionotropic and metabotropic receptors in concert. Neuron, 2018, 98(6), 1080-1098.
[http://dx.doi.org/10.1016/j.neuron.2018.05.018] [PMID: 29953871]
[131]
Duman, R.S.; Sanacora, G.; Krystal, J.H. Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron, 2019, 102(1), 75-90.
[http://dx.doi.org/10.1016/j.neuron.2019.03.013] [PMID: 30946828]
[132]
Musazzi, L.; Treccani, G.; Mallei, A.; Popoli, M. The action of antidepressants on the glutamate system: Regulation of glutamate release and glutamate receptors. Biol. Psychiatry, 2013, 73(12), 1180-1188.
[http://dx.doi.org/10.1016/j.biopsych.2012.11.009] [PMID: 23273725]
[133]
Sanacora, G.; Treccani, G.; Popoli, M. Towards a glutamate hypothesis of depression: An emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology, 2012, 62(1), 63-77.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.036] [PMID: 21827775]
[134]
Lener, M.S.; Niciu, M.J.; Ballard, E.D.; Park, M.; Park, L.T.; Nugent, A.C.; Zarate, C.A., Jr Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol. Psychiatry, 2017, 81(10), 886-897.
[http://dx.doi.org/10.1016/j.biopsych.2016.05.005] [PMID: 27449797]
[135]
Abdallah, C.G.; Sanacora, G.; Duman, R.S.; Krystal, J.H. The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation? Pharmacol. Ther., 2018, 190, 148-158.
[http://dx.doi.org/10.1016/j.pharmthera.2018.05.010] [PMID: 29803629]
[136]
Kaut, O.; Schmitt, I.; Hofmann, A.; Hoffmann, P.; Schlaepfer, T.E.; Wüllner, U.; Hurlemann, R. Aberrant NMDA receptor DNA methylation detected by epigenome-wide analysis of hippocampus and prefrontal cortex in major depression. Eur. Arch. Psychiatry Clin. Neurosci., 2015, 265(4), 331-341.
[http://dx.doi.org/10.1007/s00406-014-0572-y] [PMID: 25571874]
[137]
Bagot, R.C.; Zhang, T.Y.; Wen, X.; Nguyen, T.T.T.; Nguyen, H.B.; Diorio, J.; Wong, T.P.; Meaney, M.J. Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc. Natl. Acad. Sci. USA, 2012, 109(Suppl. 2), 17200-17207.
[http://dx.doi.org/10.1073/pnas.1204599109] [PMID: 23045678]
[138]
Zhang, T.Y.; Hellstrom, I.C.; Bagot, R.C.; Wen, X.; Diorio, J.; Meaney, M.J. Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. J. Neurosci., 2010, 30(39), 13130-13137.
[http://dx.doi.org/10.1523/JNEUROSCI.1039-10.2010] [PMID: 20881131]
[139]
Labonté, B.; Jeong, Y.H.; Parise, E.; Issler, O.; Fatma, M.; Engmann, O.; Cho, K.A.; Neve, R.; Nestler, E.J.; Koo, J.W. Gadd45b mediates depressive-like role through DNA demethylation. Sci. Rep., 2019, 9(1), 4615.
[http://dx.doi.org/10.1038/s41598-019-40844-8] [PMID: 30874581]
[140]
Miller, A.H.; Maletic, V.; Raison, C.L. Inflammation and its discontents: The role of cytokines in the pathophysiology of major depression. Biol. Psychiatry, 2009, 65(9), 732-741.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.029] [PMID: 19150053]
[141]
Czarny, P.; Wigner, P.; Galecki, P.; Sliwinski, T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 80(Pt C), 309-321.
[http://dx.doi.org/10.1016/j.pnpbp.2017.06.036] [PMID: 28669580]
[142]
Kiecolt-Glaser, J.K.; Derry, H.M.; Fagundes, C.P. Inflammation: Depression fans the flames and feasts on the heat. Am. J. Psychiatry, 2015, 172(11), 1075-1091.
[http://dx.doi.org/10.1176/appi.ajp.2015.15020152] [PMID: 26357876]
[143]
Kohler, O.; Krogh, J.; Mors, O.; Benros, M.E. Inflammation in depression and the potential for anti-inflammatory treatment. Curr. Neuropharmacol., 2016, 14(7), 732-742.
[http://dx.doi.org/10.2174/1570159X14666151208113700] [PMID: 27640518]
[144]
Powell, T.R.; Smith, R.G.; Hackinger, S.; Schalkwyk, L.C.; Uher, R.; McGuffin, P.; Mill, J.; Tansey, K.E. DNA methylation in interleukin-11 predicts clinical response to antidepressants in GENDEP. Transl. Psychiatry, 2013, 3(9), e300-e300.
[http://dx.doi.org/10.1038/tp.2013.73] [PMID: 24002086]
[145]
Ryan, J.; Pilkington, L.; Neuhaus, K.; Ritchie, K.; Ancelin, M.L.; Saffery, R. Investigating the epigenetic profile of the inflammatory gene IL-6 in late-life depression. BMC Psychiatry, 2017, 17(1), 354.
[http://dx.doi.org/10.1186/s12888-017-1515-8] [PMID: 29070016]
[146]
Wigner, P.; Synowiec, E. Jóźwiak, P.; Czarny, P.; Bijak, M.; Barszczewska, G.; Białek, K.; Szemraj, J.; Gruca, P.; Papp, M.; Śliwiński, T. The changes of expression and methylation of genes involved in oxidative stress in course of chronic mild stress and antidepressant therapy with agomelatine. Genes (Basel), 2020, 11(6), 644.
[http://dx.doi.org/10.3390/genes11060644] [PMID: 32545212]
[147]
Wigner, P.; Synowiec, E.; Czarny, P.; Bijak, M. Jóźwiak, P.; Szemraj, J.; Gruca, P.; Papp, M.; Śliwiński, T. Effects of venlafaxine on the expression level and methylation status of genes involved in oxidative stress in rats exposed to a chronic mild stress. J. Cell. Mol. Med., 2020, 24(10), 5675-5694.
[http://dx.doi.org/10.1111/jcmm.15231] [PMID: 32281745]
[148]
Nieratschker, V.; Massart, R.; Gilles, M.; Luoni, A.; Suderman, M.J.; Krumm, B.; Meier, S.; Witt, S.H.; Nöthen, M.M.; Suomi, S.J.; Peus, V.; Scharnholz, B.; Dukal, H.; Hohmeyer, C.; Wolf, I.A.C.; Cirulli, F.; Gass, P.; Sütterlin, M.W.; Filsinger, B.; Laucht, M.; Riva, M.A.; Rietschel, M.; Deuschle, M.; Szyf, M. MORC1 exhibits cross-species differential methylation in association with early life stress as well as genome-wide association with MDD. Transl. Psychiatry, 2014, 4(8), e429-e429.
[http://dx.doi.org/10.1038/tp.2014.75] [PMID: 25158004]
[149]
Thomas, M.; Coope, A.; Falkenberg, C.; Dunlop, B.W.; Czamara, D.; Provencal, N.; Craighead, W.E.; Mayberg, H.S.; Nemeroff, C.B.; Binder, E.B.; Nieratschker, V. Investigation of MORC1 DNA methylation as biomarker of early life stress and depressive symptoms. J. Psychiatr. Res., 2020, 120, 154-162.
[http://dx.doi.org/10.1016/j.jpsychires.2019.10.019] [PMID: 31683097]
[150]
Mundorf, A.; Schmitz, J.; Güntürkün, O.; Freund, N.; Ocklenburg, S. Methylation of MORC1: A possible biomarker for depression? J. Psychiatr. Res., 2018, 103, 208-211.
[http://dx.doi.org/10.1016/j.jpsychires.2018.05.026] [PMID: 29890506]
[151]
Mundorf, A.; Schmitz, J.; Hünten, K.; Fraenz, C.; Schlüter, C.; Genç, E.; Ocklenburg, S.; Freund, N. MORC1 methylation and BDI are associated with microstructural features of the hippocampus and medial prefrontal cortex. J. Affect. Disord., 2021, 282, 91-97.
[http://dx.doi.org/10.1016/j.jad.2020.12.056] [PMID: 33401128]
[152]
Kahl, K.G.; Georgi, K.; Bleich, S.; Muschler, M.; Hillemacher, T.; Hilfiker-Kleinert, D.; Schweiger, U.; Ding, X.; Kotsiari, A.; Frieling, H. Altered DNA methylation of glucose transporter 1 and glucose transporter 4 in patients with major depressive disorder. J. Psychiatr. Res., 2016, 76, 66-73.
[http://dx.doi.org/10.1016/j.jpsychires.2016.02.002] [PMID: 26919485]
[153]
Moschny, N.; Jahn, K.; Bajbouj, M.; Maier, H.B.; Ballmaier, M.; Khan, A.Q.; Pollak, C.; Bleich, S.; Frieling, H.; Neyazi, A. DNA Methylation of the t-PA Gene Differs Between Various Immune Cell Subtypes Isolated From Depressed Patients Receiving Electroconvulsive Therapy. Front. Psychiatry, 2020, 11, 571.
[http://dx.doi.org/10.3389/fpsyt.2020.00571] [PMID: 32636772]
[154]
Kaut, O.; Sharma, A.; Schmitt, I.; Hurlemann, R.; Wüllner, U. DNA methylation of DLG4 and GJA-1 of human hippocampus and prefrontal cortex in major depression is unchanged in comparison to healthy individuals. J. Clin. Neurosci., 2017, 43, 261-263.
[http://dx.doi.org/10.1016/j.jocn.2017.05.030] [PMID: 28645745]
[155]
Miyanishi, H.; Uno, K.; Iwata, M.; Kikuchi, Y.; Yamamori, H.; Yasuda, Y.; Ohi, K.; Hashimoto, R.; Hattori, K.; Yoshida, S.; Goto, Y.I.; Sumiyoshi, T.; Nitta, A. Investigating DNA methylation of SHATI/NAT8L promoter sites in blood of unmedicated patients with major depressive disorder. Biol. Pharm. Bull., 2020, 43(7), 1067-1072.
[http://dx.doi.org/10.1248/bpb.b19-01099] [PMID: 32612069]
[156]
Haghighi, F.; Galfalvy, H.; Chen, S.; Huang, Y.Y.; Cooper, T.B.; Burke, A.K.; Oquendo, M.A.; Mann, J.J.; Sublette, M.E. DNA methylation perturbations in genes involved in polyunsaturated fatty acid biosynthesis associated with depression and suicide risk. Front. Neurol., 2015, 6, 92.
[http://dx.doi.org/10.3389/fneur.2015.00092] [PMID: 25972837]
[157]
Starnawska, A.; Bukowski, L.; Chernomorchenko, A.; Elfving, B.; Müller, H.K.; van den Oord, E.; Aberg, K.; Guintivano, J.; Grove, J.; Mors, O.; Børglum, A.D.; Nielsen, A.L.; Qvist, P.; Staunstrup, N.H. DNA methylation of the KLK8 gene in depression symptomatology. Clin. Epigenetics, 2021, 13(1), 200.
[http://dx.doi.org/10.1186/s13148-021-01184-5] [PMID: 34715912]
[158]
Klempan, T.A.; Ernst, C.; Deleva, V.; Labonte, B.; Turecki, G. Characterization of QKI gene expression, genetics, and epigenetics in suicide victims with major depressive disorder. Biol. Psychiatry, 2009, 66(9), 824-831.
[http://dx.doi.org/10.1016/j.biopsych.2009.05.010] [PMID: 19545858]
[159]
Rotter, A.; Asemann, R.; Decker, A.; Kornhuber, J.; Biermann, T. Orexin expression and promoter-methylation in peripheral blood of patients suffering from major depressive disorder. J. Affect. Disord., 2011, 131(1-3), 186-192.
[http://dx.doi.org/10.1016/j.jad.2010.12.004] [PMID: 21211849]
[160]
Zill, P.; Baghai, T.C.; Schüle, C.; Born, C.; Früstück, C.; Büttner, A.; Eisenmenger, W.; Varallo-Bedarida, G.; Rupprecht, R.; Möller, H.J.; Bondy, B. DNA methylation analysis of the angiotensin converting enzyme (ACE) gene in major depression. PLoS One, 2012, 7(7), e40479.
[http://dx.doi.org/10.1371/journal.pone.0040479] [PMID: 22808171]
[161]
Dyrvig, M.; Hansen, H.H.; Christiansen, S.H.; Woldbye, D.P.D.; Mikkelsen, J.D.; Lichota, J. Epigenetic regulation of Arc and c-Fos in the hippocampus after acute electroconvulsive stimulation in the rat. Brain Res. Bull., 2012, 88(5), 507-513.
[http://dx.doi.org/10.1016/j.brainresbull.2012.05.004] [PMID: 22613772]
[162]
Xiang, D.; Xiao, J.; Sun, S.; Fu, L.; Yao, L.; Wang, G.; Liu, Z. Differential regulation of DNA methylation at the CRMP2 promoter region between the hippocampus and prefrontal cortex in a CUMS depression model. Front. Psychiatry, 2020, 11, 141.
[http://dx.doi.org/10.3389/fpsyt.2020.00141] [PMID: 32256396]
[163]
Martins de Carvalho, L.; Chen, W.Y.; Lasek, A.W. Epigenetic mechanisms underlying stress-induced depression. Int. Rev. Neurobiol., 2021, 156, 87-126.
[http://dx.doi.org/10.1016/bs.irn.2020.08.001] [PMID: 33461666]
[164]
Uchida, S.; Hara, K.; Kobayashi, A.; Otsuki, K.; Yamagata, H.; Hobara, T.; Suzuki, T.; Miyata, N.; Watanabe, Y. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron, 2011, 69(2), 359-372.
[http://dx.doi.org/10.1016/j.neuron.2010.12.023] [PMID: 21262472]
[165]
Toda, H.; Boku, S.; Nakagawa, S.; Inoue, T.; Kato, A.; Takamura, N.; Song, N.; Nibuya, M.; Koyama, T.; Kusumi, I. Maternal separation enhances conditioned fear and decreases the mRNA levels of the neurotensin receptor 1 gene with hypermethylation of this gene in the rat amygdala. PLoS One, 2014, 9(5), e97421.
[http://dx.doi.org/10.1371/journal.pone.0097421] [PMID: 24831231]
[166]
Wang, C.H.; Zhang, X.L.; Li, Y.; Wang, G.D.; Wang, X.K.; Dong, J.; Ning, Q.F. Role of hippocampus mitogen-activated protein kinase phosphatase-1 mRNA expression and DNA methylation in the depression of the rats with chronic unpredicted stress. Cell. Mol. Neurobiol., 2015, 35(4), 473-482.
[http://dx.doi.org/10.1007/s10571-014-0141-y] [PMID: 25410305]
[167]
Palacios-García, I.; Lara-Vásquez, A.; Montiel, J.F.; Díaz-Véliz, G.F.; Sepúlveda, H.; Utreras, E.; Montecino, M.; González-Billault, C.; Aboitiz, F. Prenatal stress down-regulates Reelin expression by methylation of its promoter and induces adult behavioral impairments in rats. PLoS One, 2015, 10(2), e0117680.
[http://dx.doi.org/10.1371/journal.pone.0117680] [PMID: 25679528]
[168]
Xiang, D.; Xiao, J.; Fu, L.; Yao, L.; Wan, Q.; Xiao, L.; Zhu, F.; Wang, G.; Liu, Z. DNA methylation of the Tacr2 gene in a CUMS model of depression. Behav. Brain Res., 2019, 365, 103-109.
[http://dx.doi.org/10.1016/j.bbr.2019.01.059] [PMID: 30711443]
[169]
van der Doelen, R.H.A.; Robroch, B.; Arnoldussen, I.A.; Schulpen, M.; Homberg, J.R.; Kozicz, T. Serotonin and urocortin 1 in the dorsal raphe and Edinger-Westphal nuclei after early life stress in serotonin transporter knockout rats. Neuroscience, 2017, 340, 345-358.
[http://dx.doi.org/10.1016/j.neuroscience.2016.10.072] [PMID: 27826101]
[170]
Sabunciyan, S.; Aryee, M.J.; Irizarry, R.A.; Rongione, M.; Webster, M.J.; Kaufman, W.E.; Murakami, P.; Lessard, A.; Yolken, R.H.; Feinberg, A.P.; Potash, J.B.; Consortium, G. Genome-wide DNA methylation scan in major depressive disorder. PLoS One, 2012, 7(4), e34451.
[http://dx.doi.org/10.1371/journal.pone.0034451] [PMID: 22511943]
[171]
Haghighi, F.; Xin, Y.; Chanrion, B.; O’Donnell, A.H.; Ge, Y.; Dwork, A.J.; Arango, V.; Mann, J.J. Increased DNA methylation in the suicide brain. Dialogues Clin. Neurosci., 2014, 16(3), 430-438.
[http://dx.doi.org/10.31887/DCNS.2014.16.3/jmann] [PMID: 25364291]
[172]
Nagy, C.; Suderman, M.; Yang, J.; Szyf, M.; Mechawar, N.; Ernst, C.; Turecki, G. Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Mol. Psychiatry, 2015, 20(3), 320-328.
[http://dx.doi.org/10.1038/mp.2014.21] [PMID: 24662927]
[173]
Murphy, T.M.; Crawford, B.; Dempster, E.L.; Hannon, E.; Burrage, J.; Turecki, G.; Kaminsky, Z.; Mill, J. Methylomic profiling of cortex samples from completed suicide cases implicates a role for PSORS1C3 in major depression and suicide. Transl. Psychiatry, 2017, 7(1), e989-e989.
[http://dx.doi.org/10.1038/tp.2016.249] [PMID: 28045465]
[174]
Chan, R.F.; Turecki, G.; Shabalin, A.A.; Guintivano, J.; Zhao, M.; Xie, L.Y.; van Grootheest, G.; Kaminsky, Z.A.; Dean, B.; Penninx, B.W.J.H.; Aberg, K.A.; van den Oord, E.J.C.G. Cell type-specific methylome-wide association studies implicate neurotrophin and innate immune signaling in major depressive disorder. Biol. Psychiatry, 2020, 87(5), 431-442.
[http://dx.doi.org/10.1016/j.biopsych.2019.10.014] [PMID: 31889537]
[175]
Hüls, A.; Robins, C.; Conneely, K.N.; De Jager, P.L.; Bennett, D.A.; Epstein, M.P.; Wingo, T.S.; Wingo, A.P. Association between DNA methylation levels in brain tissue and late-life depression in community-based participants. Transl. Psychiatry, 2020, 10(1), 262.
[http://dx.doi.org/10.1038/s41398-020-00948-6] [PMID: 32733030]
[176]
Byrne, E.M.; Carrillo-Roa, T.; Henders, A.K.; Bowdler, L.; McRae, A.F.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; Krause, L.; Wray, N.R. Carrillo, Roa T.; Henders, A.K.; Bowdler, L.; McRae, A.F.; Heath, A.C.; Martin, N.G.; Montgomery, G.W.; Krause, L.; Wray, N.R. Monozygotic twins affected with major depressive disorder have greater variance in methylation than their unaffected co-twin. Transl. Psychiatry, 2013, 3(6), e269.
[http://dx.doi.org/10.1038/tp.2013.45]
[177]
Davies, M.N.; Krause, L.; Bell, J.T.; Gao, F.; Ward, K.J.; Wu, H.; Lu, H.; Liu, Y.; Tsai, P.C.; Collier, D.A.; Murphy, T.; Dempster, E.; Mill, J.; Battle, A.; Mostafavi, S.; Zhu, X.; Henders, A.; Byrne, E.; Wray, N.R.; Martin, N.G.; Spector, T.D.; Wang, J. Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. Genome Biol., 2014, 15(4), R56.
[http://dx.doi.org/10.1186/gb-2014-15-4-r56] [PMID: 24694013]
[178]
Oh, G.; Wang, S.C.; Pal, M.; Chen, Z.F.; Khare, T.; Tochigi, M.; Ng, C.; Yang, Y.A.; Kwan, A.; Kaminsky, Z.A.; Mill, J.; Gunasinghe, C.; Tackett, J.L.; Gottesman, I.I.; Willemsen, G.; de Geus, E.J.C.; Vink, J.M.; Slagboom, P.E.; Wray, N.R.; Heath, A.C.; Montgomery, G.W.; Turecki, G.; Martin, N.G.; Boomsma, D.I.; McGuffin, P.; Kustra, R.; Petronis, A. DNA modification study of major depressive disorder: Beyond locus-by-locus comparisons. Biol. Psychiatry, 2015, 77(3), 246-255.
[http://dx.doi.org/10.1016/j.biopsych.2014.06.016] [PMID: 25108803]
[179]
Córdova-Palomera, A.; Fatjó-Vilas, M.; Gastó, C.; Navarro, V.; Krebs, M.O.; Fañanás, L. Genome-wide methylation study on depression: Differential methylation and variable methylation in monozygotic twins. Transl. Psychiatry, 2015, 5(4), e557-e557.
[http://dx.doi.org/10.1038/tp.2015.49] [PMID: 25918994]
[180]
Zhu, Y.; Strachan, E.; Fowler, E.; Bacus, T.; Roy-Byrne, P.; Zhao, J. Genome-wide profiling of DNA methylome and transcriptome in peripheral blood monocytes for major depression: A Monozygotic Discordant Twin Study. Transl. Psychiatry, 2019, 9(1), 215.
[http://dx.doi.org/10.1038/s41398-019-0550-2] [PMID: 31477685]
[181]
Wang, W.; Li, W.; Wu, Y.; Tian, X.; Duan, H.; Li, S.; Tan, Q.; Zhang, D. Genome-wide DNA methylation and gene expression analyses in monozygotic twins identify potential biomarkers of depression. Transl. Psychiatry, 2021, 11(1), 416.
[http://dx.doi.org/10.1038/s41398-021-01536-y] [PMID: 34341332]
[182]
Uddin, M.; Koenen, K.C.; Aiello, A.E.; Wildman, D.E.; de los Santos, R.; Galea, S. Epigenetic and inflammatory marker profiles associated with depression in a community-based epidemiologic sample. Psychol. Med., 2011, 41(5), 997-1007.
[http://dx.doi.org/10.1017/S0033291710001674] [PMID: 20836906]
[183]
Khulan, B.; Manning, J.R.; Dunbar, D.R.; Seckl, J.R.; Raikkonen, K.; Eriksson, J.G.; Drake, A.J. Epigenomic profiling of men exposed to early-life stress reveals DNA methylation differences in association with current mental state. Transl. Psychiatry, 2014, 4(9), e448-e448.
[http://dx.doi.org/10.1038/tp.2014.94] [PMID: 25247593]
[184]
Catale, C.; Bussone, S.; Lo Iacono, L.; Viscomi, M.T.; Palacios, D.; Troisi, A.; Carola, V. Exposure to different early-life stress experiences results in differentially altered DNA methylation in the brain and immune system. Neurobiol. Stress, 2020, 13, 100249.
[http://dx.doi.org/10.1016/j.ynstr.2020.100249] [PMID: 33344704]
[185]
Numata, S.; Ishii, K.; Tajima, A.; Iga, J.; Kinoshita, M.; Watanabe, S.; Umehara, H.; Fuchikami, M.; Okada, S.; Boku, S.; Hishimoto, A.; Shimodera, S.; Imoto, I.; Morinobu, S.; Ohmori, T. Blood diagnostic biomarkers for major depressive disorder using multiplex DNA methylation profiles: Discovery and validation. Epigenetics, 2015, 10(2), 135-141.
[http://dx.doi.org/10.1080/15592294.2014.1003743] [PMID: 25587773]
[186]
Crawford, B.; Craig, Z.; Mansell, G.; White, I.; Smith, A.; Spaull, S.; Imm, J.; Hannon, E.; Wood, A.; Yaghootkar, H.; Ji, Y.; Mullins, N.; Lewis, C.M.; Mill, J.; Murphy, T.M. DNA methylation and inflammation marker profiles associated with a history of depression. Hum. Mol. Genet., 2018, 27(16), 2840-2850.
[http://dx.doi.org/10.1093/hmg/ddy199] [PMID: 29790996]
[187]
Ämmälä, A.J.; Urrila, A.S.; Lahtinen, A.; Santangeli, O.; Hakkarainen, A.; Kantojärvi, K.; Castaneda, A.E.; Lundbom, N.; Marttunen, M.; Paunio, T. Epigenetic dysregulation of genes related to synaptic long-term depression among adolescents with depressive disorder and sleep symptoms. Sleep Med., 2019, 61, 95-103.
[http://dx.doi.org/10.1016/j.sleep.2019.01.050] [PMID: 31395523]
[188]
McCoy, C.R.; Rana, S.; Stringfellow, S.A.; Day, J.J.; Wyss, J.M.; Clinton, S.M.; Kerman, I.A. Neonatal maternal separation stress elicits lasting DNA methylation changes in the hippocampus of stress-reactive Wistar Kyoto rats. Eur. J. Neurosci., 2016, 44(10), 2829-2845.
[http://dx.doi.org/10.1111/ejn.13404] [PMID: 27643783]
[189]
McCoy, C.R.; Jackson, N.L.; Day, J.; Clinton, S.M. Genetic predisposition to high anxiety- and depression-like behavior coincides with diminished DNA methylation in the adult rat amygdala. Behav. Brain Res., 2017, 320, 165-178.
[http://dx.doi.org/10.1016/j.bbr.2016.12.008] [PMID: 27965039]
[190]
Sales, A.J.; Joca, S.R.L. Antidepressant administration modulates stress-induced DNA methylation and DNA methyltransferase expression in rat prefrontal cortex and hippocampus. Behav. Brain Res., 2018, 343, 8-15.
[http://dx.doi.org/10.1016/j.bbr.2018.01.022] [PMID: 29378290]

© 2024 Bentham Science Publishers | Privacy Policy