Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Genetic and Epigenetic Diversity of Protein Molecules Related to SARSCoV- 2 Entry: Where We Are and Where We Should Go?

Author(s): Shiheng Zhu, Fei Chen*, Xiaoyun Li, Yankun Zhang, Xinqing Wang and Chun Luan

Volume 23, Issue 2, 2022

Published on: 07 March, 2022

Page: [70 - 76] Pages: 7

DOI: 10.2174/1389203723666220201160820

Price: $65

Abstract

The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has swept the whole world and brought about public health crisis of unprecedented proportions. In the process of SARS-CoV-2 entry, angiotensin-converting enzyme 2 plays a key role. In addition, other protein molecules, such as transmembrane protease/serine 2, FURIN, Cathepsin L, and a disintegrin and metalloproteinase 17 will also affect the interaction between virus and host cells. Since the variations in the virus and human populations could determine the transmissibility of the virus and influence an individual’s susceptibility to SARS-CoV-2 infection and disease outcome, research on the variations of the above protein molecules and their role in COVID-19 is in full swing. In this review, we systematically reviewed viral and host genetic variations related to SARSCoV- 2 entry, as well as the relationship between the diversity of these variations and the COVID-19 pandemic. We aim to provide better insights into the transmission and pathogenesis of COVID-19 from the perspective of genetic variants and epigenetic factors so as to prevent, control, and treat COVID-19, especially among high-risk populations with genetic risk variants.

Keywords: S protein, ACE2, variants, epigenetics, TMPRSS2, COVID-19, gene polymorphism.

Graphical Abstract

[1]
Suryamohan, K.; Diwanji, D.; Stawiski, E.W.; Gupta, R.; Miersch, S.; Liu, J.; Chen, C.; Jiang, Y.P.; Fellouse, F.A.; Sathirapongsasuti, J.F.; Albers, P.K.; Deepak, T.; Saberianfar, R.; Ratan, A.; Washburn, G.; Mis, M.; Santhosh, D.; Somasekar, S.; Hiranjith, G.H.; Vargas, D.; Mohan, S.; Phalke, S.; Kuriakose, B.; Antony, A.; Ustav, M., Jr; Schuster, S.C.; Sidhu, S.; Junutula, J.R.; Jura, N.; Seshagiri, S. Human ACE2 receptor polymorphisms and altered susceptibility to SARS-CoV-2. Commun. Biol., 2021, 4(1), 475.
[http://dx.doi.org/10.1038/s42003-021-02030-3] [PMID: 33846513]
[2]
World Health Organization. Available from: https://covid19.who.int/
[3]
Weiss, S.R.; Navas-Martin, S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev., 2005, 69(4), 635-664.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005] [PMID: 16339739]
[4]
Zhou, P.; Yang, X-L.; Wang, X-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[5]
Song, H.C.; Seo, M-Y.; Stadler, K.; Yoo, B.J.; Choo, Q-L.; Coates, S.R.; Uematsu, Y.; Harada, T.; Greer, C.E.; Polo, J.M.; Pileri, P.; Eickmann, M.; Rappuoli, R.; Abrignani, S.; Houghton, M.; Han, J.H. Synthesis and characterization of a native, oligomeric form of recombinant severe acute respiratory syndrome coronavirus spike glycoprotein. J. Virol., 2004, 78(19), 10328-10335.
[http://dx.doi.org/10.1128/JVI.78.19.10328-10335.2004] [PMID: 15367599]
[6]
Xu, J.; Xu, X.; Jiang, L.; Dua, K.; Hansbro, P.M.; Liu, G. SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir. Res., 2020, 21(1), 182.
[http://dx.doi.org/10.1186/s12931-020-01445-6] [PMID: 32664949]
[7]
Mercurio, I.; Tragni, V.; Busto, F.; De Grassi, A.; Pierri, C.L. Protein structure analysis of the interactions between SARS-CoV-2 spike protein and the human ACE2 receptor: from conformational changes to novel neutralizing antibodies. Cell. Mol. Life Sci., 2021, 78(4), 1501-1522.
[http://dx.doi.org/10.1007/s00018-020-03580-1] [PMID: 32623480]
[8]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[9]
Beyerstedt, S.; Casaro, E.B.; Rangel, É.B. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur. J. Clin. Microbiol. Infect. Dis., 2021, 40, 905-919.
[10]
Zemlin, A.E.; Wiese, O.J. Coronavirus disease 2019 (COVID-19) and the renin-angiotensin system: A closer look at angiotensin-converting enzyme 2 (ACE2). Ann. Clin. Biochem., 2020, 57(5), 339-350.
[http://dx.doi.org/10.1177/0004563220928361] [PMID: 32369402]
[11]
Weekly epidemiological update on COVID-19. Available from: https://www.who.int/publications/m/item/covid-19-weekly-epidemiological-update (Accessed on December 28, 2001).
[12]
Tipnis, S.R.; Hooper, N.M.; Hyde, R.; Karran, E.; Christie, G.; Turner, A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem., 2000, 275(43), 33238-33243.
[http://dx.doi.org/10.1074/jbc.M002615200] [PMID: 10924499]
[13]
Nikhra, V. Neurological and psychiatric effects of COVID-19 and long Covid; Neurobiol. Protoc, 2021.
[http://dx.doi.org/10.13140/RG.2.2.29042.63686]
[14]
Jing, Y.; Run-Qian, L.; Hao-Ran, W.; Hao-Ran, C.; Ya-Bin, L.; Yang, G.; Fei, C. Potential influence of COVID-19/ACE2 on the female reproductive system. Mol. Hum. Reprod., 2020, 26(6), 367-373.
[http://dx.doi.org/10.1093/molehr/gaaa030] [PMID: 32365180]
[15]
Hamming, I.; Timens, W.; Bulthuis, M.; Lely, A.; Navis, G.V. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. 2004, 203, 631-637.
[16]
Wu, Y.H.; Li, J.Y.; Wang, C.; Zhang, L.M.; Qiao, H. The ACE2 G8790A polymorphism: involvement in type 2 diabetes mellitus combined with cerebral stroke. J. Clin. Lab. Anal., 2017, 31(2), 31.
[http://dx.doi.org/10.1002/jcla.22033] [PMID: 27500554]
[17]
Strafella, C.; Caputo, V.; Termine, A.; Barati, S.; Gambardella, S.; Borgiani, P.; Caltagirone, C.; Novelli, G.; Giardina, E.; Cascella, R. Analysis of ACE2 genetic variability among populations highlights a possible link with COVID-19-related neurological complications. Genes (Basel), 2020, 11(7), 11.
[http://dx.doi.org/10.3390/genes11070741] [PMID: 32635188]
[18]
Guo, X.; Chen, Z.; Xia, Y.; Lin, W.; Li, H. Investigation of the genetic variation in ACE2 on the structural recognition by the novel coronavirus (SARS-CoV-2). J. Transl. Med., 2020, 18(1), 321.
[http://dx.doi.org/10.1186/s12967-020-02486-7] [PMID: 32831104]
[19]
Bakhshandeh, B.; Sorboni, S.G.; Javanmard, A-R.; Mottaghi, S.S.; Mehrabi, M-R.; Sorouri, F.; Abbasi, A.; Jahanafrooz, Z. Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infect. Genet. Evol., 2021, 90, 104773.
[http://dx.doi.org/10.1016/j.meegid.2021.104773] [PMID: 33607284]
[20]
Cavalli, G.; Heard, E. Advances in epigenetics link genetics to the environment and disease. Nature, 2019, 571(7766), 489-499.
[http://dx.doi.org/10.1038/s41586-019-1411-0] [PMID: 31341302]
[21]
Pinto, BG; Oliveira, AE; Singh, Y; Jimenez, L; Gonçalves, AN; Ogava, RL ACE2 expression is increased in the lungs of patients with comorbidities associated with severe COVID-19. MedRxir, 2020, 222, 556-563.
[22]
Kianmehr, A.; Faraoni, I.; Kucuk, O.; Mahrooz, A.K. Epigenetic alterations and genetic variations of angiotensin-converting enzyme 2 (ACE2) as a functional receptor for SARS-CoV-2: potential clinical implications. Eur. J. Clin. Microbiol. Infect. Dis., 2021, 40, 1587-1598.
[23]
Clarke, NE; Belyaev, ND; Lambert, DW; Turner, A.J. Epigenetic regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress. Clin. Sci. (Lond.), 2014, 126, 507-516.
[24]
Liu, Q.; Du, J.; Yu, X.; Xu, J.; Huang, F.; Li, X.; Zhang, C.; Li, X.; Chang, J.; Shang, D.; Zhao, Y.; Tian, M.; Lu, H.; Xu, J.; Li, C.; Zhu, H.; Jin, N.; Jiang, C. miRNA-200c-3p is crucial in acute respiratory distress syndrome. Cell Discov., 2017, 3(1), 17021.
[http://dx.doi.org/10.1038/celldisc.2017.21] [PMID: 28690868]
[25]
Li, H.B.; Zi, P.P.; Shi, H.J.; Gao, M.; Sun, R.Q. Role of signaling pathway of long non-coding RNA growth arrest-specific transcript 5/microRNA-200c-3p/angiotensin converting enzyme 2 in the apoptosis of human lung epithelial cell A549 in acute respiratory distress syndrome. Zhonghua Yi Xue Za Zhi, 2018, 98(41), 3354-3359.
[PMID: 30440128]
[26]
Wen Seow, J.J.; Pai, R.; Mishra, A.; Shepherdson, E.; Hon Lim, T.K.; Goh, B.K.P. scRNA-seq reveals ACE2 and TMPRSS2 expression in TROP2+ liver progenitor cells: implications in COVID- 19 associated liver dysfunction. bioRxiv, 2020, 2020.03.23.002832.
[27]
Dong, M.; Zhang, J.; Ma, X.; Tan, J.; Chen, L.; Liu, S. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomedicine & pharmacotherapy, 2020, 131, 110678.
[28]
Bhattacharyya, C.; Das, C.; Ghosh, A.; Singh, A.K.; Mukherjee, S.; Majumder, P.P. Global spread of sars-cov-2 subtype with spike protein mutation d614g is shaped by human genomic variations that regulate expression of TMPRSS2 and MX1 Genes. bioRxiv, 2020, 2020.05.04.075911.
[29]
Somoza, J.R.; Ho, J.D.; Luong, C.; Ghate, M.; Sprengeler, P.A.; Mortara, K.; Shrader, W.D.; Sperandio, D.; Chan, H.; McGrath, M.E.; Katz, B.A. The structure of the extracellular region of human hepsin reveals a serine protease domain and a novel scavenger receptor cysteine-rich (SRCR) domain. Structure, 2003, 11(9), 1123-1131.
[http://dx.doi.org/10.1016/S0969-2126(03)00148-5] [PMID: 12962630]
[30]
Goren, A.; Vaño-Galván, S.; Wambier, C.G.; McCoy, J.; Gomez-Zubiaur, A.; Moreno-Arrones, O.M.; Shapiro, J.; Sinclair, R.D.; Gold, M.H.; Kovacevic, M.; Mesinkovska, N.A.; Goldust, M.; Washenik, K. A preliminary observation: Male pattern hair loss among hospitalized COVID-19 patients in Spain - A potential clue to the role of androgens in COVID-19 severity. J. Cosmet. Dermatol., 2020, 19(7), 1545-1547.
[http://dx.doi.org/10.1111/jocd.13443] [PMID: 32301221]
[31]
Wang, Q.; Li, W.; Liu, X.S.; Carroll, J.S.; Jänne, O.A.; Keeton, E.K.; Chinnaiyan, A.M.; Pienta, K.J.; Brown, M. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell, 2007, 27(3), 380-392.
[http://dx.doi.org/10.1016/j.molcel.2007.05.041] [PMID: 17679089]
[32]
Clinckemalie, L.; Spans, L.; Dubois, V.; Laurent, M.; Helsen, C.; Joniau, S.; Claessens, F. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol. Endocrinol., 2013, 27(12), 2028-2040.
[http://dx.doi.org/10.1210/me.2013-1098] [PMID: 24109594]
[33]
Luan, B.; Huynh, T.; Cheng, X.; Lan, G.; Wang, H-R. Targeting proteases for treating COVID-19. J. Proteome Res., 2020, 19(11), 4316-4326.
[http://dx.doi.org/10.1021/acs.jproteome.0c00430] [PMID: 33090793]
[34]
Ming, Y.; Qiang, L. Involvement of spike protein, furin, and ACE2 in SARS-CoV-2-related cardiovascular complications. SN Compr. Clin. Med., 2020, 2(8), 1-6.
[http://dx.doi.org/10.1007/s42399-020-00400-2] [PMID: 32838164]
[35]
Torre-Fuentes, L.; Matías-Guiu, J.; Hernández-Lorenzo, L.; Montero-Escribano, P.; Pytel, V.; Porta-Etessam, J.; Gómez-Pinedo, U.; Matías-Guiu, J.A. ACE2, TMPRSS2, and Furin variants and SARS-CoV-2 infection in Madrid, Spain. J. Med. Virol., 2021, 93(2), 863-869.
[http://dx.doi.org/10.1002/jmv.26319] [PMID: 32691890]
[36]
Ragia, G.; Manolopoulos, V.G. Assessing COVID-19 susceptibility through analysis of the genetic and epigenetic diversity of ACE2-mediated SARS-CoV-2 entry. Pharmacogenomics, 2020, 21(18), 1311-1329.
[http://dx.doi.org/10.2217/pgs-2020-0092] [PMID: 33243086]
[37]
Kaidashev, I.; Shlykova, O.; Izmailova, O.; Torubara, O.; Yushchenko, Y.; Tyshkovska, T.; Kyslyi, V.; Belyaeva, A.; Maryniak, D. Host gene variability and SARS-CoV-2 infection: A review article. Heliyon, 2021, 7(8), e07863.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07863] [PMID: 34458641]
[38]
Smieszek, S.P.; Przychodzen, B.P.; Polymeropoulos, M.H. Amantadine disrupts lysosomal gene expression: A hypothesis for COVID19 treatment. Int. J. Antimicrob. Agents, 2020, 55(6), 106004.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106004] [PMID: 32361028]
[39]
Vargas-Alarcón, G.; Posadas-Sánchez, R.; Ramírez-Bello, J. Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies. Life Sci., 2020, 260, 118313.
[http://dx.doi.org/10.1016/j.lfs.2020.118313] [PMID: 32835700]
[40]
Ren, J.; Nie, Y.; Lv, M.; Shen, S.; Tang, R.; Xu, Y.; Hou, Y.; Zhao, S.; Wang, T. Estrogen upregulates MICA/B expression in human non-small cell lung cancer through the regulation of ADAM17. Cell. Mol. Immunol., 2015, 12(6), 768-776.
[http://dx.doi.org/10.1038/cmi.2014.101] [PMID: 25363527]
[41]
Ragia, G.; Manolopoulos, V.G. Inhibition of SARS-CoV-2 entry through the ACE2/TMPRSS2 pathway: a promising approach for uncovering early COVID-19 drug therapies. Eur. J. Clin. Pharmacol., 2020, 76(12), 1623-1630.
[http://dx.doi.org/10.1007/s00228-020-02963-4] [PMID: 32696234]
[42]
Li, X.; Zhang, L.; Chen, S.; Ji, W.; Li, C.; Ren, L. Recent progress on the mutations of SARS-CoV-2 spike protein and suggestions for prevention and controlling of the pandemic. Infect. Genet. Evol., 2021, 93, 104971.
[http://dx.doi.org/10.1016/j.meegid.2021.104971] [PMID: 34146731]
[43]
Souza, P.F.N.; Mesquita, F.P.; Amaral, J.L.; Landim, P.G.C.; Lima, K.R.P.; Costa, M.B.; Farias, I.R.; Lima, L.B.; Montenegro, R.C. The human pandemic coronaviruses on the show: The spike glycoprotein as the main actor in the coronaviruses play. Int. J. Biol. Macromol., 2021, 179, 1-19.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.203] [PMID: 33667553]
[44]
Butowt, R; Bilinska, K Chemosensory dysfunction in COVID-19: integration of genetic and epidemiological data points to D614G spike protein variant as a contributing factor. 2020, 11, 3180-3184.
[45]
Fernández, AJAmcl Structural impact of mutation D614G in SARS-CoV-2 spike protein: enhanced infectivity and therapeutic opportunity. 2020, 11, 1667-1670.
[46]
Lu, L.; Chu, A.W-H.; Zhang, R.R.; Chan, W-M.; Ip, J.D.; Tsoi, H-W.; Chen, L.L.; Cai, J.P.; Lung, D.C.; Tam, A.R.; Yau, Y.S.; Kwan, M.Y.; To, W.K.; Tsang, O.T.; Lee, L.L.; Yi, H.; Ip, T.C.; Poon, R.W.; Siu, G.K.; Mok, B.W.; Cheng, V.C.; Chan, K.H.; Yuen, K.Y.; Hung, I.F.; To, K.K. The impact of spike N501Y mutation on neutralizing activity and RBD binding of SARS-CoV-2 convalescent serum. EBioMedicine, 2021, 71, 103544.
[http://dx.doi.org/10.1016/j.ebiom.2021.103544] [PMID: 34419925]
[47]
Dougherty, K.; Mannell, M.; Naqvi, O.; Matson, D.; Stone, J. SARS-CoV-2 B.1.617.2 (Delta) variant COVID-19 outbreak associated with a gymnastics facility - Oklahoma, April-May 2021. MMWR Morb. Mortal. Wkly. Rep., 2021, 70(28), 1004-1007.
[http://dx.doi.org/10.15585/mmwr.mm7028e2] [PMID: 34264910]
[48]
Bian, L.; Gao, Q.; Gao, F.; Wang, Q.; He, Q.; Wu, X.; Mao, Q.; Xu, M.; Liang, Z. Impact of the Delta variant on vaccine efficacy and response strategies. Expert Rev. Vaccines, 2021, 20(10), 1201-1209.
[http://dx.doi.org/10.1080/14760584.2021.1976153] [PMID: 34488546]
[49]
Saha, P.; Banerjee, A.K.; Tripathi, P.P.; Srivastava, A.K.; Ray, U. A virus that has gone viral: amino acid mutation in S protein of Indian isolate of Coronavirus COVID-19 might impact receptor binding, and thus, infectivity. Biosci. Rep., 2020, 40(5), 40.
[http://dx.doi.org/10.1042/BSR20201312] [PMID: 32378705]
[50]
Teyssou, E.; Delagrèverie, H.; Visseaux, B.; Lambert-Niclot, S.; Brichler, S.; Ferre, V.; Marot, S.; Jary, A.; Todesco, E.; Schnuriger, A.; Ghidaoui, E.; Abdi, B.; Akhavan, S.; Houhou-Fidouh, N.; Charpentier, C.; Morand-Joubert, L.; Boutolleau, D.; Descamps, D.; Calvez, V.; Marcelin, A.G.; Soulie, C. The Delta SARS-CoV-2 variant has a higher viral load than the Beta and the historical variants in nasopharyngeal samples from newly diagnosed COVID-19 patients. J. Infect., 2021, 83(4), e1-e3.
[http://dx.doi.org/10.1016/j.jinf.2021.08.027] [PMID: 34419559]
[51]
Motozono, C.; Toyoda, M.; Zahradnik, J.; Saito, A.; Nasser, H.; Tan, T.S.; Ngare, I.; Kimura, I.; Uriu, K.; Kosugi, Y.; Yue, Y.; Shimizu, R.; Ito, J.; Torii, S.; Yonekawa, A.; Shimono, N.; Nagasaki, Y.; Minami, R.; Toya, T.; Sekiya, N.; Fukuhara, T.; Matsuura, Y.; Schreiber, G.; Ikeda, T.; Nakagawa, S.; Ueno, T.; Sato, K. SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe, 2021, 29(7), 1124-1136.e11.
[http://dx.doi.org/10.1016/j.chom.2021.06.006] [PMID: 34171266]
[52]
Di Giacomo, S.; Mercatelli, D.; Rakhimov, A.; Giorgi, F.M. Preliminary report on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike mutation T478K. J. Med. Virol., 2021, 93(9), 5638-5643.
[http://dx.doi.org/10.1002/jmv.27062] [PMID: 33951211]
[53]
Liu, Y.; Liu, J.; Johnson, B.A.; Xia, H.; Ku, Z.; Schindewolf, C. Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant. BioRxiv, 2021, 2021.08.12.456173.
[54]
Jia, Z.; Gong, W. Will mutations in the spike protein of SARS-CoV-2 lead to the failure of COVID-19 vaccines? J. Korean Med. Sci., 2021, 36(18), e124.
[http://dx.doi.org/10.3346/jkms.2021.36.e124] [PMID: 33975397]
[55]
COVID-19 vaccine tracker and landscape. Available from: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (Accessed on January 14, 2022).
[56]
Garcia-Beltran, W.F.; Lam, E.C.; St Denis, K.; Nitido, A.D.; Garcia, Z.H.; Hauser, B.M. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell, 2021, 184, 2372-2383.
[57]
Wang, Z.; Schmidt, F.; Weisblum, Y.; Muecksch, F.; Barnes, C.O.; Finkin, S.; Schaefer-Babajew, D.; Cipolla, M.; Gaebler, C.; Lieberman, J.A.; Oliveira, T.Y.; Yang, Z.; Abernathy, M.E.; Huey-Tubman, K.E.; Hurley, A.; Turroja, M.; West, K.A.; Gordon, K.; Millard, K.G.; Ramos, V.; Da Silva, J.; Xu, J.; Colbert, R.A.; Patel, R.; Dizon, J.; Unson-O’Brien, C.; Shimeliovich, I.; Gazumyan, A.; Caskey, M.; Bjorkman, P.J.; Casellas, R.; Hatziioannou, T.; Bieniasz, P.D.; Nussenzweig, M.C. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 2021, 592(7855), 616-622.
[http://dx.doi.org/10.1038/s41586-021-03324-6] [PMID: 33567448]
[58]
Nguyen, T.T.; Pathirana, P.N.; Nguyen, T.; Nguyen, Q.V.H.; Bhatti, A.; Nguyen, D.C.; Nguyen, D.T.; Nguyen, N.D.; Creighton, D.; Abdelrazek, M. Genomic mutations and changes in protein secondary structure and solvent accessibility of SARS-CoV-2 (COVID-19 virus). Sci. Rep., 2021, 11(1), 3487.
[http://dx.doi.org/10.1038/s41598-021-83105-3] [PMID: 33568759]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy