Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Exogenous PDE5 Expression Rescues Photoreceptors in RD1 Mice

Author(s): Tongdan Zou, Ting Wang, Fangyuan Zhen, Xu He, Shuqian Dong and Houbin Zhang*

Volume 29, Issue 40, 2022

Published on: 18 April, 2022

Page: [6115 - 6124] Pages: 10

DOI: 10.2174/0929867329666220216111952

Price: $65

Abstract

Background: Catalytic hydrolysis of cyclic guanosine monophosphate (cGMP) by phosphodiesterase 6 (PDE6) is critical in phototransduction signalling in photoreceptors. Mutations in the genes encoding any of the three PDE6 subunits are associated with retinitis pigmentosa, the most common form of inherited retinal diseases. The RD1 mouse carries a naturally occurring nonsense mutation in the Pde6b gene. The RD1 mouse retina rapidly degenerates and fails to form rod photoreceptor outer segments due to the elevated cGMP level and subsequent excessive Ca2+ influx. In this study, we aim to test whether the PDE5 expression, a non-photoreceptor-specific member of the PDE superfamily, rescues photoreceptors in the RD1 retina.

Methods: Electroporation used the PDE5 expression plasmid to transfect neonatal RD1 mice. The mouse retina degeneration was assessed by retinal sections’ stains with DAPI. The expression and localization of phototransduction proteins in photoreceptors were analysed by immunostaining. The expression of proteins in cultured cells was analysed by immunoblotting.

Results: The exogenous PDE5 expression, a non-photoreceptor-specific member of the PDE superfamily, prevents photoreceptor degeneration in RD1 mice. Unlike endogenous photoreceptor-specific PDE6 localised in the outer segments of photoreceptors, ectopically- expressed PDE5 was distributed in inner segments and synaptic terminals. PDE5 also promoted the development of the outer segments in RD1 mice. PDE5 co-expression with rhodopsin in cultured cells showed enhanced rhodopsin expression.

Conclusion: Lowering the cGMP level in photoreceptors by PDE5 is sufficient to rescue photoreceptors in RD1 retinas. cGMP may also play a role in rhodopsin expression regulation in photoreceptors.

Keywords: PDE6B, RD1 mice, retinitis pigmentosa, PDE5, cGMP, rhodopsin.

[1]
Bolger, G.B. The PDE-opathies: Diverse phenotypes produced by a functionally related multigene family. Trends Genet., 2021, 37(7), 669-681.
[http://dx.doi.org/10.1016/j.tig.2021.03.002] [PMID: 33832760]
[2]
Stryer, L. Visual excitation and recovery. J. Biol. Chem., 1991, 266(17), 10711-10714.
[http://dx.doi.org/10.1016/S0021-9258(18)99072-1] [PMID: 1710212]
[3]
Baehr, W.; Devlin, M.J.; Applebury, M.L. Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J. Biol. Chem., 1979, 254(22), 11669-11677.
[http://dx.doi.org/10.1016/S0021-9258(19)86536-5] [PMID: 227876]
[4]
Deterre, P.; Bigay, J.; Forquet, F.; Robert, M.; Chabre, M. cGMP phosphodiesterase of retinal rods is regulated by two inhibitory subunits. Proc. Natl. Acad. Sci. USA, 1988, 85(8), 2424-2428.
[http://dx.doi.org/10.1073/pnas.85.8.2424] [PMID: 2833739]
[5]
Gillespie, P.G.; Beavo, J.A. Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-sepharose chromatography. J. Biol. Chem., 1988, 263(17), 8133-8141.
[http://dx.doi.org/10.1016/S0021-9258(18)68452-2] [PMID: 2836413]
[6]
Fesenko, E.E.; Kolesnikov, S.S.; Lyubarsky, A.L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment. Nature, 1985, 313(6000), 310-313.
[http://dx.doi.org/10.1038/313310a0] [PMID: 2578616]
[7]
Gorczyca, W.A.; Polans, A.S.; Surgucheva, I.G.; Subbaraya, I.; Baehr, W.; Palczewski, K. Guanylyl cyclase activating protein. A calcium-sensitive regulator of phototransduction. J. Biol. Chem., 1995, 270(37), 22029-22036.
[http://dx.doi.org/10.1074/jbc.270.37.22029] [PMID: 7665624]
[8]
Rieke, F.; Baylor, D.A. Molecular origin of continuous dark noise in rod photoreceptors. Biophys. J., 1996, 71(5), 2553-2572.
[http://dx.doi.org/10.1016/S0006-3495(96)79448-1] [PMID: 8913594]
[9]
Dvir, L.; Srour, G.; Abu-Ras, R.; Miller, B.; Shalev, S.A.; Ben-Yosef, T. Autosomal-recessive early-onset retinitis pigmentosa caused by a mutation in PDE6G, the gene encoding the gamma subunit of rod cGMP phosphodiesterase. Am. J. Hum. Genet., 2010, 87(2), 258-264.
[http://dx.doi.org/10.1016/j.ajhg.2010.06.016] [PMID: 20655036]
[10]
McLaughlin, M.E.; Sandberg, M.A.; Berson, E.L.; Dryja, T.P. Recessive mutations in the gene encoding the beta-subunit of rod phosphodiesterase in patients with retinitis pigmentosa. Nat. Genet., 1993, 4(2), 130-134.
[http://dx.doi.org/10.1038/ng0693-130] [PMID: 8394174]
[11]
Tsang, S.H.; Tsui, I.; Chou, C.L.; Zernant, J.; Haamer, E.; Iranmanesh, R.; Tosi, J.; Allikmets, R. A novel mutation and phenotypes in phosphodiesterase 6 deficiency. Am. J. Ophthalmol., 2008, 146(5), 780-788.
[http://dx.doi.org/10.1016/j.ajo.2008.06.017] [PMID: 18723146]
[12]
Pittler, S.J.; Baehr, W. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc. Natl. Acad. Sci. USA, 1991, 88(19), 8322-8326.
[http://dx.doi.org/10.1073/pnas.88.19.8322] [PMID: 1656438]
[13]
Pittler, S.J.; Keeler, C.E.; Sidman, R.L.; Baehr, W. PCR analysis of DNA from 70-year-old sections of rodless retina demonstrates identity with the mouse rd defect. Proc. Natl. Acad. Sci. USA, 1993, 90(20), 9616-9619.
[http://dx.doi.org/10.1073/pnas.90.20.9616] [PMID: 8415750]
[14]
Suber, M.L.; Pittler, S.J.; Qin, N.; Wright, G.C.; Holcombe, V.; Lee, R.H.; Craft, C.M.; Lolley, R.N.; Baehr, W.; Hurwitz, R.L. Irish setter dogs affected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase beta-subunit gene. Proc. Natl. Acad. Sci. USA, 1993, 90(9), 3968-3972.
[http://dx.doi.org/10.1073/pnas.90.9.3968] [PMID: 8387203]
[15]
Tuntivanich, N.; Pittler, S.J.; Fischer, A.J.; Omar, G.; Kiupel, M.; Weber, A.; Yao, S.; Steibel, J.P.; Khan, N.W.; Petersen-Jones, S.M. Characterization of a canine model of autosomal recessive retinitis pigmentosa due to a PDE6A mutation. Invest. Ophthalmol. Vis. Sci., 2009, 50(2), 801-813.
[http://dx.doi.org/10.1167/iovs.08-2562] [PMID: 18775863]
[16]
Farber, D.B.; Danciger, J.S.; Aguirre, G. The beta subunit of cyclic GMP phosphodiesterase mRNA is deficient in canine rod-cone dysplasia 1. Neuron, 1992, 9(2), 349-356.
[http://dx.doi.org/10.1016/0896-6273(92)90173-B] [PMID: 1323314]
[17]
Bowes, C.; Li, T.; Frankel, W.N.; Danciger, M.; Coffin, J.M.; Applebury, M.L.; Farber, D.B. Localization of a retroviral element within the rd gene coding for the beta subunit of cGMP phosphodiesterase. Proc. Natl. Acad. Sci. USA, 1993, 90(7), 2955-2959.
[http://dx.doi.org/10.1073/pnas.90.7.2955] [PMID: 8385352]
[18]
Lolley, R.N.; Farber, D.B. Abnormal guanosine 3′, 5′-monophosphate during photoreceptor degeneration in the inherited retinal disorder of C3H/HeJ mice. Ann. Ophthalmol., 1976, 8(4), 469-473.
[PMID: 178263]
[19]
Farber, D.B. From mice to men: The cyclic GMP phosphodiesterase gene in vision and disease. The Proctor Lecture. Invest. Ophthalmol. Vis. Sci., 1995, 36(2), 263-275.
[PMID: 7843898]
[20]
Sanyal, S.; Bal, A.K. Comparative light and electron microscopic study of retinal histogenesis in normal and rd mutant mice. Z. Anat. Entwicklungsgesch., 1973, 142(2), 219-238.
[http://dx.doi.org/10.1007/BF00519723] [PMID: 4781863]
[21]
Yang, J.L.; Zou, T.D.; Yang, F.; Yang, Z.L.; Zhang, H.B. Inhibition of mTOR signaling by rapamycin protects photoreceptors from degeneration in RD1 mice. Zool. Res., 2021, 42(4), 482-486.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2021.049] [PMID: 34235896]
[22]
Frasson, M.; Sahel, J.A.; Fabre, M.; Simonutti, M.; Dreyfus, H.; Picaud, S. Retinitis pigmentosa: Rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat. Med., 1999, 5(10), 1183-1187.
[http://dx.doi.org/10.1038/13508] [PMID: 10502823]
[23]
Paquet-Durand, F.; Beck, S.; Michalakis, S.; Goldmann, T.; Huber, G.; Mühlfriedel, R.; Trifunović, D.; Fischer, M.D.; Fahl, E.; Duetsch, G.; Becirovic, E.; Wolfrum, U.; van Veen, T.; Biel, M.; Tanimoto, N.; Seeliger, M.W. A key role for cyclic nucleotide gated (CNG) channels in cGMP-related retinitis pigmentosa. Hum. Mol. Genet., 2011, 20(5), 941-947.
[http://dx.doi.org/10.1093/hmg/ddq539] [PMID: 21149284]
[24]
Paquet-Durand, F.; Hauck, S.M.; van Veen, T.; Ueffing, M.; Ekström, P. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J. Neurochem., 2009, 108(3), 796-810.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05822.x] [PMID: 19187097]
[25]
Xu, J.; Morris, L.; Thapa, A.; Ma, H.; Michalakis, S.; Biel, M.; Baehr, W.; Peshenko, I.V.; Dizhoor, A.M.; Ding, X.Q. cGMP accumulation causes photoreceptor degeneration in CNG channel deficiency: Evidence of cGMP cytotoxicity independently of enhanced CNG channel function. J. Neurosci., 2013, 33(37), 14939-14948.
[http://dx.doi.org/10.1523/JNEUROSCI.0909-13.2013] [PMID: 24027293]
[26]
Baehr, W.; Karan, S.; Maeda, T.; Luo, D.G.; Li, S.; Bronson, J.D.; Watt, C.B.; Yau, K.W.; Frederick, J.M.; Palczewski, K. The function of guanylate cyclase 1 and guanylate cyclase 2 in rod and cone photoreceptors. J. Biol. Chem., 2007, 282(12), 8837-8847.
[http://dx.doi.org/10.1074/jbc.M610369200] [PMID: 17255100]
[27]
Cesarini, V.; Pisano, C.; Rossi, G.; Balistreri, C.R.; Botti, F.; Antonelli, G.; Ruvolo, G.; Jannini, E.A.; Dolci, S. Regulation of PDE5 expression in human aorta and thoracic aortic aneurysms. Sci. Rep., 2019, 9(1), 12206.
[http://dx.doi.org/10.1038/s41598-019-48432-6] [PMID: 31434939]
[28]
Matsuda, T.; Cepko, C.L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl. Acad. Sci. USA, 2004, 101(1), 16-22.
[http://dx.doi.org/10.1073/pnas.2235688100] [PMID: 14603031]
[29]
Li, L.; Lin, Y.; Yang, F.; Zou, T.; Yang, J.; Zhang, H. An improved method for preparation of mouse retinal cryosections. Eur. J. Histochem., 2020, 64(3), 3154.
[http://dx.doi.org/10.4081/ejh.2020.3154] [PMID: 32880132]
[30]
Avasthi, P.; Watt, C.B.; Williams, D.S.; Le, Y.Z.; Li, S.; Chen, C.K.; Marc, R.E.; Frederick, J.M.; Baehr, W. Trafficking of membrane proteins to cone but not rod outer segments is dependent on heterotrimeric kinesin-II. J. Neurosci., 2009, 29(45), 14287-14298.
[http://dx.doi.org/10.1523/JNEUROSCI.3976-09.2009] [PMID: 19906976]
[31]
Gopalakrishna, K.N.; Boyd, K.; Yadav, R.P.; Artemyev, N.O. Aryl hydrocarbon receptor-interacting protein-like 1 is an obligate chaperone of phosphodiesterase 6 and is assisted by the γ-subunit of its client. J. Biol. Chem., 2016, 291(31), 16282-16291.
[http://dx.doi.org/10.1074/jbc.M116.737593] [PMID: 27268253]
[32]
Liu, X.; Bulgakov, O.V.; Wen, X.H.; Woodruff, M.L.; Pawlyk, B.; Yang, J.; Fain, G.L.; Sandberg, M.A.; Makino, C.L.; Li, T. AIPL1, the protein that is defective in Leber congenital amaurosis, is essential for the biosynthesis of retinal rod cGMP phosphodiesterase. Proc. Natl. Acad. Sci. USA, 2004, 101(38), 13903-13908.
[http://dx.doi.org/10.1073/pnas.0405160101] [PMID: 15365173]
[33]
Ramamurthy, V.; Niemi, G.A.; Reh, T.A.; Hurley, J.B. Leber congenital amaurosis linked to AIPL1: A mouse model reveals destabilization of cGMP phosphodiesterase. Proc. Natl. Acad. Sci. USA, 2004, 101(38), 13897-13902.
[http://dx.doi.org/10.1073/pnas.0404197101] [PMID: 15365178]
[34]
Zhang, M.; Koitabashi, N.; Nagayama, T.; Rambaran, R.; Feng, N.; Takimoto, E.; Koenke, T.; O’Rourke, B.; Champion, H.C.; Crow, M.T.; Kass, D.A. Expression, activity, and pro-hypertrophic effects of PDE5A in cardiac myocytes. Cell. Signal., 2008, 20(12), 2231-2236.
[http://dx.doi.org/10.1016/j.cellsig.2008.08.012] [PMID: 18790048]
[35]
Seibel, N.M.; Eljouni, J.; Nalaskowski, M.M.; Hampe, W. Nuclear localization of enhanced green fluorescent protein homomultimers. Anal. Biochem., 2007, 368(1), 95-99.
[http://dx.doi.org/10.1016/j.ab.2007.05.025] [PMID: 17586454]
[36]
Catalano, S.; Campana, A.; Giordano, C.; Győrffy, B.; Tarallo, R.; Rinaldi, A.; Bruno, G.; Ferraro, A.; Romeo, F.; Lanzino, M.; Naro, F.; Bonofiglio, D.; Andò, S.; Barone, I. Expression and function of phosphodiesterase type 5 in human breast cancer cell lines and tissues: Implications for targeted therapy. Clin. Cancer Res., 2016, 22(9), 2271-2282.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1900] [PMID: 26667489]
[37]
Zhang, H.; Li, S.; Doan, T.; Rieke, F.; Detwiler, P.B.; Frederick, J.M.; Baehr, W. Deletion of PrBP/delta impedes transport of GRK1 and PDE6 catalytic subunits to photoreceptor outer segments. Proc. Natl. Acad. Sci. USA, 2007, 104(21), 8857-8862.
[http://dx.doi.org/10.1073/pnas.0701681104] [PMID: 17496142]
[38]
Arshavsky, V.Y.; Lamb, T.D.; Pugh, E.N., Jr G proteins and phototransduction. Annu. Rev. Physiol., 2002, 64(1), 153-187.
[http://dx.doi.org/10.1146/annurev.physiol.64.082701.102229] [PMID: 11826267]
[39]
Obin, M.S.; Jahngen-Hodge, J.; Nowell, T.; Taylor, A. Ubiquitinylation and ubiquitin-dependent proteolysis in vertebrate photoreceptors (rod outer segments). Evidence for ubiquitinylation of Gt and rhodopsin. J. Biol. Chem., 1996, 271(24), 14473-14484.
[http://dx.doi.org/10.1074/jbc.271.24.14473] [PMID: 8662797]
[40]
Calvert, P.D.; Krasnoperova, N.V.; Lyubarsky, A.L.; Isayama, T.; Nicoló, M.; Kosaras, B.; Wong, G.; Gannon, K.S.; Margolskee, R.F.; Sidman, R.L.; Pugh, E.N., Jr; Makino, C.L.; Lem, J. Phototransduction in transgenic mice after targeted deletion of the rod transducin alpha -subunit. Proc. Natl. Acad. Sci. USA, 2000, 97(25), 13913-13918.
[http://dx.doi.org/10.1073/pnas.250478897] [PMID: 11095744]
[41]
Deng, W.T.; Sakurai, K.; Kolandaivelu, S.; Kolesnikov, A.V.; Dinculescu, A.; Li, J.; Zhu, P.; Liu, X.; Pang, J.; Chiodo, V.A.; Boye, S.L.; Chang, B.; Ramamurthy, V.; Kefalov, V.J.; Hauswirth, W.W. Cone phosphodiesterase-6α′ restores rod function and confers distinct physiological properties in the rod phosphodiesterase-6β-deficient RD10 mouse. J. Neurosci., 2013, 33(29), 11745-11753.
[http://dx.doi.org/10.1523/JNEUROSCI.1536-13.2013] [PMID: 23864662]
[42]
Majumder, A.; Pahlberg, J.; Muradov, H.; Boyd, K.K.; Sampath, A.P.; Artemyev, N.O. Exchange of cone for rod phosphodiesterase 6 catalytic subunits in rod photoreceptors mimics in part features of light adaptation. J. Neurosci., 2015, 35(24), 9225-9235.
[http://dx.doi.org/10.1523/JNEUROSCI.3563-14.2015] [PMID: 26085644]
[43]
Norton, A.W.; D’Amours, M.R.; Grazio, H.J.; Hebert, T.L.; Cote, R.H. Mechanism of transducin activation of frog rod photoreceptor phosphodiesterase. Allosteric interactiona between the inhibitory gamma subunit and the noncatalytic cGMP-binding sites. J. Biol. Chem., 2000, 275(49), 38611-38619.
[http://dx.doi.org/10.1074/jbc.M004606200] [PMID: 10993884]
[44]
Turko, I.V.; Francis, S.H.; Corbin, J.D. Binding of cGMP to both allosteric sites of cGMP-binding cGMP-specific phosphodiesterase (PDE5) is required for its phosphorylation. Biochem. J., 1998, 329(Pt 3), 505-510.
[http://dx.doi.org/10.1042/bj3290505] [PMID: 9445376]
[45]
Rybalkin, S.D.; Rybalkina, I.G.; Shimizu-Albergine, M.; Tang, X.B.; Beavo, J.A. PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J., 2003, 22(3), 469-478.
[http://dx.doi.org/10.1093/emboj/cdg051] [PMID: 12554648]
[46]
Lem, J.; Krasnoperova, N.V.; Calvert, P.D.; Kosaras, B.; Cameron, D.A.; Nicolò, M.; Makino, C.L.; Sidman, R.L. Morphological, physiological, and biochemical changes in rhodopsin knockout mice. Proc. Natl. Acad. Sci. USA, 1999, 96(2), 736-741.
[http://dx.doi.org/10.1073/pnas.96.2.736] [PMID: 9892703]
[47]
Azadi, S.; Molday, L.L.; Molday, R.S. RD3, the protein associated with Leber congenital amaurosis type 12, is required for guanylate cyclase trafficking in photoreceptor cells. Proc. Natl. Acad. Sci. USA, 2010, 107(49), 21158-21163.
[http://dx.doi.org/10.1073/pnas.1010460107] [PMID: 21078983]
[48]
Jensen, V.L.; Bialas, N.J.; Bishop-Hurley, S.L.; Molday, L.L.; Kida, K.; Nguyen, P.A.; Blacque, O.E.; Molday, R.S.; Leroux, M.R.; Riddle, D.L. Localization of a guanylyl cyclase to chemosensory cilia requires the novel ciliary MYND domain protein DAF-25. PLoS Genet., 2010, 6(11), e1001199.
[http://dx.doi.org/10.1371/journal.pgen.1001199] [PMID: 21124868]
[49]
Kizhatil, K.; Baker, S.A.; Arshavsky, V.Y.; Bennett, V. Ankyrin-G promotes cyclic nucleotide-gated channel transport to rod photoreceptor sensory cilia. Science, 2009, 323(5921), 1614-1617.
[http://dx.doi.org/10.1126/science.1169789] [PMID: 19299621]
[50]
VerPlank, J.J.S.; Tyrkalska, S.D.; Fleming, A.; Rubinsztein, D.C.; Goldberg, A.L. cGMP via PKG activates 26S proteasomes and enhances degradation of proteins, including ones that cause neurodegenerative diseases. Proc. Natl. Acad. Sci. USA, 2020, 117(25), 14220-14230.
[http://dx.doi.org/10.1073/pnas.2003277117] [PMID: 32513741]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy