Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Glucagon-Like Peptide-2 in the Control of Gastrointestinal Motility: Physiological Implications

Author(s): Maria Caterina Baccari, Maria Giuliana Vannucchi and Eglantina Idrizaj*

Volume 23, Issue 2, 2022

Published on: 05 April, 2022

Page: [61 - 69] Pages: 9

DOI: 10.2174/1389203723666220217142935

Price: $65

Abstract

Glucagon-Like Peptide-2 (GLP-2) is a pleiotropic hormone that plays several roles in different organs and tissues, so being involved in many physiological processes. Among these, it regulates gastrointestinal (GI) tract function binding to a specific G-protein coupled receptor (GLP-2R). Of note, GLP-2R is widely expressed in different cells of the GI tract, including excitatory and inhibitory neurons of the enteric nervous system. In the gut, GLP-2 has been reported to play numerous actions, among which the modulation of motility. Nevertheless, most of the GLP-2 effects and its role in physiological processes are still debated. The aim of this minireview is to summarize the data present in the literature on the control of GI motility by GLP-2, the mechanism through which it occurs, and to discuss the physiological implications of such effects. A better understanding of the role of GLP-2 on GI motor responses may be of importance for the development of new therapeutic approaches in GI dysmotility.

Keywords: Glucagon-like peptide-2, acetylcholine, gastrointestinal motility, neuromodulation, nitric oxide, substance P, vasoactive intestinal peptide.

Graphical Abstract

[1]
Stevens, F.M.; Flanagan, R.W.; O’Gorman, D.; Buchanan, K.D. Glucagonoma syndrome demonstrating giant duodenal villi. Gut, 1984, 25(7), 784-791.
[http://dx.doi.org/10.1136/gut.25.7.784] [PMID: 6329923]
[2]
Drucker, D.J.; Erlich, P.; Asa, S.L.; Brubaker, P.L. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc. Natl. Acad. Sci. USA, 1996, 93(15), 7911-7916.
[http://dx.doi.org/10.1073/pnas.93.15.7911] [PMID: 8755576]
[3]
Janssen, P.; Rotondo, A.; Mulé, F.; Tack, J. Review article: a comparison of glucagon-like peptides 1 and 2. Aliment. Pharmacol. Ther., 2013, 37(1), 18-36.
[http://dx.doi.org/10.1111/apt.12092] [PMID: 23121085]
[4]
Drucker, D.J.; Yusta, B. Physiology and pharmacology of the enteroendocrine hormone glucagon-like peptide-2. Annu. Rev. Physiol., 2014, 76(1), 561-583.
[http://dx.doi.org/10.1146/annurev-physiol-021113-170317] [PMID: 24161075]
[5]
Rowland, K.J.; Brubaker, P.L. The “cryptic” mechanism of action of glucagon-like peptide-2. Am. J. Physiol. Gastrointest. Liver Physiol., 2011, 301(1), G1-G8.
[http://dx.doi.org/10.1152/ajpgi.00039.2011] [PMID: 21527727]
[6]
Nishimura, K.; Hiramatsu, K.; Monir, M.M.; Takemoto, C.; Watanabe, T. Ultrastructural study on colocalization of glucagon-like peptide (GLP)-1 with GLP-2 in chicken intestinal L-cells. J. Vet. Med. Sci., 2013, 75(10), 1335-1339.
[http://dx.doi.org/10.1292/jvms.13-0106] [PMID: 23759686]
[7]
Varndell, I.M.; Bishop, A.E.; Sikri, K.L.; Uttenthal, L.O.; Bloom, S.R.; Polak, J.M. Localization of glucagon-like peptide (GLP) immunoreactants in human gut and pancreas using light and electron microscopic immunocytochemistry. J. Histochem. Cytochem., 1985, 33(10), 1080-1086.
[http://dx.doi.org/10.1177/33.10.3900195] [PMID: 3900195]
[8]
Halim, M.A.; Degerblad, M.; Sundbom, M.; Karlbom, U.; Holst, J.J.; Webb, D.L.; Hellström, P.M. Glucagon-like peptide-1 inhibits prandial gastrointestinal motility through myenteric neuronal mechanisms in humans. J. Clin. Endocrinol. Metab., 2018, 103(2), 575-585.
[http://dx.doi.org/10.1210/jc.2017-02006] [PMID: 29177486]
[9]
Brubaker, P.L. The glucagon-like peptides: pleiotropic regulators of nutrient homeostasis. Ann. N. Y. Acad. Sci., 2006, 1070(1), 10-26.
[http://dx.doi.org/10.1196/annals.1317.006] [PMID: 16888147]
[10]
Xiao, Q.; Boushey, R.P.; Drucker, D.J.; Brubaker, P.L. Secretion of the intestinotropic hormone glucagon-like peptide 2 is differentially regulated by nutrients in humans. Gastroenterology, 1999, 117(1), 99-105.
[http://dx.doi.org/10.1016/S0016-5085(99)70555-X] [PMID: 10381915]
[11]
Hartmann, B.; Harr, M.B.; Jeppesen, P.B.; Wojdemann, M.; Deacon, C.F.; Mortensen, P.B.; Holst, J.J. In vivo and in vitro degradation of glucagon-like peptide-2 in humans. J. Clin. Endocrinol. Metab., 2000, 85(8), 2884-2888.
[http://dx.doi.org/10.1210/jc.85.8.2884] [PMID: 10946898]
[12]
Angelone, T.; Filice, E.; Quintieri, A.M.; Imbrogno, S.; Amodio, N.; Pasqua, T.; Pellegrino, D.; Mulè, F.; Cerra, M.C. Receptor identification and physiological characterisation of glucagon-like peptide-2 in the rat heart. Nutr. Metab. Cardiovasc. Dis., 2012, 22(6), 486-494.
[http://dx.doi.org/10.1016/j.numecd.2010.07.014] [PMID: 21186112]
[13]
El-Jamal, N.; Erdual, E.; Neunlist, M.; Koriche, D.; Dubuquoy, C.; Maggiotto, F.; Chevalier, J.; Berrebi, D.; Dubuquoy, L.; Boulanger, E.; Cortot, A.; Desreumaux, P. Glugacon-like peptide-2: broad receptor expression, limited therapeutic effect on intestinal inflammation and novel role in liver regeneration. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(3), G274-G285.
[http://dx.doi.org/10.1152/ajpgi.00389.2012] [PMID: 24875097]
[14]
Estall, J.L.; Drucker, D.J. Glucagon-like peptide-2. Annu. Rev. Nutr., 2006, 26(1), 391-411.
[http://dx.doi.org/10.1146/annurev.nutr.26.061505.111223] [PMID: 16602931]
[15]
Guan, X.; Shi, X.; Li, X.; Chang, B.; Wang, Y.; Li, D.; Chan, L. GLP-2 receptor in POMC neurons suppresses feeding behavior and gastric motility. Am. J. Physiol. Endocrinol. Metab., 2012, 303(7), E853-E864.
[http://dx.doi.org/10.1152/ajpendo.00245.2012] [PMID: 22829581]
[16]
Yusta, B.; Huang, L.; Munroe, D.; Wolff, G.; Fantaske, R.; Sharma, S.; Demchyshyn, L.; Asa, S.L.; Drucker, D.J. Enteroendocrine localization of GLP-2 receptor expression in humans and rodents. Gastroenterology, 2000, 119(3), 744-755.
[http://dx.doi.org/10.1053/gast.2000.16489] [PMID: 10982769]
[17]
Guan, X. The CNS glucagon-like peptide-2 receptor in the control of energy balance and glucose homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2014, 307(6), R585-R596.
[http://dx.doi.org/10.1152/ajpregu.00096.2014] [PMID: 24990862]
[18]
Lovshin, J.; Estall, J.; Yusta, B.; Brown, T.J.; Drucker, D.J. Glucagon-like peptide (GLP)-2 action in the murine central nervous system is enhanced by elimination of GLP-1 receptor signaling. J. Biol. Chem., 2001, 276(24), 21489-21499.
[http://dx.doi.org/10.1074/jbc.M009382200] [PMID: 11262390]
[19]
Shi, X.; Zhou, F.; Li, X.; Chang, B.; Li, D.; Wang, Y.; Tong, Q.; Xu, Y.; Fukuda, M.; Zhao, J.J.; Li, D.; Burrin, D.G.; Chan, L.; Guan, X. Central GLP-2 enhances hepatic insulin sensitivity via activating PI3K signaling in POMC neurons. Cell Metab., 2013, 18(1), 86-98.
[http://dx.doi.org/10.1016/j.cmet.2013.06.014] [PMID: 23823479]
[20]
Dalvi, P.S.; Belsham, D.D. Glucagon-like peptide-2 directly regulates hypothalamic neurons expressing neuropeptides linked to appetite control in vivo and in vitro. Endocrinology, 2012, 153(5), 2385-2397.
[http://dx.doi.org/10.1210/en.2011-2089] [PMID: 22416082]
[21]
Sun, H.; Meng, K.; Hou, L.; Shang, L.; Yan, J. Melanocortin receptor-4 mediates the anorectic effect induced by the nucleus tractus solitarius injection of glucagon-like peptide-2 in fasted rats. Eur. J. Pharmacol., 2021, 901, 174072.
[http://dx.doi.org/10.1016/j.ejphar.2021.174072] [PMID: 33823184]
[22]
German, J.; Kim, F.; Schwartz, G.J.; Havel, P.J.; Rhodes, C.J.; Schwartz, M.W.; Morton, G.J. Hypothalamic leptin signaling regulates hepatic insulin sensitivity via a neurocircuit involving the vagus nerve. Endocrinology, 2009, 150(10), 4502-4511.
[http://dx.doi.org/10.1210/en.2009-0445] [PMID: 19574396]
[23]
Nelson, D.W.; Sharp, J.W.; Brownfield, M.S.; Raybould, H.E.; Ney, D.M. Localization and activation of glucagon-like peptide-2 receptors on vagal afferents in the rat. Endocrinology, 2007, 148(5), 1954-1962.
[http://dx.doi.org/10.1210/en.2006-1232] [PMID: 17234710]
[24]
Guan, X.; Karpen, H.E.; Stephens, J.; Bukowski, J.T.; Niu, S.; Zhang, G.; Stoll, B.; Finegold, M.J.; Holst, J.J.; Hadsell, D.; Nichols, B.L.; Burrin, D.G. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology, 2006, 130(1), 150-164.
[http://dx.doi.org/10.1053/j.gastro.2005.11.005] [PMID: 16401478]
[25]
Austin, K.; Markovic, M.A.; Brubaker, P.L. Current and potential therapeutic targets of glucagon-like peptide-2. Curr. Opin. Pharmacol., 2016, 31, 13-18.
[http://dx.doi.org/10.1016/j.coph.2016.08.008] [PMID: 27580097]
[26]
Amato, A.; Rotondo, A.; Cinci, L.; Baldassano, S.; Vannucchi, M.G.; Mulè, F. Role of cholinergic neurons in the motor effects of glucagon-like peptide-2 in mouse colon. Am. J. Physiol. Gastrointest. Liver Physiol., 2010, 299(5), G1038-G1044.
[http://dx.doi.org/10.1152/ajpgi.00282.2010] [PMID: 20705903]
[27]
Baldassano, S.; Amato, A.; Cappello, F.; Rappa, F.; Mulè, F. Glucagon-like peptide-2 and mouse intestinal adaptation to a high-fat diet. J. Endocrinol., 2013, 217(1), 11-20.
[http://dx.doi.org/10.1530/JOE-12-0500] [PMID: 23308022]
[28]
Ramsanahie, A.; Duxbury, M.S.; Grikscheit, T.C.; Perez, A.; Rhoads, D.B.; Gardner-Thorpe, J.; Ogilvie, J.; Ashley, S.W.; Vacanti, J.P.; Whang, E.E. Effect of GLP-2 on mucosal morphology and SGLT1 expression in tissue-engineered neointestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 285(6), G1345-G1352.
[http://dx.doi.org/10.1152/ajpgi.00374.2002] [PMID: 12919941]
[29]
Cinci, L.; Faussone-Pellegrini, M.S.; Rotondo, A.; Mulè, F.; Vannucchi, M.G. GLP-2 receptor expression in excitatory and inhibitory enteric neurons and its role in mouse duodenum contractility. Neurogastroenterol. Motil., 2011, 23(9), e383-e392.
[http://dx.doi.org/10.1111/j.1365-2982.2011.01750.x] [PMID: 21752156]
[30]
Dubé, P.E.; Brubaker, P.L. Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators. Am. J. Physiol. Endocrinol. Metab., 2007, 293(2), E460-E465.
[http://dx.doi.org/10.1152/ajpendo.00149.2007] [PMID: 17652153]
[31]
Pini, A.; Garella, R.; Idrizaj, E.; Calosi, L.; Baccari, M.C.; Vannucchi, M.G. Glucagon-like peptide 2 counteracts the mucosal damage and the neuropathy induced by chronic treatment with cisplatin in the mouse gastric fundus. Neurogastroenterol. Motil., 2016, 28(2), 206-216.
[http://dx.doi.org/10.1111/nmo.12712] [PMID: 26547262]
[32]
Nardini, P.; Pini, A.; Bessard, A.; Duchalais, E.; Niccolai, E.; Neunlist, M.; Vannucchi, M.G. GLP-2 prevents neuronal and glial changes in the distal colon of mice chronically treated with cisplatin. Int. J. Mol. Sci., 2020, 21(22), 8875.
[http://dx.doi.org/10.3390/ijms21228875] [PMID: 33238628]
[33]
Sigalet, D.L.; Wallace, L.E.; Holst, J.J.; Martin, G.R.; Kaji, T.; Tanaka, H.; Sharkey, K.A. Enteric neural pathways mediate the anti-inflammatory actions of glucagon-like peptide 2. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 293(1), G211-G221.
[http://dx.doi.org/10.1152/ajpgi.00530.2006] [PMID: 17395898]
[34]
Sigalet, D.L.; Wallace, L.; De Heuval, E.; Sharkey, K.A. The effects of glucagon-like peptide 2 on enteric neurons in intestinal inflammation. Neurogastroenterol. Motil., 2010, 22(12), 1318-e350.
[http://dx.doi.org/10.1111/j.1365-2982.2010.01585.x] [PMID: 20718942]
[35]
de Heuvel, E.; Wallace, L.; Sharkey, K.A.; Sigalet, D.L. Glucagon-like peptide 2 induces vasoactive intestinal polypeptide expression in enteric neurons via phophatidylinositol 3-kinase-γ signaling. Am. J. Physiol. Endocrinol. Metab., 2012, 303(8), E994-E1005.
[http://dx.doi.org/10.1152/ajpendo.00291.2012] [PMID: 22895780]
[36]
Sasaki-Hamada, S.; Nakamura, Y.; Koizumi, K.; Nabeta, R.; Oka, J.I. Pharmacological evidence for the relationship between the NMDA receptor and nitric oxide pathway and the antidepressant-like effects of glucagon-like peptide-2 in the mouse forced-swim test. Behav. Brain Res., 2019, 364, 162-166.
[http://dx.doi.org/10.1016/j.bbr.2019.02.028] [PMID: 30779973]
[37]
Nuzzo, D.; Baldassano, S.; Amato, A.; Picone, P.; Galizzi, G.; Caldara, G.F.; Di Carlo, M.; Mulè, F. Glucagon-like peptide-2 reduces the obesity-associated inflammation in the brain. Neurobiol. Dis., 2019, 121, 296-304.
[http://dx.doi.org/10.1016/j.nbd.2018.10.012] [PMID: 30347266]
[38]
Baldassano, S.; Amato, A.; Mulè, F. Influence of glucagon-like peptide 2 on energy homeostasis. Peptides, 2016, 86, 1-5.
[http://dx.doi.org/10.1016/j.peptides.2016.09.010] [PMID: 27664588]
[39]
Drucker, D.J. GLP-1 physiology informs the pharmacotherapy of obesity. Mol. Metab., 2021, 6, 101351.
[http://dx.doi.org/10.1016/j.molmet.2021.101351] [PMID: 34626851]
[40]
Schmidt, P.T.; Näslund, E.; Grybäck, P.; Jacobsson, H.; Hartmann, B.; Holst, J.J.; Hellström, P.M. Peripheral administration of GLP-2 to humans has no effect on gastric emptying or satiety. Regul. Pept., 2003, 116(1-3), 21-25.
[http://dx.doi.org/10.1016/S0167-0115(03)00175-7] [PMID: 14599711]
[41]
Sørensen, L.B.; Flint, A.; Raben, A.; Hartmann, B.; Holst, J.J.; Astrup, A. No effect of physiological concentrations of glucagon-like peptide-2 on appetite and energy intake in normal weight subjects. Int. J. Obes., 2003, 27(4), 450-456.
[http://dx.doi.org/10.1038/sj.ijo.0802247] [PMID: 12664078]
[42]
Tang-Christensen, M.; Larsen, P.J.; Thulesen, J.; Rømer, J.; Vrang, N. The proglucagon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat. Med., 2000, 6(7), 802-807.
[http://dx.doi.org/10.1038/77535] [PMID: 10888930]
[43]
Baldassano, S.; Bellanca, A.L.; Serio, R.; Mulè, F. Food intake in lean and obese mice after peripheral administration of glucagon-like peptide 2. J. Endocrinol., 2012, 213(3), 277-284.
[http://dx.doi.org/10.1530/JOE-12-0092] [PMID: 22457516]
[44]
Scott, R.B.; Kirk, D.; MacNaughton, W.K.; Meddings, J.B. GLP-2 augments the adaptive response to massive intestinal resection in rat. Am. J. Physiol., 1998, 275(5), G911-G921.
[PMID: 9815019]
[45]
Tsai, C.H.; Hill, M.; Asa, S.L.; Brubaker, P.L.; Drucker, D.J. Intestinal growth-promoting properties of glucagon-like peptide-2 in mice. Am. J. Physiol., 1997, 273(1 Pt 1), E77-E84.
[PMID: 9252482]
[46]
Hsieh, J.; Longuet, C.; Maida, A.; Bahrami, J.; Xu, E.; Baker, C.L.; Brubaker, P.L.; Drucker, D.J.; Adeli, K. Glucagon-like peptide-2 increases intestinal lipid absorption and chylomicron production via CD36. Gastroenterology, 2009, 137(3), 997-1005. 1005.e1-1005.e4.
[http://dx.doi.org/10.1053/j.gastro.2009.05.051] [PMID: 19482026]
[47]
Taher, J.; Baker, C.; Alvares, D.; Ijaz, L.; Hussain, M.; Adeli, K. GLP-2 dysregulates hepatic lipoprotein metabolism, inducing fatty liver and VLDL overproduction in male hamsters and mice. Endocrinology, 2018, 159(9), 3340-3350.
[http://dx.doi.org/10.1210/en.2018-00416] [PMID: 30052880]
[48]
Meier, J.J.; Nauck, M.A.; Pott, A.; Heinze, K.; Goetze, O.; Bulut, K.; Schmidt, W.E.; Gallwitz, B.; Holst, J.J. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans. Gastroenterology, 2006, 130(1), 44-54.
[http://dx.doi.org/10.1053/j.gastro.2005.10.004] [PMID: 16401467]
[49]
Baldassano, S.; Amato, A.; Caldara, G.F.; Mulè, F. Glucagon-like peptide-2 treatment improves glucose dysmetabolism in mice fed a high-fat diet. Endocrine, 2016, 54(3), 648-656.
[http://dx.doi.org/10.1007/s12020-016-0871-3] [PMID: 26832341]
[50]
Brubaker, P.L. Glucagon-like peptide-2 and the regulation of intestinal growth and function. Compr. Physiol., 2018, 8(3), 1185-1210.
[http://dx.doi.org/10.1002/cphy.c170055] [PMID: 29978894]
[51]
Thulesen, J. Glucagon-like peptide 2 (GLP-2), an intestinotrophic mediator. Curr. Protein Pept. Sci., 2004, 5(1), 51-65.
[http://dx.doi.org/10.2174/1389203043486946] [PMID: 14965320]
[52]
Wøjdemann, M.; Wettergren, A.; Hartmann, B.; Holst, J.J. Glucagon-like peptide-2 inhibits centrally induced antral motility in pigs. Scand. J. Gastroenterol., 1998, 33(8), 828-832.
[http://dx.doi.org/10.1080/00365529850171486] [PMID: 9754730]
[53]
Nagell, C.F.; Wettergren, A.; Pedersen, J.F.; Mortensen, D.; Holst, J.J. Glucagon-like peptide-2 inhibits antral emptying in man, but is not as potent as glucagon-like peptide-1. Scand. J. Gastroenterol., 2004, 39(4), 353-358.
[http://dx.doi.org/10.1080/00365520410004424] [PMID: 15125467]
[54]
Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev., 2014, 35(6), 992-1019.
[http://dx.doi.org/10.1210/er.2014-1035] [PMID: 25216328]
[55]
Amato, A.; Baldassano, S.; Serio, R.; Mulè, F. Glucagon-like peptide-2 relaxes mouse stomach through vasoactive intestinal peptide release. Am. J. Physiol. Gastrointest. Liver Physiol., 2009, 296(3), G678-G684.
[http://dx.doi.org/10.1152/ajpgi.90587.2008] [PMID: 19109404]
[56]
Traini, C.; Idrizaj, E.; Garella, R.; Squecco, R.; Vannucchi, M.G.; Baccari, M.C. Glucagon-like peptide-2 interferes with the neurally-induced relaxant responses in the mouse gastric strips through VIP release. Neuropeptides, 2020, 81, 102031.
[http://dx.doi.org/10.1016/j.npep.2020.102031] [PMID: 32143816]
[57]
Grider, J.R.; Cable, M.B.; Said, S.I.; Makhlouf, G.M. Vasoactive intestinal peptide as a neural mediator of gastric relaxation. Am. J. Physiol., 1985, 248(1 Pt 1), G73-G78.
[PMID: 3966563]
[58]
Lefebvre, R.A. Non-adrenergic non-cholinergic neurotransmission in the proximal stomach. Gen. Pharmacol., 1993, 24(2), 257-266.
[http://dx.doi.org/10.1016/0306-3623(93)90301-D] [PMID: 8387048]
[59]
Garella, R.; Idrizaj, E.; Traini, C.; Squecco, R.; Vannucchi, M.G.; Baccari, M.C. Glucagon-like peptide-2 modulates the nitrergic neurotransmission in strips from the mouse gastric fundus. World J. Gastroenterol., 2017, 23(40), 7211-7220.
[http://dx.doi.org/10.3748/wjg.v23.i40.7211] [PMID: 29142468]
[60]
Rand, M.J. Nitrergic transmission: nitric oxide as a mediator of non-adrenergic, non-cholinergic neuro-effector transmission. Clin. Exp. Pharmacol. Physiol., 1992, 19(3), 147-169.
[http://dx.doi.org/10.1111/j.1440-1681.1992.tb00433.x] [PMID: 1325878]
[61]
Currò, D.; Ipavec, V.; Preziosi, P. Neurotransmitters of the non-adrenergic non-cholinergic relaxation of proximal stomach. Eur. Rev. Med. Pharmacol. Sci., 2008, 12(Suppl. 1), 53-62.
[PMID: 18924444]
[62]
Idrizaj, E.; Traini, C.; Vannucchi, M.G.; Baccari, M.C. Nitric oxide: From gastric motility to gastric dysmotility. Int. J. Mol. Sci., 2021, 22(18), 9990.
[http://dx.doi.org/10.3390/ijms22189990] [PMID: 34576155]
[63]
Van Geldre, L.A.; Lefebvre, R.A. Interaction of NO and VIP in gastrointestinal smooth muscle relaxation. Curr. Pharm. Des., 2004, 10(20), 2483-2497.
[http://dx.doi.org/10.2174/1381612043383890] [PMID: 15320758]
[64]
Tonini, M.; De Giorgio, R.; De Ponti, F.; Sternini, C.; Spelta, V.; Dionigi, P.; Barbara, G.; Stanghellini, V.; Corinaldesi, R. Role of nitric oxide- and vasoactive intestinal polypeptide-containing neurones in human gastric fundus strip relaxations. Br. J. Pharmacol., 2000, 129(1), 12-20.
[http://dx.doi.org/10.1038/sj.bjp.0702977] [PMID: 10694197]
[65]
Verbeure, W.; van Goor, H.; Mori, H.; van Beek, A.P.; Tack, J.; van Dijk, P.R. The role of gasotransmitters in gut peptide actions. Front. Pharmacol., 2021, 12, 720703.
[http://dx.doi.org/10.3389/fphar.2021.720703] [PMID: 34354597]
[66]
Idrizaj, E.; Garella, R.; Castellini, G.; Mohr, H.; Pellegata, N.S.; Francini, F.; Ricca, V.; Squecco, R.; Baccari, M.C. Adiponectin affects the mechanical responses in strips from the mouse gastric fundus. World J. Gastroenterol., 2018, 24(35), 4028-4035.
[http://dx.doi.org/10.3748/wjg.v24.i35.4028] [PMID: 30254407]
[67]
Idrizaj, E.; Garella, R.; Castellini, G.; Francini, F.; Ricca, V.; Baccari, M.C.; Squecco, R. Adiponectin decreases gastric smooth muscle cell excitability in mice. Front. Physiol., 2019, 10, 1000.
[http://dx.doi.org/10.3389/fphys.2019.01000] [PMID: 31447692]
[68]
Idrizaj, E.; Garella, R.; Nistri, S.; Dell’Accio, A.; Cassioli, E.; Rossi, E.; Castellini, G.; Ricca, V.; Squecco, R.; Baccari, M.C. Adiponectin exerts peripheral inhibitory effects on the mouse gastric smooth muscle through the AMPK pathway. Int. J. Mol. Sci., 2020, 21(24), 9617.
[http://dx.doi.org/10.3390/ijms21249617] [PMID: 33348652]
[69]
Baccari, M.C.; Bani, D. Relaxin and nitric oxide signalling. Curr. Protein Pept. Sci., 2008, 9(6), 638-645.
[http://dx.doi.org/10.2174/138920308786733921] [PMID: 19075752]
[70]
Garella, R.; Squecco, R.; Baccari, M.C. Site-related effects of relaxin in the gastrointestinal tract through nitric oxide signalling: An updated report. Curr. Protein Pept. Sci., 2017, 18(12), 1254-1262.
[http://dx.doi.org/10.2174/1389203718666170612104719] [PMID: 28606038]
[71]
Idrizaj, E.; Garella, R.; Francini, F.; Squecco, R.; Baccari, M.C. Relaxin influences ileal muscular activity through a dual signaling pathway in mice. World J. Gastroenterol., 2018, 24(8), 882-893.
[http://dx.doi.org/10.3748/wjg.v24.i8.882] [PMID: 29491682]
[72]
Baccari, M.C.; Traini, C.; Garella, R.; Cipriani, G.; Vannucchi, M.G. Relaxin exerts two opposite effects on mechanical activity and nitric oxide synthase expression in the mouse colon. Am. J. Physiol. Endocrinol. Metab., 2012, 303(9), E1142-E1150.
[http://dx.doi.org/10.1152/ajpendo.00260.2012] [PMID: 22932783]
[73]
Baccari, M.C.; Calamai, F. Relaxin: New functions for an old peptide. Curr. Protein Pept. Sci., 2004, 5(1), 9-18.
[http://dx.doi.org/10.2174/1389203043486928] [PMID: 14965317]
[74]
Idrizaj, E.; Garella, R.; Squecco, R.; Baccari, M.C. Adipocytes-released Peptides Involved in the Control of Gastrointestinal Motility. Curr. Protein Pept. Sci., 2019, 20(6), 614-629.
[http://dx.doi.org/10.2174/1389203720666190121115356] [PMID: 30663565]
[75]
Squecco, R.; Sassoli, C.; Garella, R.; Chellini, F.; Idrizaj, E.; Nistri, S.; Formigli, L.; Bani, D.; Francini, F. Inhibitory effects of relaxin on cardiac fibroblast-to-myofibroblast transition: an electrophysiological study. Exp. Physiol., 2015, 100(6), 652-666.
[http://dx.doi.org/10.1113/EP085178] [PMID: 25786395]
[76]
McDonagh, S.C.; Lee, J.; Izzo, A.; Brubaker, P.L. Role of glial cell-line derived neurotropic factor family receptor alpha2 in the actions of the glucagon-like peptides on the murine intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2007, 293(2), G461-G468.
[http://dx.doi.org/10.1152/ajpgi.00424.2006] [PMID: 17585017]
[77]
Browning, K.N.; Carson, K.E. Central neurocircuits regulating food intake in response to gut inputs-preclinical evidence. Nutrients, 2021, 13(3), 908.
[http://dx.doi.org/10.3390/nu13030908] [PMID: 33799575]
[78]
Stengel, A.; Taché, Y. Interaction between gastric and upper small intestinal hormones in the regulation of hunger and satiety: ghrelin and cholecystokinin take the central stage. Curr. Protein Pept. Sci., 2011, 12(4), 293-304.
[http://dx.doi.org/10.2174/138920311795906673] [PMID: 21428875]
[79]
Tack, J.; Verbeure, W.; Mori, H.; Schol, J.; Van den Houte, K.; Huang, I.H.; Balsiger, L.; Broeders, B.; Colomier, E.; Scarpellini, E.; Carbone, F. The gastrointestinal tract in hunger and satiety signalling. United European Gastroenterol. J., 2021, 9(6), 727-734.
[http://dx.doi.org/10.1002/ueg2.12097] [PMID: 34153172]
[80]
Janssen, P.; Vanden Berghe, P.; Verschueren, S.; Lehmann, A.; Depoortere, I.; Tack, J. Review article: the role of gastric motility in the control of food intake. Aliment. Pharmacol. Ther., 2011, 33(8), 880-894.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04609.x] [PMID: 21342212]
[81]
Idrizaj, E.; Garella, R.; Squecco, R.; Baccari, M.C. Can adiponectin have an additional effect on the regulation of food intake by inducing gastric motor changes? World J. Gastroenterol., 2020, 26(20), 2472-2478.
[http://dx.doi.org/10.3748/wjg.v26.i20.2472] [PMID: 32523305]
[82]
Reinehr, T.; Roth, C.L. The gut sensor as regulator of body weight. Endocrine, 2015, 49(1), 35-50.
[http://dx.doi.org/10.1007/s12020-014-0518-1] [PMID: 25548085]
[83]
Muto, M.; Kaji, T.; Onishi, S.; Yano, K.; Yamada, W.; Ieiri, S. An overview of the current management of short-bowel syndrome in pediatric patients. Surg. Today, 2021. Epub ahead of print
[http://dx.doi.org/10.1007/s00595-020-02207-z] [PMID: 33464414]
[84]
Schlager, L.; Stift, A.; Gartner, J.; Hütterer, E.; Harpain, F. Bridging intestinal failure with Teduglutide - A case report. Int. J. Surg. Case Rep., 2021, 86, 106270.
[http://dx.doi.org/10.1016/j.ijscr.2021.106270] [PMID: 34418803]
[85]
Eliasson, J.; Hvistendahl, M.K.; Freund, N.; Bolognani, F.; Meyer, C.; Jeppesen, P.B. Apraglutide, a novel glucagon-like peptide-2 analog, improves fluid absorption in patients with short bowel syndrome intestinal failure: Findings from a placebo-controlled, randomized phase 2 trial. JPEN J. Parenter. Enteral Nutr., 2021, jpen.2223. Epub ahead of print
[http://dx.doi.org/10.1002/jpen.2223] [PMID: 34287970]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy