Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Irisin, A Mediator of Muscle Crosstalk with Other Organs: From Metabolism Regulation to Protective and Regenerative Effects

Author(s): Sedigheh Momenzadeh, Mohammad-Saeid Jami, Amirmasoud Jalalvand, Fahimeh Esfarjani, Shirin Shahabi and Saeed Zamani*

Volume 23, Issue 2, 2022

Published on: 17 March, 2022

Page: [89 - 104] Pages: 16

DOI: 10.2174/1389203723666220217141918

Price: $65

Abstract

Physical exercise is a therapeutic strategy for some systemic and non-systemic complications. Various processes or factors like myokines are involved in an exercise course. Irisin is produced in skeletal muscle during exercise, and its effects resemble many exercise effects. Besides the systemic effects of muscle-derived irisin, this peptide is produced in different tissues.

Numerous studies have investigated the underlying molecular mechanisms of irisin effects. Despite some controversies, most studies have demonstrated the improvement of metabolic-related complications and immunomodulatory or regenerative mechanisms in correlation with the circulating level of this peptide or after in vivo/in vitro treatments that have introduced it as a peptide with therapeutic value.

This review describes the similarities and differences of the effects in various tissues and their correlation with the most prevalent tissue-related complication to present a view for the mechanism(s) of function, efficacy, and safety of this peptide in each tissue as an exercise effector and endocrine peptide.

Keywords: Irisin, exercise, metabolic complications, energy expenditure, immunomodulation, regeneration.

Graphical Abstract

[1]
Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; Kajimura, S.; Zingaretti, M.C.; Vind, B.F.; Tu, H.; Cinti, S.; Højlund, K.; Gygi, S.P.; Spiegelman, B.M.A.A. PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 2012, 481(7382), 463-468.
[http://dx.doi.org/10.1038/nature10777] [PMID: 22237023]
[2]
Daskalopoulou, S.S.; Cooke, A.B.; Gomez, Y.H.; Mutter, A.F.; Filippaios, A.; Mesfum, E.T.; Mantzoros, C.S. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur. J. Endocrinol., 2014, 171(3), 343-352.
[http://dx.doi.org/10.1530/EJE-14-0204] [PMID: 24920292]
[3]
Norheim, F.; Langleite, T.M.; Hjorth, M.; Holen, T.; Kielland, A.; Stadheim, H.K.; Gulseth, H.L.; Birkeland, K.I.; Jensen, J.; Drevon, C.A. The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J., 2014, 281(3), 739-749.
[http://dx.doi.org/10.1111/febs.12619] [PMID: 24237962]
[4]
Pekkala, S.; Wiklund, P.K.; Hulmi, J.J.; Ahtiainen, J.P.; Horttanainen, M.; Pöllänen, E.; Mäkelä, K.A.; Kainulainen, H.; Häkkinen, K.; Nyman, K.; Alén, M.; Herzig, K.H.; Cheng, S. Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? J. Physiol., 2013, 591(21), 5393-5400.
[http://dx.doi.org/10.1113/jphysiol.2013.263707] [PMID: 24000180]
[5]
Zhang, H-J.; Zhang, X-F.; Ma, Z-M.; Pan, L-L.; Chen, Z.; Han, H-W.; Han, C-K.; Zhuang, X-J.; Lu, Y.; Li, X-J.; Yang, S.Y.; Li, X.Y. Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J. Hepatol., 2013, 59(3), 557-562.
[http://dx.doi.org/10.1016/j.jhep.2013.04.030] [PMID: 23665283]
[6]
Kurdiova, T.; Balaz, M.; Vician, M.; Maderova, D.; Vlcek, M.; Valkovic, L.; Srbecky, M.; Imrich, R.; Kyselovicova, O.; Belan, V.; Jelok, I.; Wolfrum, C.; Klimes, I.; Krssak, M.; Zemkova, E.; Gasperikova, D.; Ukropec, J.; Ukropcova, B. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J. Physiol., 2014, 592(5), 1091-1107.
[http://dx.doi.org/10.1113/jphysiol.2013.264655] [PMID: 24297848]
[7]
Moreno-Navarrete, J.M.; Ortega, F.; Serrano, M.; Guerra, E.; Pardo, G.; Tinahones, F.; Ricart, W.; Fernández-Real, J.M. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J. Clin. Endocrinol. Metab., 2013, 98(4), E769-E778.
[http://dx.doi.org/10.1210/jc.2012-2749] [PMID: 23436919]
[8]
Zhang, W.; Chang, L.; Zhang, C.; Zhang, R.; Li, Z.; Chai, B.; Li, J.; Chen, E.; Mulholland, M. Central and peripheral irisin differentially regulate blood pressure. Cardiovasc. Drugs Ther., 2015, 29(2), 121-127.
[http://dx.doi.org/10.1007/s10557-015-6580-y] [PMID: 25820670]
[9]
Lu, J.; Xiang, G.; Liu, M.; Mei, W.; Xiang, L.; Dong, J. Irisin protects against endothelial injury and ameliorates atherosclerosis in apolipoprotein E-Null diabetic mice. Atherosclerosis, 2015, 243(2), 438-448.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.020] [PMID: 26520898]
[10]
Huh, J.Y.; Panagiotou, G.; Mougios, V.; Brinkoetter, M.; Vamvini, M.T.; Schneider, B.E.; Mantzoros, C.S. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metab. Exp., 2012, 61(12), 1725-1738.
[http://dx.doi.org/10.1016/j.metabol.2012.09.002] [PMID: 23018146]
[11]
Piya, M.K.; Harte, A.L.; Sivakumar, K.; Tripathi, G.; Voyias, P.D.; James, S.; Sabico, S.; Al-Daghri, N.M.; Saravanan, P.; Barber, T.M.; Kumar, S.; Vatish, M.; McTernan, P.G. The identification of irisin in human cerebrospinal fluid: Influence of adiposity, metabolic markers, and gestational diabetes. Am. J. Physiol. Endocrinol. Metab., 2014, 306(5), E512-E518.
[http://dx.doi.org/10.1152/ajpendo.00308.2013] [PMID: 24398403]
[12]
Aydin, S.; Kuloglu, T.; Aydin, S. Copeptin, adropin and irisin concentrations in breast milk and plasma of healthy women and those with gestational diabetes mellitus. Peptides, 2013, 47, 66-70.
[http://dx.doi.org/10.1016/j.peptides.2013.07.001] [PMID: 23850897]
[13]
Aydin, S.; Kuloglu, T.; Aydin, S.; Eren, M.N.; Celik, A.; Yilmaz, M.; Kalayci, M.; Sahin, İ.; Gungor, O.; Gurel, A.; Ogeturk, M.; Dabak, O. Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: Cardiac muscle produces more irisin than skeletal muscle. Peptides, 2014, 52, 68-73.
[http://dx.doi.org/10.1016/j.peptides.2013.11.024] [PMID: 24345335]
[14]
Sundarrajan, L.; Yeung, C.; Hahn, L.; Weber, L.P.; Unniappan, S. Irisin regulates cardiac physiology in zebrafish. PLoS One, 2017, 12(8), e0181461.
[http://dx.doi.org/10.1371/journal.pone.0181461] [PMID: 28771499]
[15]
Ryall, J.G.; Schertzer, J.D.; Lynch, G.S. Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness. Biogerontology, 2008, 9(4), 213-228.
[http://dx.doi.org/10.1007/s10522-008-9131-0] [PMID: 18299960]
[16]
Marzetti, E.; Lees, H.A.; Wohlgemuth, S.E.; Leeuwenburgh, C. Sarcopenia of aging: Underlying cellular mechanisms and protection by calorie restriction. Biofactors, 2009, 35(1), 28-35.
[http://dx.doi.org/10.1002/biof.5] [PMID: 19319843]
[17]
Millward, D.J.; Davies, C.T.; Halliday, D.; Wolman, S.L.; Matthews, D.; Rennie, M. Effect of exercise on protein metabolism in humans as explored with stable isotopes. Fed. Proc., 1982, 41(10), 2686-2691.
[PMID: 6809497]
[18]
Taaffe, D.R. Sarcopenia--exercise as a treatment strategy. Aust. Fam. Physician, 2006, 35(3), 130-134.
[PMID: 16525526]
[19]
Ruas, J.L.; White, J.P.; Rao, R.R.; Kleiner, S.; Brannan, K.T.; Harrison, B.C.; Greene, N.P.; Wu, J.; Estall, J.L.; Irving, B.A.A.; Lanza, I.R.; Rasbach, K.A.; Okutsu, M.; Nair, K.S.; Yan, Z.; Leinwand, L.A.; Spiegelman, B.M.A. PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell, 2012, 151(6), 1319-1331.
[http://dx.doi.org/10.1016/j.cell.2012.10.050] [PMID: 23217713]
[20]
Wenz, T.; Rossi, S.G.; Rotundo, R.L.; Spiegelman, B.M.; Moraes, C.T. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc. Natl. Acad. Sci. USA, 2009, 106(48), 20405-20410.
[http://dx.doi.org/10.1073/pnas.0911570106] [PMID: 19918075]
[21]
Boström, P.A.; Fernández-Real, J.M.; Mantzoros, C. Irisin in humans: Recent advances and questions for future research. Metab. Exp., 2014, 63(2), 178-180.
[http://dx.doi.org/10.1016/j.metabol.2013.11.009] [PMID: 24342075]
[22]
Lecker, S.H.; Zavin, A.; Cao, P.; Arena, R.; Allsup, K.; Daniels, K.M.; Joseph, J.; Schulze, P.C.; Forman, D.E. Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure. Circ Heart Fail, 2012, 5(6), 812-818.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.969543] [PMID: 23001918]
[23]
Zhao, M.; Zhou, X.; Yuan, C.; Li, R.; Ma, Y.; Tang, X. Association between serum irisin concentrations and sarcopenia in patients with liver cirrhosis: A cross-sectional study. Sci. Rep., 2020, 10(1), 16093.
[http://dx.doi.org/10.1038/s41598-020-73176-z] [PMID: 32999391]
[24]
Pan, Y-J.; Zhou, S-J.; Feng, J.; Bai, Q. A, L.T.; Zhang, A-H.; Urotensin, I.I. Urotensin II induces mice skeletal muscle atrophy associated with enhanced autophagy and inhibited irisin precursor (fibronectin Type III domain containing 5) expression in chronic renal failure. Kidney Blood Press. Res., 2019, 44(4), 479-495.
[http://dx.doi.org/10.1159/000499880] [PMID: 31238319]
[25]
Martínez Muñoz, I.Y.; Camarillo Romero, E. del S.; Correa Padilla, T.; Santillán Benítez, J.G.; Camarillo Romero, M. del S.; Montenegro Morales, L.P.; Bravo, G.G.H.; Garduño García, J. de J. Association of Irisin serum concentration and muscle strength in normal-weight and overweight young women. Front. Endocrinol. (Lausanne), 2019, 10, 621.
[http://dx.doi.org/10.3389/fendo.2019.00621] [PMID: 31572302]
[26]
Huh, J.Y.; Dincer, F.; Mesfum, E.; Mantzoros, C.S. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int. J. Obes., 2014, 38(12), 1538-1544.
[http://dx.doi.org/10.1038/ijo.2014.42] [PMID: 24614098]
[27]
Yano, N.; Zhang, L.; Wei, D.; Dubielecka, P.M.; Wei, L.; Zhuang, S.; Zhu, P.; Qin, G.; Liu, P.Y.; Chin, Y.E.; Zhao, T.C. Irisin counteracts high glucose and fatty acid-induced cytotoxicity by preserving the AMPK-insulin receptor signaling axis in C2C12 myoblasts. Am. J. Physiol. Endocrinol. Metab., 2020, 318(5), E791-E805.
[http://dx.doi.org/10.1152/ajpendo.00219.2019] [PMID: 32182124]
[28]
Lee, J.; Park, J.; Kim, Y.H.; Lee, N.H.; Song, K-M. Irisin promotes C2C12 myoblast proliferation via ERK-dependent CCL7 upregulation. PLoS One, 2019, 14(9), e0222559.
[http://dx.doi.org/10.1371/journal.pone.0222559] [PMID: 31518371]
[29]
Shan, T.; Liang, X.; Bi, P.; Kuang, S. Myostatin knockout drives browning of white adipose tissue through activating the AMPK-PGC1α-Fndc5 pathway in muscle. FASEB J., 2013, 27(5), 1981-1989.
[http://dx.doi.org/10.1096/fj.12-225755] [PMID: 23362117]
[30]
Reza, M.M.; Subramaniyam, N.; Sim, C.M.; Ge, X.; Sathiakumar, D.; McFarlane, C.; Sharma, M.; Kambadur, R. Irisin is a pro-myogenic factor that induces skeletal muscle hypertrophy and rescues denervation-induced atrophy. Nat. Commun., 2017, 8(1), 1104.
[http://dx.doi.org/10.1038/s41467-017-01131-0] [PMID: 29062100]
[31]
Momenzadeh, S.; Zamani, S.; Pourteymourfard-Tabrizi, Z.; Barreiro, C.; Jami, M-S. Muscles proteome analysis; irisin administration mimics some molecular effects of exercise in quadriceps muscle. Biochimie, 2021, 189, 144-157.
[http://dx.doi.org/10.1016/j.biochi.2021.06.016] [PMID: 34217820]
[32]
Hartwig, S.; Raschke, S.; Knebel, B.; Scheler, M.; Irmler, M.; Passlack, W.; Muller, S.; Hanisch, F-G.; Franz, T.; Li, X.; Dicken, H.D.; Eckardt, K.; Beckers, J.; de Angelis, M.H.; Weigert, C.; Häring, H.U.; Al-Hasani, H.; Ouwens, D.M.; Eckel, J.; Kotzka, J.; Lehr, S. Secretome profiling of primary human skeletal muscle cells. Biochim. Biophys. Acta, 2014, 1844(5), 1011-1017.
[http://dx.doi.org/10.1016/j.bbapap.2013.08.004] [PMID: 23994228]
[33]
Vaughan, R.A.; Gannon, N.P.; Barberena, M.A.; Garcia-Smith, R.; Bisoffi, M.; Mermier, C.M.; Conn, C.A.; Trujillo, K.A. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes. Metab., 2014, 16(8), 711-718.
[http://dx.doi.org/10.1111/dom.12268] [PMID: 24476050]
[34]
Xin, C.; Liu, J.; Zhang, J.; Zhu, D.; Wang, H.; Xiong, L.; Lee, Y.; Ye, J.; Lian, K.; Xu, C.; Zhang, L.; Wang, Q.; Liu, Y.; Tao, L. Irisin improves fatty acid oxidation and glucose utilization in type 2 diabetes by regulating the AMPK signaling pathway. Int. J. Obes., 2016, 40(3), 443-451.
[http://dx.doi.org/10.1038/ijo.2015.199] [PMID: 26403433]
[35]
Farrash, W.; Brook, M.; Crossland, H.; Phillips, B.E.; Cegielski, J.; Wilkinson, D.J.; Constantin-Teodosiu, D.; Greenhaff, P.L.; Smith, K.; Cleasby, M.; Atherton, P.J. Impacts of rat hindlimb Fndc5/irisin overexpression on muscle and adipose tissue metabolism. Am. J. Physiol. Endocrinol. Metab., 2020, 318(6), E943-E955.
[http://dx.doi.org/10.1152/ajpendo.00034.2020] [PMID: 32369414]
[36]
Huh, J.Y.; Mougios, V.; Kabasakalis, A.; Fatouros, I.; Siopi, A.; Douroudos, I.I.; Filippaios, A.; Panagiotou, G.; Park, K.H.; Mantzoros, C.S. Exercise-induced irisin secretion is independent of age or fitness level and increased irisin may directly modulate muscle metabolism through AMPK activation. J. Clin. Endocrinol. Metab., 2014, 99(11), E2154-E2161.
[http://dx.doi.org/10.1210/jc.2014-1437] [PMID: 25119310]
[37]
He, W.; Wang, P.; Chen, Q.; Li, C. Exercise enhances mitochondrial fission and mitophagy to improve myopathy following critical limb ischemia in elderly mice via the PGC1a/FNDC5/irisin pathway. Skelet. Muscle, 2020, 10(1), 25.
[http://dx.doi.org/10.1186/s13395-020-00245-2] [PMID: 32933582]
[38]
Icli, A.; Cure, E.; Cumhur Cure, M.; Uslu, A.U.; Balta, S.; Arslan, S.; Sakiz, D.; Kucuk, A. Novel myokine: Irisin may be an independent predictor for subclinic atherosclerosis in Behçet’s disease. J. Investig. Med., 2016, 64(4), 875-881.
[http://dx.doi.org/10.1136/jim-2015-000044] [PMID: 26941246]
[39]
El-Lebedy, D.H.; Ibrahim, A.A.; Ashmawy, I.O. Novel adipokines vaspin and irisin as risk biomarkers for cardiovascular diseases in type 2 diabetes mellitus. Diabetes Metab. Syndr., 2018, 12(5), 643-648.
[http://dx.doi.org/10.1016/j.dsx.2018.04.025] [PMID: 29673927]
[40]
Ebert, T.; Kralisch, S.; Wurst, U.; Scholz, M.; Stumvoll, M.; Kovacs, P.; Fasshauer, M.; Tönjes, A. Association of metabolic parameters and rs726344 in FNDC5 with serum irisin concentrations. Int. J. Obes., 2016, 40(2), 260-265.
[http://dx.doi.org/10.1038/ijo.2015.157] [PMID: 26285604]
[41]
Hisamatsu, T.; Miura, K.; Arima, H.; Fujiyoshi, A.; Kadota, A.; Kadowaki, S.; Zaid, M.; Miyagawa, N.; Satoh, A.; Kunimura, A.; Horie, M.; Ueshima, H. Relationship of serum irisin levels to prevalence and progression of coronary artery calcification: A prospective, population-based study. Int. J. Cardiol., 2018, 267, 177-182.
[http://dx.doi.org/10.1016/j.ijcard.2018.05.075] [PMID: 29859711]
[42]
Zhou, S-J.; Wang, X-X.; Tang, W.; Han, Q-F.; He, L.; Zhang, A-H. Lower serum irisin levels are associated with increased abdominal aortic calcification in peritoneal dialysis patients. Kidney Dis., 2021, 7(3), 219-226.
[http://dx.doi.org/10.1159/000512514] [PMID: 34179117]
[43]
Kuloglu, T.; Aydin, S.; Eren, M.N.; Yilmaz, M.; Sahin, I.; Kalayci, M.; Sarman, E.; Kaya, N.; Yilmaz, O.F.; Turk, A.; Aydin, Y.; Yalcin, M.H.; Uras, N.; Gurel, A.; Ilhan, S.; Gul, E.; Aydin, S. Irisin: A potentially candidate marker for myocardial infarction. Peptides, 2014, 55, 85-91.
[http://dx.doi.org/10.1016/j.peptides.2014.02.008] [PMID: 24576483]
[44]
Aydin, S.; Aydin, S.; Kobat, M.A.; Kalayci, M.; Eren, M.N.; Yilmaz, M.; Kuloglu, T.; Gul, E.; Secen, O.; Alatas, O.D.; Baydas, A. Decreased saliva/serum irisin concentrations in the acute myocardial infarction promising for being a new candidate biomarker for diagnosis of this pathology. Peptides, 2014, 56, 141-145.
[http://dx.doi.org/10.1016/j.peptides.2014.04.002] [PMID: 24747283]
[45]
Hsieh, I-C.; Ho, M-Y.; Wen, M-S.; Chen, C-C.; Hsieh, M-J.; Lin, C-P.; Yeh, J-K.; Tsai, M-L.; Yang, C-H.; Wu, V.C-C.; Hung, K.C.; Wang, C.C.; Wang, C.Y. Serum irisin levels are associated with adverse cardiovascular outcomes in patients with acute myocardial infarction. Int. J. Cardiol., 2018, 261, 12-17.
[http://dx.doi.org/10.1016/j.ijcard.2017.11.072] [PMID: 29657036]
[46]
Yue, R.; Zheng, Z.; Luo, Y.; Wang, X.; Lv, M.; Qin, D.; Tan, Q.; Zhang, Y.; Wang, T.; Hu, H. NLRP3-mediated pyroptosis aggravates pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction in mice: Cardioprotective role of irisin. Cell Death Discov., 2021, 7(1), 50.
[http://dx.doi.org/10.1038/s41420-021-00434-y] [PMID: 33723236]
[47]
Xie, C.; Zhang, Y.; Tran, T.D.N.; Wang, H.; Li, S.; George, E.V.; Zhuang, H.; Zhang, P.; Kandel, A.; Lai, Y.; Tang, D.; Reeves, W.H.; Cheng, H.; Ding, Y.; Yang, L.J. Irisin controls growth, intracellular Ca2+ signals, and mitochondrial thermogenesis in cardiomyoblasts. PLoS One, 2015, 10(8), e0136816.
[http://dx.doi.org/10.1371/journal.pone.0136816] [PMID: 26305684]
[48]
Haraoui, B.; Liu, P.P.; Papp, K.A. Managing cardiovascular risk in patients with chronic inflammatory diseases. Clin. Rheumatol., 2012, 31(4), 585-594.
[http://dx.doi.org/10.1007/s10067-011-1921-0] [PMID: 22246418]
[49]
Zhu, D.; Wang, H.; Zhang, J.; Zhang, X.; Xin, C.; Zhang, F.; Lee, Y.; Zhang, L.; Lian, K.; Yan, W.; Ma, X.; Liu, Y.; Tao, L. Irisin improves endothelial function in type 2 diabetes through reducing oxidative/nitrative stresses. J. Mol. Cell. Cardiol., 2015, 87, 138-147.
[http://dx.doi.org/10.1016/j.yjmcc.2015.07.015] [PMID: 26225842]
[50]
Han, F.; Zhang, S.; Hou, N.; Wang, D.; Sun, X. Irisin improves endothelial function in obese mice through the AMPK-eNOS pathway. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(9), H1501-H1508.
[http://dx.doi.org/10.1152/ajpheart.00443.2015] [PMID: 26371167]
[51]
Wu, F.; Song, H.; Zhang, Y.; Zhang, Y.; Mu, Q.; Jiang, M.; Wang, F.; Zhang, W.; Li, L.; Li, H.; Wang, Y.; Zhang, M.; Li, S.; Yang, L.; Meng, Y.; Tang, D. Irisin induces angiogenesis in human umbilical vein endothelial cells in vitro and in zebrafish embryos in vivo via activation of the ERK signaling pathway. PLoS One, 2015, 10(8), e0134662.
[http://dx.doi.org/10.1371/journal.pone.0134662] [PMID: 26241478]
[52]
Lee, M.J.; Lee, S.A.; Nam, B.Y.; Park, S.; Lee, S-H.; Ryu, H.J.; Kwon, Y.E.; Kim, Y.L.; Park, K.S.; Oh, H.J.; Park, J.T.; Han, S.H.; Ryu, D.R.; Kang, S.W.; Yoo, T.H. Irisin, a novel myokine is an independent predictor for sarcopenia and carotid atherosclerosis in dialysis patients. Atherosclerosis, 2015, 242(2), 476-482.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.08.002] [PMID: 26298738]
[53]
Quagliaro, L.; Piconi, L.; Assaloni, R.; Martinelli, L.; Motz, E.; Ceriello, A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: The role of protein kinase C and NAD(P)H-oxidase activation. Diabetes, 2003, 52(11), 2795-2804.
[http://dx.doi.org/10.2337/diabetes.52.11.2795] [PMID: 14578299]
[54]
Arcaro, G.; Cretti, A.; Balzano, S.; Lechi, A.; Muggeo, M.; Bonora, E.; Bonadonna, R.C. Insulin causes endothelial dysfunction in humans: Sites and mechanisms. Circulation, 2002, 105(5), 576-582.
[http://dx.doi.org/10.1161/hc0502.103333] [PMID: 11827922]
[55]
Song, H.; Wu, F.; Zhang, Y.; Zhang, Y.; Wang, F.; Jiang, M.; Wang, Z.; Zhang, M.; Li, S.; Yang, L.; Wang, X.L.; Cui, T.; Tang, D. Irisin promotes human umbilical vein endothelial cell proliferation through the ERK signaling pathway and partly suppresses high glucose-induced apoptosis. PLoS One, 2014, 9(10), e110273.
[http://dx.doi.org/10.1371/journal.pone.0110273] [PMID: 25338001]
[56]
Stankevičius, E.; Kėvelaitis, E.; Vainorius, E.; Simonsen, U. Role of nitric oxide and other endothelium-derived factors. Medicina (Kaunas), 2003, 39(4), 333-341.
[PMID: 12738901]
[57]
Jiang, M.; Wan, F.; Wang, F.; Wu, Q. Irisin relaxes mouse mesenteric arteries through endothelium-dependent and endothelium-independent mechanisms. Biochem. Biophys. Res. Commun., 2015, 468(4), 832-836.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.040] [PMID: 26582714]
[58]
Du, J.; Wang, X.; Li, J.; Guo, J.; Liu, L.; Yan, D.; Yang, Y.; Li, Z.; Zhu, J.; Shen, B. Increasing TRPV4 expression restores flow-induced dilation impaired in mesenteric arteries with aging. Sci. Rep., 2016, 6(1), 22780.
[http://dx.doi.org/10.1038/srep22780] [PMID: 26947561]
[59]
Ye, L.; Xu, M.; Hu, M.; Zhang, H.; Tan, X.; Li, Q.; Shen, B.; Huang, J. TRPV4 is involved in irisin-induced endothelium-dependent vasodilation. Biochem. Biophys. Res. Commun., 2018, 495(1), 41-45.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.160] [PMID: 29097199]
[60]
Colaianni, G.; Cuscito, C.; Mongelli, T.; Oranger, A.; Mori, G.; Brunetti, G.; Colucci, S.; Cinti, S.; Grano, M. Irisin enhances osteoblast differentiation in vitro. Int. J. Endocrinol., 2014, 2014, 902-186.
[61]
Colaianni, G.; Cuscito, C.; Mongelli, T.; Pignataro, P.; Buccoliero, C.; Liu, P.; Lu, P.; Sartini, L.; Di Comite, M.; Mori, G.; Di Benedetto, A.; Brunetti, G.; Yuen, T.; Sun, L.; Reseland, J.E.; Colucci, S.; New, M.I.; Zaidi, M.; Cinti, S.; Grano, M. The myokine irisin increases cortical bone mass. Proc. Natl. Acad. Sci. USA, 2015, 112(39), 12157-12162.
[http://dx.doi.org/10.1073/pnas.1516622112] [PMID: 26374841]
[62]
Zhang, J.; Valverde, P.; Zhu, X.; Murray, D.; Wu, Y.; Yu, L.; Jiang, H.; Dard, M.M.; Huang, J.; Xu, Z.; Tu, Q.; Chen, J. Exercise-induced irisin in bone and systemic irisin administration reveal new regulatory mechanisms of bone metabolism. Bone Res., 2017, 5(1), 1-14.
[63]
Hu, S.; Xue, Y.; He, J.; Chen, C.; Sun, J.; Jin, Y.; Zhang, Y.; Shi, Q.; Rui, Y. Irisin recouples osteogenesis and osteoclastogenesis to protect wear-particle-induced osteolysis by suppressing oxidative stress and RANKL production. Biomater. Sci., 2021, 9(17), 5791-5801.
[http://dx.doi.org/10.1039/D1BM00563D] [PMID: 34323888]
[64]
Luo, Y.; Qiao, X.; Ma, Y.; Deng, H.; Xu, C.C.; Xu, L. Disordered metabolism in mice lacking irisin. Sci. Rep., 2020, 10(1), 1-10.
[65]
Liu, C.; Liu, A-S.; Zhong, D.; Wang, C-G.; Yu, M.; Zhang, H-W.; Xiao, H.; Liu, J-H.; Zhang, J.; Yin, K. Circular RNA AFF4 modulates osteogenic differentiation in BM-MSCs by activating SMAD1/5 pathway through miR-135a-5p/FNDC5/Irisin axis. Cell Death Dis., 2021, 12(7), 631.
[http://dx.doi.org/10.1038/s41419-021-03877-4] [PMID: 34145212]
[66]
Qiao, X.Y.; Nie, Y.; Ma, Y.X.; Chen, Y.; Cheng, R.; Yinrg, W.Y.; Hu, Y.; Xu, W.M.; Xu, L.Z. Irisin promotes osteoblast proliferation and differentiation via activating the MAP kinase signaling pathways. Sci. Rep., 2016, 6(1), 1-12.
[67]
Metzger, C.E.; Anand Narayanan, S.; Phan, P.H.; Bloomfield, S.A. Hindlimb unloading causes regional loading-dependent changes in osteocyte inflammatory cytokines that are modulated by exogenous irisin treatment. Microgravity, 2020, 6(1), 1-10.
[68]
Estell, E.G.; Le, P.T.; Vegting, Y.; Kim, H.; Wrann, C.; Bouxsein, M.L.; Nagano, K.; Baron, R.; Spiegelman, B.M.; Rosen, C.J. Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo. eLife, 2020, 9, 1-13.
[http://dx.doi.org/10.7554/eLife.58172] [PMID: 32780016]
[69]
Zhang, D.; Bae, C.; Lee, J.; Lee, J.; Jin, Z.; Kang, M.; Cho, Y.S.; Kim, J-H.; Lee, W.; Lim, S-K. The bone anabolic effects of irisin are through preferential stimulation of aerobic glycolysis. Bone, 2018, 114, 150-160.
[http://dx.doi.org/10.1016/j.bone.2018.05.013] [PMID: 29775761]
[70]
Kim, H.; Wrann, C.D.; Jedrychowski, M.; Vidoni, S.; Kitase, Y.; Nagano, K.; Zhou, C.; Chou, J.; Parkman, V.A.; Novick, S.J.; Strutzenberg, T.S.; Pascal, B.D.; Le, P.T.; Brooks, D.J.; Roche, A.M.; Gerber, K.K.; Mattheis, L.; Chen, W.; Tu, H.; Bouxsein, M.L.; Griffin, P.R.; Baron, R.; Rosen, C.J.; Bonewald, L.F.; Spiegelman, B.M. Irisin mediates effects on bone and fat via αv integrin receptors. Cell, 2018, 175(7), 1756-1768.e17.
[http://dx.doi.org/10.1016/j.cell.2018.10.025] [PMID: 30550785]
[71]
Anastasilakis, A.D.; Polyzos, S.A.; Makras, P.; Gkiomisi, A.; Bisbinas, I.; Katsarou, A.; Filippaios, A.; Mantzoros, C.S. Circulating irisin is associated with osteoporotic fractures in postmenopausal women with low bone mass but is not affected by either teriparatide or denosumab treatment for 3 months. Osteoporos. Int., 2014, 25(5), 1633-1642.
[http://dx.doi.org/10.1007/s00198-014-2673-x] [PMID: 24599275]
[72]
Singhal, V.; Lawson, E.A.; Ackerman, K.E.; Fazeli, P.K.; Clarke, H.; Lee, H.; Eddy, K.; Marengi, D.A.; Derrico, N.P.; Bouxsein, M.L.; Misra, M. Irisin levels are lower in young amenorrheic athletes compared with eumenorrheic athletes and non-athletes and are associated with bone density and strength estimates. PLoS One, 2014, 9(6), e100218.
[http://dx.doi.org/10.1371/journal.pone.0100218] [PMID: 24926783]
[73]
Serbest, S.; Tiftikçi, U.; Tosun, H.B.; Kısa, Ü. The irisin hormone profile and expression in human bone tissue in the bone healing process in patients. Med. Sci. Monit., 2017, 23, 4278-4283.
[http://dx.doi.org/10.12659/MSM.906293] [PMID: 28869754]
[74]
Ferrer-Martínez, A.; Ruiz-Lozano, P.; Chien, K.R. Mouse PeP: A novel peroxisomal protein linked to myoblast differentiation and development. Dev. Dyn., 2002, 224(2), 154-167.
[http://dx.doi.org/10.1002/dvdy.10099] [PMID: 12112469]
[75]
Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin, J.D.; Greenberg, M.E.; Spiegelman, B.M. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab., 2013, 18(5), 649-659.
[http://dx.doi.org/10.1016/j.cmet.2013.09.008] [PMID: 24120943]
[76]
Dun, S.L.; Lyu, R-M.; Chen, Y-H.; Chang, J-K.; Luo, J.J.; Dun, N.J. Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience, 2013, 240, 155-162.
[http://dx.doi.org/10.1016/j.neuroscience.2013.02.050] [PMID: 23470775]
[77]
Albayrak, S.; Atci, İ.B.; Kalayci, M.; Yilmaz, M.; Kuloglu, T.; Aydin, S.; Kom, M.; Ayden, O.; Aydin, S. Effect of carnosine, methylprednisolone and their combined application on irisin levels in the plasma and brain of rats with acute spinal cord injury. Neuropeptides, 2015, 52, 47-54.
[http://dx.doi.org/10.1016/j.npep.2015.06.004] [PMID: 26142757]
[78]
Moon, H-S.; Dincer, F.; Mantzoros, C.S. Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines. Metab. Exp., 2013, 62(8), 1131-1136.
[http://dx.doi.org/10.1016/j.metabol.2013.04.007] [PMID: 23664146]
[79]
Li, D-J.; Li, Y-H.; Yuan, H-B.; Qu, L-F.; Wang, P. The novel exercise-induced hormone irisin protects against neuronal injury via activation of the Akt and ERK1/2 signaling pathways and contributes to the neuroprotection of physical exercise in cerebral ischemia. Metabolism, 2017, 68, 31-42.
[http://dx.doi.org/10.1016/j.metabol.2016.12.003] [PMID: 28183451]
[80]
Islam, M.R.; Valaris, S.; Young, M.F.; Haley, E.B.; Luo, R.; Bond, S.F.; Mazuera, S.; Kitchen, R.R.; Caldarone, B.J.; Bettio, L.E.B.; Christie, B.R.; Schmider, A.B.; Soberman, R.J.; Besnard, A.; Jedrychowski, M.P.; Kim, H.; Tu, H.; Kim, E.; Choi, S.H.; Tanzi, R.E.; Spiegelman, B.M.; Wrann, C.D. Exercise hormone irisin is a critical regulator of cognitive function. Nat. Metab, 2021, 3(8), 1058-1070.
[81]
Forouzanfar, M.; Rabiee, F.; Ghaedi, K.; Beheshti, S.; Tanhaei, S.; Shoaraye Nejati, A.; Jodeiri Farshbaf, M.; Baharvand, H.; Nasr-Esfahani, M.H. Fndc5 overexpression facilitated neural differentiation of mouse embryonic stem cells. Cell Biol. Int., 2015, 39(5), 629-637.
[http://dx.doi.org/10.1002/cbin.10427] [PMID: 25572300]
[82]
Ostadsharif, M.; Ghaedi, K.; Hossein Nasr-Esfahani, M.; Mojbafan, M.; Tanhaie, S.; Karbalaie, K.; Baharvand, H. The expression of peroxisomal protein transcripts increased by retinoic acid during neural differentiation. Differentiation, 2011, 81(2), 127-132.
[http://dx.doi.org/10.1016/j.diff.2010.11.003] [PMID: 21145646]
[83]
Hashemi, M-S.; Ghaedi, K.; Salamian, A.; Karbalaie, K.; Emadi-Baygi, M.; Tanhaei, S.; Nasr-Esfahani, M.H.; Baharvand, H. Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience, 2013, 231, 296-304.
[http://dx.doi.org/10.1016/j.neuroscience.2012.11.041] [PMID: 23219938]
[84]
Peng, J.; Deng, X.; Huang, W.; Yu, J.H.; Wang, J.X.; Wang, J.P.; Yang, S.B.; Liu, X.; Wang, L.; Zhang, Y.; Zhou, X.Y.; Yang, H.; He, Y.Z.; Xu, F.Y. Irisin protects against neuronal injury induced by oxygen-glucose deprivation in part depends on the inhibition of ROS-NLRP3 inflammatory signaling pathway. Mol. Immunol., 2017, 91, 185-194.
[http://dx.doi.org/10.1016/j.molimm.2017.09.014] [PMID: 28961497]
[85]
Zhang, W.; Chang, L.; Zhang, C.; Zhang, R.; Li, Z.; Chai, B.; Li, J.; Chen, E.; Mulholland, M. Irisin: A myokine with locomotor activity. Neurosci. Lett., 2015, 595, 7-11.
[http://dx.doi.org/10.1016/j.neulet.2015.03.069] [PMID: 25841790]
[86]
Momenzadeh, S.; Zamani, S.; Dehghan, F.; Barreiro, C.; Jami, M.S. Comparative proteome analyses highlight several exercise-like responses of mouse sciatic nerve after IP injection of irisin. Eur. J. Neurosci., 2021, 53(10), 3263-3278.
[http://dx.doi.org/10.1111/ejn.15202] [PMID: 33759230]
[87]
Chen, Y-W.; Li, Y-T.; Chen, Y.C.; Li, Z-Y.; Hung, C-H. Exercise training attenuates neuropathic pain and cytokine expression after chronic constriction injury of rat sciatic nerve. Anesth. Analg., 2012, 114(6), 1330-1337.
[http://dx.doi.org/10.1213/ANE.0b013e31824c4ed4] [PMID: 22415536]
[88]
Dameni, S.; Janzadeh, A.; Yousefifard, M.; Nasirinezhad, F. The effect of intrathecal injection of irisin on pain threshold and expression rate of GABAB receptors in peripheral neuropathic pain model. J. Chem. Neuroanat., 2018, 91, 17-26.
[http://dx.doi.org/10.1016/j.jchemneu.2018.02.010] [PMID: 29501523]
[89]
Klover, P.J.; Mooney, R.A. Hepatocytes: Critical for glucose homeostasis. Int. J. Biochem. Cell Biol., 2004, 36(5), 753-758.
[http://dx.doi.org/10.1016/j.biocel.2003.10.002] [PMID: 15061128]
[90]
Sanders, F.W.B.; Griffin, J.L. De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biol. Rev. Camb. Philos. Soc., 2016, 91(2), 452-468.
[http://dx.doi.org/10.1111/brv.12178] [PMID: 25740151]
[91]
Wong, V.W-S.; Chu, W.C-W.; Wong, G.L-H.; Chan, R.S-M.; Chim, A.M-L.; Ong, A.; Yeung, D.K-W.; Yiu, K.K-L.; Chu, S.H-T.; Woo, J.; Chan, F.K.; Chan, H.L. Prevalence of non-alcoholic fatty liver disease and advanced fibrosis in Hong Kong Chinese: A population study using proton-magnetic resonance spectroscopy and transient elastography. Gut, 2012, 61(3), 409-415.
[http://dx.doi.org/10.1136/gutjnl-2011-300342] [PMID: 21846782]
[92]
Lopez-Legarrea, P.; de la Iglesia, R.; Crujeiras, A.B.; Pardo, M.; Casanueva, F.F.; Zulet, M.A.; Martinez, J.A. Higher baseline irisin concentrations are associated with greater reductions in glycemia and insulinemia after weight loss in obese subjects. Nutr. Diabetes, 2014, 4(2), e110.
[http://dx.doi.org/10.1038/nutd.2014.7] [PMID: 24567125]
[93]
Polyzos, S.A.; Kountouras, J.; Anastasilakis, A.D.; Geladari, E.V.; Mantzoros, C.S. Irisin in patients with nonalcoholic fatty liver disease. Metabolism, 2014, 63(2), 207-217.
[http://dx.doi.org/10.1016/j.metabol.2013.09.013] [PMID: 24140091]
[94]
Mo, L.; Shen, J.; Liu, Q.; Zhang, Y.; Kuang, J.; Pu, S.; Cheng, S.; Zou, M.; Jiang, W.; Jiang, C.; Qu, A.; He, J. Irisin is regulated by CAR in liver and is a mediator of hepatic glucose and lipid metabolism. Mol. Endocrinol., 2016, 30(5), 533-542.
[http://dx.doi.org/10.1210/me.2015-1292] [PMID: 27007446]
[95]
Dong, B.; Saha, P.K.; Huang, W.; Chen, W.; Abu-Elheiga, L.A.; Wakil, S.J.; Stevens, R.D.; Ilkayeva, O.; Newgard, C.B.; Chan, L.; Moore, D.D. Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proc. Natl. Acad. Sci. USA, 2009, 106(44), 18831-18836.
[http://dx.doi.org/10.1073/pnas.0909731106] [PMID: 19850873]
[96]
Xiong, X-Q.; Chen, D.; Sun, H-J.; Ding, L.; Wang, J-J.; Chen, Q.; Li, Y-H.; Zhou, Y-B.; Han, Y.; Zhang, F.; Gao, X.Y.; Kang, Y.M.; Zhu, G.Q. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim. Biophys. Acta, 2015, 1852(9), 1867-1875.
[http://dx.doi.org/10.1016/j.bbadis.2015.06.017] [PMID: 26111885]
[97]
Tang, H.; Yu, R.; Liu, S.; Huwatibieke, B.; Li, Z.; Zhang, W. Irisin inhibits hepatic cholesterol synthesis via AMPK-SREBP2 signaling. EBioMedicine, 2016, 6, 139-148.
[http://dx.doi.org/10.1016/j.ebiom.2016.02.041] [PMID: 27211556]
[98]
Canivet, C.M.; Bonnafous, S.; Rousseau, D.; Leclere, P.S.; Lacas-Gervais, S.; Patouraux, S.; Sans, A.; Luci, C.; Bailly-Maitre, B.; Iannelli, A.; Tran, A.; Anty, R.; Gual, P. Hepatic FNDC5 is a potential local protective factor against Non-Alcoholic Fatty Liver. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(5), 165705.
[http://dx.doi.org/10.1016/j.bbadis.2020.165705] [PMID: 32001301]
[99]
So, W.Y.; Leung, P.S. Irisin ameliorates hepatic glucose/lipid metabolism and enhances cell survival in insulin-resistant human HepG2 cells through adenosine monophosphate-activated protein kinase signaling. Int. J. Biochem. Cell Biol., 2016, 78, 237-247.
[http://dx.doi.org/10.1016/j.biocel.2016.07.022] [PMID: 27452313]
[100]
Park, M-J.; Kim, D-I.; Choi, J-H.; Heo, Y-R.; Park, S-H. New role of irisin in hepatocytes: The protective effect of hepatic steatosis in vitro. Cell. Signal., 2015, 27(9), 1831-1839.
[http://dx.doi.org/10.1016/j.cellsig.2015.04.010] [PMID: 25917316]
[101]
Kahn, B.B.; Alquier, T.; Carling, D.; Hardie, D.G. AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab., 2005, 1(1), 15-25.
[http://dx.doi.org/10.1016/j.cmet.2004.12.003] [PMID: 16054041]
[102]
Lee, H.J.; Lee, J.O.; Kim, N.; Kim, J.K.; Kim, H.I.; Lee, Y.W.; Kim, S.J.; Choi, J-I.; Oh, Y.; Kim, J.H. Suyeon-Hwang; Park, S.H.; Kim, H.S. Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Mol. Endocrinol., 2015, 29(6), 873-881.
[http://dx.doi.org/10.1210/me.2014-1353] [PMID: 25826445]
[103]
Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; Musi, N.; Hirshman, M.F.; Goodyear, L.J.; Moller, D.E. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest., 2001, 108(8), 1167-1174.
[http://dx.doi.org/10.1172/JCI13505] [PMID: 11602624]
[104]
Yap, F.; Craddock, L.; Yang, J. Mechanism of AMPK suppression of LXR-dependent Srebp-1c transcription. Int. J. Biol. Sci., 2011, 7(5), 645-650.
[http://dx.doi.org/10.7150/ijbs.7.645] [PMID: 21647332]
[105]
Li, Y.; Xu, S.; Mihaylova, M.M.; Zheng, B.; Hou, X.; Jiang, B.; Park, O.; Luo, Z.; Lefai, E.; Shyy, J.Y-J.; Gao, B.; Wierzbicki, M.; Verbeuren, T.J.; Shaw, R.J.; Cohen, R.A.; Zang, M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab., 2011, 13(4), 376-388.
[http://dx.doi.org/10.1016/j.cmet.2011.03.009] [PMID: 21459323]
[106]
Zang, M.; Zuccollo, A.; Hou, X.; Nagata, D.; Walsh, K.; Herscovitz, H.; Brecher, P.; Ruderman, N.B.; Cohen, R.A. AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J. Biol. Chem., 2004, 279(46), 47898-47905.
[http://dx.doi.org/10.1074/jbc.M408149200] [PMID: 15371448]
[107]
Zhang, J.; Ren, Y.; Bi, J.; Wang, M.; Zhang, L.; Wang, T.; Wei, S.; Mou, X.; Lv, Y.; Wu, R. Involvement of kindlin-2 in irisin’s protection against ischaemia reperfusion-induced liver injury in high-fat diet-fed mice. J. Cell. Mol. Med., 2020, 24(22), 13081-13092.
[http://dx.doi.org/10.1111/jcmm.15910] [PMID: 32954626]
[108]
Liao, X.; Zhan, W.; Li, R.; Tian, T.; Yu, L.; Yang, Q. Irisin ameliorates endoplasmic reticulum stress and liver fibrosis through inhibiting PERK-mediated destabilization of HNRNPA1 in hepatic stellate cells. Biol. Chem., 2021, 402(6), 703-715.
[http://dx.doi.org/10.1515/hsz-2020-0251] [PMID: 33951764]
[109]
Li, Q.; Tan, Y.; Chen, S.; Xiao, X.; Zhang, M.; Wu, Q.; Dong, M. Irisin alleviates LPS-induced liver injury and inflammation through inhibition of NLRP3 inflammasome and NF-κB signaling. J. Recept. Signal Transduct., 2021, 41(3), 294-303.
[http://dx.doi.org/10.1080/10799893.2020.1808675] [PMID: 32814473]
[110]
Choi, E.S.; Kim, M.K.; Song, M.K.; Kim, J.M.; Kim, E.S.; Chung, W.J.; Park, K.S.; Cho, K.B.; Hwang, J.S.; Jang, B.K. Association between serum irisin levels and non-alcoholic fatty liver disease in health screen examinees. PLoS One, 2014, 9(10), e110680.
[http://dx.doi.org/10.1371/journal.pone.0110680] [PMID: 25343462]
[111]
Sadeghishad, J.; Akbari, R.; Qujeq, D. Serum irisin level in patients undergoing different stages of chronic kidney disease. Caspian J. Intern. Med., 2019, 10(3), 314-319.
[PMID: 31558994]
[112]
Liu, J-J.; Liu, S.; Wong, M.D.S.; Tan, C.S.H.; Tavintharan, S.; Sum, C.F.; Lim, S.C. Relationship between circulating irisin, renal function and body composition in type 2 diabetes. J. Diabetes Complications, 2014, 28(2), 208-213.
[http://dx.doi.org/10.1016/j.jdiacomp.2013.09.011] [PMID: 24332937]
[113]
Liu, J-J.; Wong, M.D.S.; Toy, W.C.; Tan, C.S.H.; Liu, S.; Ng, X.W.; Tavintharan, S.; Sum, C.F.; Lim, S.C. Lower circulating irisin is associated with type 2 diabetes mellitus. J. Diabetes Complications, 2013, 27(4), 365-369.
[http://dx.doi.org/10.1016/j.jdiacomp.2013.03.002] [PMID: 23619195]
[114]
Wen, M-S.; Wang, C-Y.; Lin, S-L.; Hung, K-C. Decrease in irisin in patients with chronic kidney disease. PLoS One, 2013, 8(5), e64025.
[http://dx.doi.org/10.1371/journal.pone.0064025] [PMID: 23667695]
[115]
Workeneh, B.T.; Mitch, W.E. Review of muscle wasting associated with chronic kidney disease. Am. J. Clin. Nutr., 2010, 91(4), 1128S-1132S.
[http://dx.doi.org/10.3945/ajcn.2010.28608B] [PMID: 20181807]
[116]
Malyszko, J.; Banach, M. Prediabetes, prehypertension-do we need pre-CKD. Curr. Vasc. Pharmacol., 2013, 11, 25.
[117]
Pushpakumar, S.; Juin, S.K.; Sen, U. Exercise-linked FNDC5/Irisin attenuates macrophage-mediated renal inflammation in type 1 diabetes in aged mice. FASEB J., 2021, 35(S1)
[118]
Wu, F.; Li, Z.; Cai, M.; Xi, Y.; Xu, Z.; Zhang, Z.; Li, H.; Zhu, W.; Tian, Z. Aerobic exercise alleviates oxidative stress-induced apoptosis in kidneys of myocardial infarction mice by inhibiting ALCAT1 and activating FNDC5/Irisin signaling pathway. Free Radic. Biol. Med., 2020, 158, 171-180.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.038] [PMID: 32726688]
[119]
Liu, Y.; Fu, Y.; Liu, Z.; Shu, S.; Wang, Y.; Cai, J.; Tang, C.; Dong, Z. Irisin is induced in renal ischemia-reperfusion to protect against tubular cell injury via suppressing p53. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(7), 165792.
[http://dx.doi.org/10.1016/j.bbadis.2020.165792] [PMID: 32251763]
[120]
Zhang, J.; Bi, J.; Ren, Y.; Du, Z.; Li, T.; Wang, T.; Zhang, L.; Wang, M.; Wei, S.; Lv, Y.; Wu, R. Involvement of GPX4 in irisin’s protection against ischemia reperfusion-induced acute kidney injury. J. Cell. Physiol., 2021, 236(2), 931-945.
[http://dx.doi.org/10.1002/jcp.29903] [PMID: 32583428]
[121]
Kadoglou, N.P.E.; Moustardas, P.; Kapelouzou, A.; Katsimpoulas, M.; Giagini, A.; Dede, E.; Kostomitsopoulos, N.; Karayannacos, P.E.; Kostakis, A.; Liapis, C.D. The anti-inflammatory effects of exercise training promote atherosclerotic plaque stabilization in apolipoprotein E knockout mice with diabetic atherosclerosis. Eur. J. Histochem. EJH, 2013, 57(1), e3.
[http://dx.doi.org/10.4081/ejh.2013.e3] [PMID: 23549462]
[122]
Shimada, K.; Mikami, Y.; Murayama, T.; Yokode, M.; Fujita, M.; Kita, T.; Kishimoto, C. Atherosclerotic plaques induced by marble-burying behavior are stabilized by exercise training in experimental atherosclerosis. Int. J. Cardiol., 2011, 151(3), 284-289.
[http://dx.doi.org/10.1016/j.ijcard.2010.05.057] [PMID: 20579750]
[123]
Yudkin, J.S.; Stehouwer, C.D.; Emeis, J.J.; Coppack, S.W. C-reactive protein in healthy subjects: Associations with obesity, insulin resistance, and endothelial dysfunction: A potential role for cytokines originating from adipose tissue? Arterioscler. Thromb. Vasc. Biol., 1999, 19(4), 972-978.
[http://dx.doi.org/10.1161/01.ATV.19.4.972] [PMID: 10195925]
[124]
Makki, K.; Froguel, P.; Wolowczuk, I. Adipose tissue in obesity-related inflammation and insulin resistance: Cells, cytokines, and chemokines. ISRN Inflamm., 2013, 2013, 139239.
[http://dx.doi.org/10.1155/2013/139239]
[125]
Christiansen, T.; Richelsen, B.; Bruun, J.M. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int. J. Obes., 2005, 29(1), 146-150.
[http://dx.doi.org/10.1038/sj.ijo.0802839] [PMID: 15520826]
[126]
Jiao, P.; Chen, Q.; Shah, S.; Du, J.; Tao, B.; Tzameli, I.; Yan, W.; Xu, H. Obesity-related upregulation of monocyte chemotactic factors in adipocytes: Involvement of nuclear factor-kappaB and c-Jun NH2-terminal kinase pathways. Diabetes, 2009, 58(1), 104-115.
[http://dx.doi.org/10.2337/db07-1344] [PMID: 18835938]
[127]
Zeyda, M.; Stulnig, T.M. Adipose tissue macrophages. Immunol. Lett., 2007, 112(2), 61-67.
[http://dx.doi.org/10.1016/j.imlet.2007.07.003] [PMID: 17719095]
[128]
Huh, J.Y.; Park, Y.J.; Ham, M.; Kim, J.B. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol. Cells, 2014, 37(5), 365-371.
[http://dx.doi.org/10.14348/molcells.2014.0074] [PMID: 24781408]
[129]
Boutens, L.; Stienstra, R. Adipose tissue macrophages: Going off track during obesity. Diabetologia, 2016, 59(5), 879-894.
[http://dx.doi.org/10.1007/s00125-016-3904-9] [PMID: 26940592]
[130]
Libby, P. Role of inflammation in atherosclerosis associated with rheumatoid arthritis. Am. J. Med., 2008, 121(10)(Suppl. 1), S21-S31.
[http://dx.doi.org/10.1016/j.amjmed.2008.06.014] [PMID: 18926166]
[131]
Hou, N.; Han, F.; Sun, X. The relationship between circulating irisin levels and endothelial function in lean and obese subjects. Clin. Endocrinol. (Oxf.), 2015, 83(3), 339-343.
[http://dx.doi.org/10.1111/cen.12658] [PMID: 25382211]
[132]
Bosma, M.; Gerling, M.; Pasto, J.; Georgiadi, A.; Graham, E.; Shilkova, O.; Iwata, Y.; Almer, S.; Söderman, J.; Toftgård, R.; Wermeling, F.; Boström, E.A.; Boström, P.A. FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice. Nat. Commun., 2016, 7(1), 11314.
[http://dx.doi.org/10.1038/ncomms11314] [PMID: 27066907]
[133]
Mazur-Bialy, A.I. Irisin acts as a regulator of macrophages host defense. Life Sci., 2017, 176, 21-25.
[http://dx.doi.org/10.1016/j.lfs.2017.03.011] [PMID: 28315350]
[134]
Zheng, G.; Li, H.; Zhang, T.; Yang, L.; Yao, S.; Chen, S.; Zheng, M.; Zhao, Q.; Tian, H. Irisin protects macrophages from oxidized low density lipoprotein-induced apoptosis by inhibiting the endoplasmic reticulum stress pathway. Saudi J. Biol. Sci., 2018, 25(5), 849-857.
[http://dx.doi.org/10.1016/j.sjbs.2017.08.018] [PMID: 30108431]
[135]
Zhang, Y.; Mu, Q.; Zhou, Z.; Song, H.; Zhang, Y.; Wu, F.; Jiang, M.; Wang, F.; Zhang, W.; Li, L.; Shao, L.; Wang, X.; Li, S.; Yang, L.; Wu, Q.; Zhang, M.; Tang, D. Protective effect of irisin on atherosclerosis via suppressing oxidized low density lipoprotein induced vascular inflammation and endothelial dysfunction. PLoS One, 2016, 11(6), e0158038.
[http://dx.doi.org/10.1371/journal.pone.0158038] [PMID: 27355581]
[136]
Tsukano, H.; Gotoh, T.; Endo, M.; Miyata, K.; Tazume, H.; Kadomatsu, T.; Yano, M.; Iwawaki, T.; Kohno, K.; Araki, K.; Mizuta, H.; Oike, Y. The endoplasmic reticulum stress-C/EBP homologous protein pathway-mediated apoptosis in macrophages contributes to the instability of atherosclerotic plaques. Arterioscler. Thromb. Vasc. Biol., 2010, 30(10), 1925-1932.
[http://dx.doi.org/10.1161/ATVBAHA.110.206094] [PMID: 20651282]
[137]
Mazur-Bialy, A.I.; Pocheć, E.; Zarawski, M. Anti-inflammatory properties of irisin, mediator of physical activity, are connected with TLR4/MyD88 signaling pathway activation. Int. J. Mol. Sci., 2017, 18(4), 701.
[http://dx.doi.org/10.3390/ijms18040701] [PMID: 28346354]
[138]
Hopkins, P.N. Molecular biology of atherosclerosis. Physiol. Rev., 2013, 93(3), 1317-1542.
[http://dx.doi.org/10.1152/physrev.00004.2012] [PMID: 23899566]
[139]
El Gazzar, M. HMGB1 modulates inflammatory responses in LPS-activated macrophages. Inflamm. Res., 2007, 56(4), 162-167.
[http://dx.doi.org/10.1007/s00011-006-6112-0] [PMID: 17522814]
[140]
Mazur-Biały, A.I.; Bilski, J.; Pocheć, E.; Brzozowski, T. New insight into the direct anti-inflammatory activity of a myokine irisin against proinflammatory activation of adipocytes. Implication for exercise in obesity. J. Physiol. Pharmacol., 2017, 68(2), 243-251.
[PMID: 28614774]
[141]
Gannon, N.P.; Vaughan, R.A.; Garcia-Smith, R.; Bisoffi, M.; Trujillo, K.A. Effects of the exercise-inducible myokine irisin on malignant and non-malignant breast epithelial cell behavior in vitro. Int. J. Cancer, 2015, 136(4), E197-E202.
[http://dx.doi.org/10.1002/ijc.29142] [PMID: 25124080]
[142]
Wahab, F.; Shahab, M.; Behr, R. Hypothesis: Irisin is a metabolic trigger for the activation of the neurohormonal axis governing puberty onset. Med. Hypotheses, 2016, 95, 1-4.
[http://dx.doi.org/10.1016/j.mehy.2016.08.003] [PMID: 27692156]
[143]
Wahab, F.; Khan, I.U.; Polo, I.R.; Zubair, H.; Drummer, C.; Shahab, M.; Behr, R. Irisin in the primate hypothalamus and its effect on GnRH in vitro. J. Endocrinol., 2019, 241(3), 175-187.
[http://dx.doi.org/10.1530/JOE-18-0574] [PMID: 30913538]
[144]
Jiang, Q.; Zhang, Q.; Lian, A.; Xu, Y. Irisin stimulates gonadotropins gene expression in tilapia (Oreochromis niloticus) pituitary cells. Anim. Reprod. Sci., 2017, 185, 140-147.
[http://dx.doi.org/10.1016/j.anireprosci.2017.06.018] [PMID: 28844533]
[145]
Zügel, M.; Qiu, S.; Laszlo, R.; Bosnyák, E.; Weigt, C.; Müller, D.; Diel, P.; Steinacker, J.M.; Schumann, U. The role of sex, adiposity, and gonadectomy in the regulation of irisin secretion. Endocrine, 2016, 54(1), 101-110.
[http://dx.doi.org/10.1007/s12020-016-0913-x] [PMID: 27055554]
[146]
Luo, Y.; Qiao, X.; Ma, Y.; Deng, H.; Xu, C.C.; Xu, L. Irisin deletion induces a decrease in growth and fertility in mice. Reprod. Biol. Endocrinol., 2021, 19(1), 22.
[http://dx.doi.org/10.1186/s12958-021-00702-7] [PMID: 33581723]
[147]
Calan, M.; Yilmaz, O.; Kume, T.; Unal Kocabas, G.; Yesil Senses, P.; Senses, Y.M.; Temur, M.; Gursoy Calan, O. Elevated circulating levels of betatrophin are associated with polycystic ovary syndrome. Endocrine, 2016, 53(1), 271-279.
[http://dx.doi.org/10.1007/s12020-016-0875-z] [PMID: 26832343]
[148]
Fauser, B.; Tarlatzis, B.C.; Rebar, R.W.; Legro, R.S.; Balen, A.H.; Lobo, R.; Carmina, H.; Chang, R.J.; Yildiz, B.O.; Laven, J.S.E.; Boivin, J.; Petraglia, F.; Wijeyeratne, C.N.; Norman, R.J.; Dunaif, A.; Franks, S.; Wild, R.A.; Dumesic, D.; Barnhart, K. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS). Hum. Reprod., 2012, 27(1), 14-24.
[http://dx.doi.org/10.1093/humrep/der396] [PMID: 22147920]
[149]
Diamanti-Kandarakis, E.; Dunaif, A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev., 2012, 33(6), 981-1030.
[http://dx.doi.org/10.1210/er.2011-1034] [PMID: 23065822]
[150]
Bostancı, M.S.; Akdemir, N.; Cinemre, B.; Cevrioglu, A.S.; Özden, S.; Ünal, O. Serum irisin levels in patients with polycystic ovary syndrome. Eur. Rev. Med. Pharmacol. Sci., 2015, 19(23), 4462-4468.
[PMID: 26698239]
[151]
Zhang, L.; Fang, X.; Li, L.; Liu, R.; Zhang, C.; Liu, H.; Tan, M.; Yang, G. The association between circulating irisin levels and different phenotypes of polycystic ovary syndrome. J. Endocrinol. Invest., 2018, 41(12), 1401-1407.
[http://dx.doi.org/10.1007/s40618-018-0902-4] [PMID: 29785700]
[152]
Bousmpoula, A.; Benidis, E.; Demeridou, S.; Kapeta-Kourkouli, R.; Chasiakou, A.; Chasiakou, S.; Kouskouni, E.; Baka, S. Serum and follicular fluid irisin levels in women with polycystic ovaries undergoing ovarian stimulation: Correlation with insulin resistance and lipoprotein lipid profiles. Gynecol. Endocrinol., 2019, 35(9), 803-806.
[http://dx.doi.org/10.1080/09513590.2019.1594761] [PMID: 30982370]
[153]
Ibrahim, R.H.; El-Malkey, N.F. Role of irisin administration in modulating testicular function in adult obese albino rats. QJM. Int. J. Med. (Dubai), 2018, 111(Suppl. 1), hcy200-hcy193.
[154]
Wagner, I.V.; Yango, P.; Svechnikov, K.; Tran, N.D.; Söder, O.; Wagner, I.V.; Yango, P.; Svechnikov, K.; Tran, N.D.; Söder, O. Adipocytokines may delay pubertal maturation of human Sertoli cells. Reprod. Fertil. Dev., 2019, 31(8), 1395-1400.
[http://dx.doi.org/10.1071/RD18487] [PMID: 31056083]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy