Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Research Progress in Human AP Endonuclease 1: Structure, Catalytic Mechanism, and Inhibitors

Author(s): Zelan Zhang, Zhixiang Wu, Xiaodong Shi, Du Guo, Yan Cheng, Jiaxing Gao, Ling Liu, Wei Liu, Li Liang, Lianxin Peng* and Jianping Hu*

Volume 23, Issue 2, 2022

Published on: 12 May, 2022

Page: [77 - 88] Pages: 12

DOI: 10.2174/1389203723666220406132737

Price: $65

conference banner
Abstract

The high stability of phosphodiester bonds is considered to be one of the important reasons for the genetic role of nucleic acids, and their cleavage is also the core of many key biochemical processes, including DNA replication/ repair, and RNA processing/ degradation. As an important part of the base excision repair (BER) pathway, human apurinic/ apyrimidinic endonuclease 1 (APE1) is indispensable for the repair of abasic sites and other DNA damage, including ionizing radiation, DNA covalently bonding induced by cytotoxic antitumor drugs, etc. For tumor cells, the DNA repair activity of APE1 may lead to the occurrence of radiotherapy and chemotherapy resistance. The overexpression of APE1 often poses a serious threat to the effectiveness of tumor treatment, indicating a longer time, a much larger dose, less effective chemotherapy, and poor prognosis. It is of great urgency to design novel APE1 inhibitors. Rational design and modification of inhibitor molecules are closely related to the research progress of both structural biology and catalytic mechanism. In this review, the structure, catalytic mechanism, inhibitors, and other important biochemical information regarding APE1 are summarized, which will help in the design and modification of drug molecules targeting APE1.

Keywords: Chemotherapy resistance, APE1, structure, catalytic mechanism, inhibitor, phosphodiester bonds.

« Previous
[1]
Schroeder, G.K.; Chetan, L.; Wyman, P. The time required for water attack at the phosphorus atom of simple phosphodiesters and of DNA. Proc. Natl. Acad. Sci. USA, 2006, 103, 4052-4055.
[2]
Palermo, G.; Cavalli, A.; Klein, M.L.; Alfonso-Prieto, M.; Dal Peraro, M.; De Vivo, M. Catalytic metal ions and enzymatic processing of DNA and RNA. Acc. Chem. Res., 2015, 48(2), 220-228.
[http://dx.doi.org/10.1021/ar500314j] [PMID: 25590654]
[3]
Bonomi, R.; Saielli, G.; Tonellato, U.; Scrimin, P.; Mancin, F. Insights on nuclease mechanism: The role of proximal ammonium group on phosphate esters cleavage. J. Am. Chem. Soc., 2009, 131(32), 11278-11279.
[http://dx.doi.org/10.1021/ja9033236] [PMID: 19627082]
[4]
Yang, W. Nucleases: Diversity of structure, function and mechanism. Q. Rev. Biophys., 2011, 44(1), 1-93.
[http://dx.doi.org/10.1017/S0033583510000181] [PMID: 20854710]
[5]
Kane, C.M.; Linn, S. Purification and characterization of an apurinic/apyrimidinic endonuclease from HeLa cells. J. Biol. Chem., 1981, 256(7), 3405-3414.
[http://dx.doi.org/10.1016/S0021-9258(19)69623-7] [PMID: 6259165]
[6]
Robson, C.N.; Hickson, I.D. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res., 1991, 19(20), 5519-5523.
[http://dx.doi.org/10.1093/nar/19.20.5519] [PMID: 1719477]
[7]
Chen, D.S.; Herman, T.; Demple, B. Two distinct human DNA diesterases that hydrolyze 3¢-blocking deoxyribose fragments from oxidized DNA. Nucleic Acids Res., 1991, 19(21), 5907-5914.
[http://dx.doi.org/10.1093/nar/19.21.5907] [PMID: 1719484]
[8]
Kingma, P.S.; Corbett, A.H.; Burcham, P.C.; Marnett, L.J.; Osheroff, N. Abasic sites stimulate double-stranded DNA cleavage mediated by topoisomerase II. DNA lesions as endogenous topoisomerase II poisons. J. Biol. Chem., 1995, 270(37), 21441-21444.
[http://dx.doi.org/10.1074/jbc.270.37.21441] [PMID: 7665552]
[9]
Cuniasse, P.; Fazakerley, G.V.; Guschlbauer, W.; Kaplan, B.E.; Sowers, L.C. The abasic site as a challenge to DNA polymerase. A nuclear magnetic resonance study of G, C and T opposite a model abasic site. J. Mol. Biol., 1990, 213(2), 303-314.
[http://dx.doi.org/10.1016/S0022-2836(05)80192-5] [PMID: 2342108]
[10]
Loeb, L.A.; Preston, B.D. Mutagenesis by apurinic/apyrimidinic sites. Annu. Rev. Genet., 1986, 20(1), 201-230.
[http://dx.doi.org/10.1146/annurev.ge.20.120186.001221] [PMID: 3545059]
[11]
Wilson, D.M., III; Barsky, D. The major human abasic endonuclease: Formation, consequences and repair of a basic lesions in DNA. Mutat. Res., 2001, 485(4), 283-307.
[http://dx.doi.org/10.1016/S0921-8777(01)00063-5] [PMID: 11585362]
[12]
Fishel, M.L.; Kelley, M.R. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol. Aspects Med., 2007, 28(3-4), 375-395.
[http://dx.doi.org/10.1016/j.mam.2007.04.005] [PMID: 17560642]
[13]
Al-Safi, R.I.; Odde, S.; Shabaik, Y.; Neamati, N. Small-molecule inhibitors of APE1 DNA repair function: An overview. Curr. Mol. Pharmacol., 2012, 5(1), 14-35.
[http://dx.doi.org/10.2174/1874467211205010014] [PMID: 22122462]
[14]
Brooks, S.C.; Adhikary, S.; Rubinson, E.H.; Eichman, B.F. Recent advances in the structural mechanisms of DNA glycosylases. Biochim. Biophys. Acta, 2013, 1834(1), 247-271.
[http://dx.doi.org/10.1016/j.bbapap.2012.10.005] [PMID: 23076011]
[15]
Liu, Y.; Prasad, R.; Beard, W.A.; Kedar, P.S.; Hou, E.W.; Shock, D.D.; Wilson, S.H. Coordination of steps in single-nucleotide base excision repair mediated by apurinic/apyrimidinic endonuclease 1 and DNA polymerase β. J. Biol. Chem., 2007, 282(18), 13532-13541.
[http://dx.doi.org/10.1074/jbc.M611295200] [PMID: 17355977]
[16]
Beard, W.A.; Wilson, S.H. Structure and mechanism of DNA polymerase β. Chem. Rev., 2006, 106(2), 361-382.
[http://dx.doi.org/10.1021/cr0404904] [PMID: 16464010]
[17]
Caldecott, K.W.; McKeown, C.K.; Tucker, J.D.; Ljungquist, S.; Thompson, L.H. An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol., 1994, 14(1), 68-76.
[PMID: 8264637]
[18]
Tell, G.; Fantini, D.; Quadrifoglio, F. Understanding different functions of mammalian AP endonuclease (APE1) as a promising tool for cancer treatment. Cell. Mol. Life Sci., 2010, 67(21), 3589-3608.
[http://dx.doi.org/10.1007/s00018-010-0486-4] [PMID: 20706766]
[19]
Luo, M.; Kelley, M.R. Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res., 2004, 24(4), 2127-2134.
[PMID: 15330152]
[20]
Yang, S.; Irani, K.; Heffron, S.E.; Jurnak, F.; Meyskens, F.L., Jr Alterations in the expression of the apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in human melanoma and identification of the therapeutic potential of resveratrol as an APE/Ref-1 inhibitor. Mol. Cancer Ther., 2005, 4(12), 1923-1935.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0229] [PMID: 16373707]
[21]
Fishel, M.L.; He, Y.; Reed, A.M.; Chin-Sinex, H.; Hutchins, G.D.; Mendonca, M.S.; Kelley, M.R. Knockdown of the DNA repair and redox signaling protein Ape1/Ref-1 blocks ovarian cancer cell and tumor growth. DNA Repair (Amst.), 2008, 7(2), 177-186.
[http://dx.doi.org/10.1016/j.dnarep.2007.09.008] [PMID: 17974506]
[22]
Bobola, M.S.; Finn, L.S.; Ellenbogen, R.G.; Geyer, J.R.; Berger, M.S.; Braga, J.M.; Meade, E.H.; Gross, M.E.; Silber, J.R. Apurinic/apyrimidinic endonuclease activity is associated with response to radiation and chemotherapy in medulloblastoma and primitive neuroectodermal tumors. Clin. Cancer Res., 2005, 11(20), 7405-7414.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1068] [PMID: 16243814]
[23]
Abbotts, R.; Madhusudan, S. Human AP endonuclease 1 (APE1): From mechanistic insights to druggable target in cancer. Cancer Treat. Rev., 2010, 36(5), 425-435.
[http://dx.doi.org/10.1016/j.ctrv.2009.12.006] [PMID: 20056333]
[24]
Laev, S.S.; Salakhutdinov, N.F.; Lavrik, O.I. Inhibitors of nuclease and redox activity of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1). Bioorg. Med. Chem., 2017, 25(9), 2531-2544.
[http://dx.doi.org/10.1016/j.bmc.2017.01.028] [PMID: 28161249]
[25]
Demple, B.; Herman, T.; Chen, D.S. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: Definition of a family of DNA repair enzymes. Proc. Natl. Acad. Sci. USA, 1991, 88(24), 11450-11454.
[http://dx.doi.org/10.1073/pnas.88.24.11450] [PMID: 1722334]
[26]
Walker, L.J.; Robson, C.N.; Black, E.; Gillespie, D.; Hickson, I.D. Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol. Cell. Biol., 1993, 13(9), 5370-5376.
[PMID: 8355688]
[27]
Gorman, M.A.; Morera, S.; Rothwell, D.G.; de La Fortelle, E.; Mol, C.D.; Tainer, J.A.; Hickson, I.D.; Freemont, P.S. The crystal structure of the human DNA repair endonuclease HAP1 suggests the recognition of extra-helical deoxyribose at DNA abasic sites. EMBO J., 1997, 16(21), 6548-6558.
[http://dx.doi.org/10.1093/emboj/16.21.6548] [PMID: 9351835]
[28]
Barzilay, G.; Mol, C.D.; Robson, C.N.; Walker, L.J.; Cunningham, R.P.; Tainer, J.A.; Hickson, I.D. Identification of critical active-site residues in the multifunctional human DNA repair enzyme HAP1. Nat. Struct. Biol., 1995, 2(7), 561-568.
[http://dx.doi.org/10.1038/nsb0795-561] [PMID: 7664124]
[29]
Schermerhorn, K.M.; Delaney, S. Transient-state kinetics of apurinic/apyrimidinic (AP) endonuclease 1 acting on an authentic AP site and commonly used substrate analogs: The effect of diverse metal ions and base mismatches. Biochemistry, 2013, 52(43), 7669-7677.
[http://dx.doi.org/10.1021/bi401218r] [PMID: 24079850]
[30]
Miroshnikova, A.D.; Kuznetsova, A.A.; Vorobjev, Y.N.; Kuznetsov, N.A.; Fedorova, O.S. Effects of mono- and divalent metal ions on DNA binding and catalysis of human apurinic/apyrimidinic endonuclease 1. Mol. Biosyst., 2016, 12(5), 1527-1539.
[http://dx.doi.org/10.1039/C6MB00128A] [PMID: 27063150]
[31]
Mol, C.D.; Kuo, C.F.; Thayer, M.M.; Cunningham, R.P.; Tainer, J.A. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature, 1995, 374(6520), 381-386.
[http://dx.doi.org/10.1038/374381a0] [PMID: 7885481]
[32]
Suck, D.; Oefner, C. Structure of DNase I at 2.0 A resolution suggests a mechanism for binding to and cutting DNA. Nature, 1986, 321(6070), 620-625.
[http://dx.doi.org/10.1038/321620a0] [PMID: 3713845]
[33]
Dlakić, M. Functionally unrelated signalling proteins contain a fold similar to Mg2+-dependent endonucleases. Trends Biochem. Sci., 2000, 25(6), 272-273.
[http://dx.doi.org/10.1016/S0968-0004(00)01582-6] [PMID: 10838565]
[34]
Beernink, P.T.; Segelke, B.W.; Hadi, M.Z.; Erzberger, J.P.; Wilson, D.M., III; Rupp, B. Two divalent metal ions in the active site of a new crystal form of human apurinic/apyrimidinic endonuclease, Ape1: Implications for the catalytic mechanism. J. Mol. Biol., 2001, 307(4), 1023-1034.
[http://dx.doi.org/10.1006/jmbi.2001.4529] [PMID: 11286553]
[35]
Lipton, A.S.; Heck, R.W.; Primak, S.; McNeill, D.R.; Wilson, D.M., III; Ellis, P.D. Characterization of Mg2+ binding to the DNA repair protein apurinic/apyrimidic endonuclease 1 via solid-state 25Mg NMR spectroscopy. J. Am. Chem. Soc., 2008, 130(29), 9332-9341.
[http://dx.doi.org/10.1021/ja0776881] [PMID: 18576638]
[36]
Lowry, D.F.; Hoyt, D.W.; Khazi, F.A.; Bagu, J.; Lindsey, A.G.; Wilson, D.M., III Investigation of the role of the histidine-aspartate pair in the human exonuclease III-like abasic endonuclease, Ape1. J. Mol. Biol., 2003, 329(2), 311-322.
[http://dx.doi.org/10.1016/S0022-2836(03)00382-6] [PMID: 12758078]
[37]
He, H.; Chen, Q.; Georgiadis, M.M. High-resolution crystal structures reveal plasticity in the metal binding site of apurinic/apyrimidinic endonuclease I. Biochemistry, 2014, 53(41), 6520-6529.
[http://dx.doi.org/10.1021/bi500676p] [PMID: 25251148]
[38]
Freudenthal, B.D.; Beard, W.A.; Cuneo, M.J.; Dyrkheeva, N.S.; Wilson, S.H. Capturing snapshots of APE1 processing DNA damage. Nat. Struct. Mol. Biol., 2015, 22(11), 924-931.
[http://dx.doi.org/10.1038/nsmb.3105] [PMID: 26458045]
[39]
Manvilla, B.A.; Pozharski, E.; Toth, E.A.; Drohat, A.C. Structure of human apurinic/apyrimidinic endonuclease 1 with the essential Mg2+ cofactor. Acta Crystallogr. D Biol. Crystallogr., 2013, 69(Pt 12), 2555-2562.
[http://dx.doi.org/10.1107/S0907444913027042] [PMID: 24311596]
[40]
Castillo-Acosta, V.M.; Ruiz-Pérez, L.M.; Yang, W.; González-Pacanowska, D.; Vidal, A.E. Identification of a residue critical for the excision of 3¢-blocking ends in apurinic/apyrimidinic endonucleases of the Xth family. Nucleic Acids Res., 2009, 37(6), 1829-1842.
[http://dx.doi.org/10.1093/nar/gkp021] [PMID: 19181704]
[41]
Tsutakawa, S.E.; Shin, D.S.; Mol, C.D.; Izumi, T.; Arvai, A.S.; Mantha, A.K.; Szczesny, B.; Ivanov, I.N.; Hosfield, D.J.; Maiti, B.; Pique, M.E.; Frankel, K.A.; Hitomi, K.; Cunningham, R.P.; Mitra, S.; Tainer, J.A. Conserved structural chemistry for incision activity in structurally non-homologous apurinic/apyrimidinic endonuclease APE1 and endonuclease IV DNA repair enzymes. J. Biol. Chem., 2013, 288(12), 8445-8455.
[http://dx.doi.org/10.1074/jbc.M112.422774] [PMID: 23355472]
[42]
Erzberger, J.P.; Wilson, D.M., III The role of Mg2+ and specific amino acid residues in the catalytic reaction of the major human abasic endonuclease: New insights from EDTA-resistant incision of acyclic abasic site analogs and site-directed mutagenesis. J. Mol. Biol., 1999, 290(2), 447-457.
[http://dx.doi.org/10.1006/jmbi.1999.2888] [PMID: 10390343]
[43]
Nguyen, L.H.; Barsky, D.; Erzberger, J.P.; Wilson, D.M. III Mapping the protein-DNA interface and the metal-binding site of the major human apurinic/apyrimidinic endonuclease. J. Mol. Biol., 2000, 298(3), 447-459.
[http://dx.doi.org/10.1006/jmbi.2000.3653] [PMID: 10772862]
[44]
Mundle, S.T.; Fattal, M.H.; Melo, L.F.; Coriolan, J.D.; O’Regan, N.E.; Strauss, P.R. Novel role of tyrosine in catalysis by human AP endonuclease 1. DNA Repair (Amst.), 2004, 3(11), 1447-1455.
[http://dx.doi.org/10.1016/j.dnarep.2004.06.009] [PMID: 15380100]
[45]
Mundle, S.T.; Delaney, J.C.; Essigmann, J.M.; Strauss, P.R. Enzymatic mechanism of human apurinic/apyrimidinic endonuclease against a THF AP site model substrate. Biochemistry, 2009, 48(1), 19-26.
[http://dx.doi.org/10.1021/bi8016137] [PMID: 19123919]
[46]
Maher, R.L.; Bloom, L.B. Pre-steady-state kinetic characterization of the AP endonuclease activity of human AP endonuclease 1. J. Biol. Chem., 2007, 282(42), 30577-30585.
[http://dx.doi.org/10.1074/jbc.M704341200] [PMID: 17724035]
[47]
Kanazhevskaya, L.Y.; Koval, V.V.; Lomzov, A.A.; Fedorova, O.S. The role of Asn-212 in the catalytic mechanism of human endonuclease APE1: Stopped-flow kinetic study of incision activity on a natural AP site and a tetrahydrofuran analogue. DNA Repair (Amst.), 2014, 21, 43-54.
[http://dx.doi.org/10.1016/j.dnarep.2014.06.008] [PMID: 25038572]
[48]
Batebi, H.; Imhof, P. Phosphodiester hydrolysis computed for cluster models of enzymatic active sites. Theor. Chem. Acc., 2016, 135(12), 262.
[http://dx.doi.org/10.1007/s00214-016-2020-8]
[49]
Khaliullin, I.G.; Nilov, D.K.; Shapovalova, I.V.; Svedas, V.K. Construction of a full-atomic mechanistic model of human apurinic/apyrimidinic endonuclease APE1 for virtual screening of novel inhibitors. Acta Nat. (Engl. Ed.), 2012, 4(2), 80-86.
[http://dx.doi.org/10.32607/20758251-2012-4-2-80-86] [PMID: 22872814]
[50]
Batebi, H.; Dragelj, J.; Imhof, P. Role of AP-endonuclease (Ape1) active site residues in stabilization of the reactant enzyme-DNA complex. Proteins, 2018, 86(4), 439-453.
[http://dx.doi.org/10.1002/prot.25460] [PMID: 29344998]
[51]
Mol, C.D.; Izumi, T.; Mitra, S.; Tainer, J.A. DNA-bound structures and mutants reveal abasic DNA binding by APE1 and DNA repair coordination.[corrected]. Nature, 2000, 403(6768), 451-456.
[http://dx.doi.org/10.1038/35000249] [PMID: 10667800]
[52]
Bock, C.W.; Katz, A.K.; Markham, G.D.; Glusker, J.P. Manganese as a replacement for magnesium and zinc: Functional comparison of the divalent ions. J. Am. Chem. Soc., 1999, 121(32), 7360-7372.
[http://dx.doi.org/10.1021/ja9906960]
[53]
Oezguen, N.; Schein, C.H.; Peddi, S.R.; Power, T.D.; Izumi, T.; Braun, W.A. “moving metal mechanism” for substrate cleavage by the DNA repair endonuclease APE-1. Proteins, 2007, 68(1), 313-323.
[http://dx.doi.org/10.1002/prot.21397] [PMID: 17427952]
[54]
Aboelnga, M.M.; Wetmore, S.D. Unveiling a single-metal-mediated phosphodiester bond cleavage mechanism for nucleic acids: A multiscale computational investigation of a human DNA repair enzyme. J. Am. Chem. Soc., 2019, 141(21), 8646-8656.
[http://dx.doi.org/10.1021/jacs.9b03986] [PMID: 31046259]
[55]
Liuzzi, M.; Talpaert-Borlé, M. A new approach to the study of the base-excision repair pathway using methoxyamine. J. Biol. Chem., 1985, 260(9), 5252-5258.
[http://dx.doi.org/10.1016/S0021-9258(18)89014-7] [PMID: 2580833]
[56]
Fishel, M.L.; He, Y.; Smith, M.L.; Kelley, M.R. Manipulation of base excision repair to sensitize ovarian cancer cells to alkylating agent temozolomide. Clin. Cancer Res., 2007, 13(1), 260-267.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-1920] [PMID: 17200364]
[57]
Alarcon, K.; Demeunynck, M.; Lhomme, J.; Carrez, D.; Croisy, A. Potentiation of BCNU cytotoxicity by molecules targeting abasic lesions in DNA. Bioorg. Med. Chem., 2001, 9(7), 1901-1910.
[http://dx.doi.org/10.1016/S0968-0896(01)00097-9] [PMID: 11425593]
[58]
Lefrançois, M.; Bertrand, J.R.; Malvy, C. 9-amino-ellipticine inhibits the apurinic site-dependent base excision-repair pathway. Mutat. Res., 1990, 236(1), 9-17.
[http://dx.doi.org/10.1016/0921-8777(90)90027-3] [PMID: 1694966]
[59]
Kotera, N.; Poyer, F.; Granzhan, A.; Teulade-Fichou, M.P. Efficient inhibition of human AP endonuclease 1 (APE1) via substrate masking by abasic site-binding macrocyclic ligands. Chem. Commun. (Camb.), 2015, 51(88), 15948-15951.
[http://dx.doi.org/10.1039/C5CC06084B] [PMID: 26377038]
[60]
Zawahir, Z.; Dayam, R.; Deng, J.; Pereira, C.; Neamati, N. Pharmacophore guided discovery of small-molecule human apurinic/apyrimidinic endonuclease 1 inhibitors. J. Med. Chem., 2009, 52(1), 20-32.
[http://dx.doi.org/10.1021/jm800739m] [PMID: 19072053]
[61]
Villar, E.A.; Beglov, D.; Chennamadhavuni, S.; Porco, J.A., Jr; Kozakov, D.; Vajda, S.; Whitty, A. How proteins bind macrocycles. Nat. Chem. Biol., 2014, 10(9), 723-731.
[http://dx.doi.org/10.1038/nchembio.1584] [PMID: 25038790]
[62]
Giordanetto, F.; Kihlberg, J. Macrocyclic drugs and clinical candidates: What can medicinal chemists learn from their properties? J. Med. Chem., 2014, 57(2), 278-295.
[http://dx.doi.org/10.1021/jm400887j] [PMID: 24044773]
[63]
Driggers, E.M.; Hale, S.P.; Lee, J.; Terrett, N.K. The exploration of macrocycles for drug discovery--an underexploited structural class. Nat. Rev. Drug Discov., 2008, 7(7), 608-624.
[http://dx.doi.org/10.1038/nrd2590] [PMID: 18591981]
[64]
Yu, X.; Sun, D. Macrocyclic drugs and synthetic methodologies toward macrocycles. Molecules, 2013, 18(6), 6230-6268.
[http://dx.doi.org/10.3390/molecules18066230] [PMID: 23708234]
[65]
Mendez, F.; Goldman, J.D.; Bases, R.E. Abasic sites in DNA of HeLa cells induced by lucanthone. Cancer Invest., 2002, 20(7-8), 983-991.
[http://dx.doi.org/10.1081/CNV-120005914] [PMID: 12449731]
[66]
Madhusudan, S.; Smart, F.; Shrimpton, P.; Parsons, J.L.; Gardiner, L.; Houlbrook, S.; Talbot, D.C.; Hammonds, T.; Freemont, P.A.; Sternberg, M.J.; Dianov, G.L.; Hickson, I.D. Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res., 2005, 33(15), 4711-4724.
[http://dx.doi.org/10.1093/nar/gki781] [PMID: 16113242]
[67]
Wilson, D.M., III; Simeonov, A. Small molecule inhibitors of DNA repair nuclease activities of APE1. Cell. Mol. Life Sci., 2010, 67(21), 3621-3631.
[http://dx.doi.org/10.1007/s00018-010-0488-2] [PMID: 20809131]
[68]
Seiple, L.A.; Cardellina, J.H., II; Akee, R.; Stivers, J.T. Potent inhibition of human apurinic/apyrimidinic endonuclease 1 by arylstibonic acids. Mol. Pharmacol., 2008, 73(3), 669-677.
[http://dx.doi.org/10.1124/mol.107.042622] [PMID: 18042731]
[69]
Bapat, A.; Glass, L.S.; Luo, M.; Fishel, M.L.; Long, E.C.; Georgiadis, M.M.; Kelley, M.R. Novel small-molecule inhibitor of apurinic/apyrimidinic endonuclease 1 blocks proliferation and reduces viability of glioblastoma cells. J. Pharmacol. Exp. Ther., 2010, 334(3), 988-998.
[http://dx.doi.org/10.1124/jpet.110.169128] [PMID: 20504914]
[70]
Ruiz, F.M.; Francis, S.M.; Tintoré, M.; Ferreira, R.; Gil-Redondo, R.; Morreale, A.; Ortiz, Á.R.; Eritja, R.; Fàbrega, C. Receptor-based virtual screening and biological characterization of human apurinic/apyrimidinic endonuclease (Ape1) inhibitors. ChemMedChem, 2012, 7(12), 2168-2178.
[http://dx.doi.org/10.1002/cmdc.201200372] [PMID: 23109358]
[71]
Dorjsuren, D.; Kim, D.; Vyjayanti, V.N.; Maloney, D.J.; Jadhav, A.; Wilson, D.M., III; Simeonov, A. Diverse small molecule inhibitors of human apurinic/apyrimidinic endonuclease APE1 identified from a screen of a large public collection. PLoS One, 2012, 7(10), e47974.
[http://dx.doi.org/10.1371/journal.pone.0047974] [PMID: 23110144]
[72]
Feng, Z.; Kochanek, S.; Close, D.; Wang, L.; Srinivasan, A.; Almehizia, A.A.; Iyer, P.; Xie, X.Q.; Johnston, P.A.; Gold, B. Design and activity of AP endonuclease-1 inhibitors. J. Chem. Biol., 2015, 8(3), 79-93.
[http://dx.doi.org/10.1007/s12154-015-0131-7] [PMID: 26101550]
[73]
Guerreiro, P.S.; Estácio, S.G.; Antunes, F.; Fernandes, A.S.; Pinheiro, P.F.; Costa, J.G.; Castro, M.; Miranda, J.P.; Guedes, R.C.; Oliveira, N.G. Structure-based virtual screening toward the discovery of novel inhibitors of the DNA repair activity of the human apurinic/apyrimidinic endonuclease 1. Chem. Biol. Drug Des., 2016, 88(6), 915-925.
[http://dx.doi.org/10.1111/cbdd.12826] [PMID: 27450574]
[74]
Simeonov, A.; Kulkarni, A.; Dorjsuren, D.; Jadhav, A.; Shen, M.; McNeill, D.R.; Austin, C.P.; Wilson, D.M. III Identification and characterization of inhibitors of human apurinic/apyrimidinic endonuclease APE1. PLoS One, 2009, 4(6), e5740.
[http://dx.doi.org/10.1371/journal.pone.0005740] [PMID: 19484131]
[75]
Ong, K.C.; Khoo, H.E. Biological effects of myricetin. Gen. Pharmacol., 1997, 29(2), 121-126.
[http://dx.doi.org/10.1016/S0306-3623(96)00421-1] [PMID: 9251891]
[76]
Jonsson, G.; Sachs, C. Pharmacological modifications of the 6-hydroxy-dopa induced degeneration of central noradrenaline neurons. Biochem. Pharmacol., 1973, 22(14), 1709-1716.
[http://dx.doi.org/10.1016/0006-2952(73)90384-5] [PMID: 4715992]
[77]
Brown, J.; Brown, C.A. Evaluation of reactive blue 2 derivatives as selective antagonists for P2Y receptors. Vascul. Pharmacol., 2002, 39(6), 309-315.
[http://dx.doi.org/10.1016/S1537-1891(03)00030-2] [PMID: 14567069]
[78]
Mohammed, M.Z.; Vyjayanti, V.N.; Laughton, C.A.; Dekker, L.V.; Fischer, P.M.; Wilson, D.M., III; Abbotts, R.; Shah, S.; Patel, P.M.; Hickson, I.D.; Madhusudan, S. Development and evaluation of human AP endonuclease inhibitors in melanoma and glioma cell lines. Br. J. Cancer, 2011, 104(4), 653-663.
[http://dx.doi.org/10.1038/sj.bjc.6606058] [PMID: 21266972]
[79]
Rai, G.; Vyjayanti, V.N.; Dorjsuren, D.; Simeonov, A.; Jadhav, A.; Wilson, D.M., III; Maloney, D.J. Synthesis, biological evaluation, and structure-activity relationships of a novel class of apurinic/apyrimidinic endonuclease 1 inhibitors. J. Med. Chem., 2012, 55(7), 3101-3112.
[http://dx.doi.org/10.1021/jm201537d] [PMID: 22455312]
[80]
Trilles, R.; Beglov, D.; Chen, Q.; He, H.; Wireman, R.; Reed, A.; Chennamadhavuni, S.; Panek, J.S.; Brown, L.E.; Vajda, S.; Porco, J.A., Jr; Kelley, M.R.; Georgiadis, M.M. Discovery of macrocyclic inhibitors of apurinic/apyrimidinic endonuclease 1. J. Med. Chem., 2019, 62(4), 1971-1988.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01529] [PMID: 30653918]
[81]
Hirschberg, E.; Weinstein, I.B.; Gersten, N.; Marner, E.; Finkelstein, T.; Carchman, R. Structure-activity studies on the mechanism of action of miracil D. Cancer Res., 1968, 28(3), 601-607.
[PMID: 4966649]
[82]
Bases, R.E.; Mendez, F. Topoisomerase inhibition by lucanthone, an adjuvant in radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 1997, 37(5), 1133-1137.
[http://dx.doi.org/10.1016/S0360-3016(97)00113-2] [PMID: 9169823]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy