Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Retinal Degeneration: Molecular Mechanisms and Therapeutic Strategies

Author(s): Xue Wu, Naihong Yan* and Ming Zhang*

Volume 29, Issue 40, 2022

Published on: 18 January, 2022

Page: [6125 - 6140] Pages: 16

DOI: 10.2174/0929867328666211129122908

Price: $65

Abstract

Retinal degenerative diseases are the main retinal diseases that threaten vision. Most retinal degenerative diseases are inherited diseases, including autosomal recessive inheritance, autosomal dominant inheritance, X-linked inheritance, and mitochondrial inheritance; therefore, emerging gene therapy strategies may provide an alternative method of treatment. Currently, three viral vectors are usually used in gene therapy studies: adenovirus, lentivirus, and adeno-associated virus. Other gene therapies have their own advantages, such as DNA nanoparticles, antisense oligonucleotides, and gene editing therapies. In addition, retinal degenerative diseases are often accompanied by abnormalities of retinal cells, including photoreceptor and retinal pigment epithelial cells. At present, stem cell transplantation is a promising new treatment for retinal degenerative diseases. Common sources of stem cells include retinal progenitor cells, induced pluripotent stem cells, embryonic stem cells, and mesenchymal stem cells. In addition, retina explant cultures in vitro can be used as an effective platform for screening new therapies for retinal degenerative diseases. Drugs that actually reach the retinal layer are more controlled, more consistent, and less invasive when using retinal explants. Furthermore, studies have shown that the imbalance of the gut microbiota is closely related to the occurrence and development of diabetic retinopathy. Therefore, the progression of diabetic retinopathy may be restrained by adjusting the imbalance of the gut microbiota. The purpose of this review is to discuss and summarize the molecular mechanisms and potential therapeutic strategies of retinal degenerative diseases.

Keywords: The macula, retinal degeneration, Muller cells, photoreceptors, retinal pigment epithelium, drug discovery.

[1]
Rettinger, C.L.; Wang, H.C. Current advancements in the development and characterization of full-thickness adult neuroretina organotypic culture systems. Cells Tissues Organs, 2018, 206(3), 119-132.
[http://dx.doi.org/10.1159/000497296] [PMID: 30879015]
[2]
Veleri, S.; Lazar, C.H.; Chang, B.; Sieving, P.A.; Banin, E.; Swaroop, A. Biology and therapy of inherited retinal degenerative disease: Insights from mouse models. Dis. Model. Mech., 2015, 8(2), 109-129.
[http://dx.doi.org/10.1242/dmm.017913] [PMID: 25650393]
[3]
Lin, Y.; Ren, X.; Chen, Y.; Chen, D. Interaction between mesenchymal stem cells and retinal degenerative microenvironment. Front. Neurosci., 2021, 14, 617377.
[http://dx.doi.org/10.3389/fnins.2020.617377] [PMID: 33551729]
[4]
Gorbatyuk, M.; Gorbatyuk, O. Review: Retinal degeneration: Focus on the unfolded protein response. Mol. Vis., 2013, 19, 1985-1998.
[PMID: 24068865]
[5]
Mead, B.; Berry, M.; Logan, A.; Scott, R.A.; Leadbeater, W.; Scheven, B.A. Stem cell treatment of degenerative eye disease. Stem Cell Res. (Amst.), 2015, 14(3), 243-257.
[http://dx.doi.org/10.1016/j.scr.2015.02.003] [PMID: 25752437]
[6]
Margalit, E.; Sadda, S.R. Retinal and optic nerve diseases. Artif. Organs, 2003, 27(11), 963-974.
[http://dx.doi.org/10.1046/j.1525-1594.2003.07304.x] [PMID: 14616515]
[7]
Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA, 2014, 311(18), 1901-1911.
[http://dx.doi.org/10.1001/jama.2014.3192] [PMID: 24825645]
[8]
Duh, E.J.; Sun, J.K.; Stitt, A.W. Diabetic retinopathy: Current understanding, mechanisms, and treatment strategies. JCI Insight, 2017, 2(14), 93751.
[http://dx.doi.org/10.1172/jci.insight.93751] [PMID: 28724805]
[9]
Strauss, O. The retinal pigment epithelium in visual function. Physiol. Rev., 2005, 85(3), 845-881.
[http://dx.doi.org/10.1152/physrev.00021.2004] [PMID: 15987797]
[10]
Ambati, J.; Fowler, B.J. Mechanisms of age-related macular degeneration. Neuron, 2012, 75(1), 26-39.
[http://dx.doi.org/10.1016/j.neuron.2012.06.018] [PMID: 22794258]
[11]
Hernández-Zimbrón, L.F.; Zamora-Alvarado, R.; Ochoa-De la Paz, L.; Velez-Montoya, R.; Zenteno, E.; Gulias-Cañizo, R.; Quiroz-Mercado, H.; Gonzalez-Salinas, R. Age-related macular degeneration: New paradigms for treatment and management of AMD. Oxid. Med. Cell. Longev., 2018, 2018, 8374647.
[http://dx.doi.org/10.1155/2018/8374647] [PMID: 29484106]
[12]
Ferrari, S.; Di Iorio, E.; Barbaro, V.; Ponzin, D.; Sorrentino, F.S.; Parmeggiani, F. Retinitis pigmentosa: genes and disease mechanisms. Curr. Genomics, 2011, 12(4), 238-249.
[http://dx.doi.org/10.2174/138920211795860107] [PMID: 22131869]
[13]
Murali, A.; Ramlogan-Steel, C.A.; Andrzejewski, S.; Steel, J.C.; Layton, C.J. Retinal explant culture: A platform to investigate human neuro-retina. Clin. Exp. Ophthalmol., 2019, 47(2), 274-285.
[http://dx.doi.org/10.1111/ceo.13434] [PMID: 30378239]
[14]
Pishavar, E.; Luo, H.; Bolander, J.; Atala, A.; Ramakrishna, S. Nanocarriers, progenitor cells, combinational approaches, and new insights on the retinal therapy. Int. J. Mol. Sci., 2021, 22(4), 1776.
[http://dx.doi.org/10.3390/ijms22041776] [PMID: 33579019]
[15]
Holan, V.; Palacka, K.; Hermankova, B. Mesenchymal stem cell-based therapy for retinal degenerative diseases: Experimental models and clinical trials. Cells, 2021, 10(3), 588.
[http://dx.doi.org/10.3390/cells10030588] [PMID: 33799995]
[16]
Fuller-Carter, P.I.; Basiri, H.; Harvey, A.R.; Carvalho, L.S. Focused update on AAV-based gene therapy clinical trials for inherited retinal degeneration. BioDrugs, 2020, 34(6), 763-781.
[17]
Zhu, Q.; Rui, X.; Li, Y.; You, Y.; Sheng, X.L.; Lei, B. Identification of four novel variants and determination of genotype-phenotype correlations for ABCA4 variants associated with inherited retinal degenerations. Front. Cell Dev. Biol., 2021, 9, 634843.
[http://dx.doi.org/10.3389/fcell.2021.634843] [PMID: 33732702]
[18]
Kutluer, M.; Huang, L.; Marigo, V. Targeting molecular pathways for the treatment of inherited retinal degeneration. Neural Regen. Res., 2020, 15(10), 1784-1791.
[http://dx.doi.org/10.4103/1673-5374.280303] [PMID: 32246618]
[19]
Kim, M.S.; Joo, K.; Seong, M.W.; Kim, M.J.; Park, K.H.; Park, S.S.; Woo, S.J. Genetic mutation profiles in Korean patients with inherited retinal diseases. J. Korean Med. Sci., 2019, 34(21), e161.
[http://dx.doi.org/10.3346/jkms.2019.34.e161] [PMID: 31144483]
[20]
Pontikos, N.; Arno, G.; Jurkute, N.; Schiff, E.; Ba-Abbad, R.; Malka, S.; Gimenez, A.; Georgiou, M.; Wright, G.; Armengol, M.; Knight, H.; Katz, M.; Moosajee, M.; Yu-Wai-Man, P.; Moore, A.T.; Michaelides, M.; Webster, A.R.; Mahroo, O.A. Genetic basis of inherited retinal disease in a molecularly characterized cohort of more than 3000 families from the United Kingdom. Ophthalmology, 2020, 127(10), 1384-1394.
[http://dx.doi.org/10.1016/j.ophtha.2020.04.008] [PMID: 32423767]
[21]
Sung, Y.C.; Yang, C.H.; Yang, C.M.; Lin, C.W.; Huang, D.S.; Huang, Y.S.; Hu, F.R.; Chen, P.L.; Chen, T.C. Genotypes predispose phenotypes-clinical features and genetic spectrum of ABCA4-associated retinal dystrophies. Genes (Basel), 2020, 11(12), E1421.
[http://dx.doi.org/10.3390/genes11121421] [PMID: 33261146]
[22]
Ziccardi, L.; Cordeddu, V.; Gaddini, L.; Matteucci, A.; Parravano, M.; Malchiodi-Albedi, F.; Varano, M. Gene therapy in retinal dystrophies. Int. J. Mol. Sci., 2019, 20(22), E5722.
[http://dx.doi.org/10.3390/ijms20225722] [PMID: 31739639]
[23]
Bhattacharya, S.S.; Wright, A.F.; Clayton, J.F.; Price, W.H.; Phillips, C.I.; McKeown, C.M.; Jay, M.; Bird, A.C.; Pearson, P.L.; Southern, E.M. Close genetic linkage between X-linked retinitis pigmentosa and a restriction fragment length polymorphism identified by recombinant DNA probe L1.28. Nature, 1984, 309(5965), 253-255.
[http://dx.doi.org/10.1038/309253a0] [PMID: 6325945]
[24]
Tuohy, G.P.; Megaw, R. A systematic review and meta-analyses of interventional clinical trial studies for gene therapies for the Inherited Retinal Degenerations (IRDs). Biomolecules, 2021, 11(5), 760.
[http://dx.doi.org/10.3390/biom11050760] [PMID: 34069580]
[25]
Berger, W.; Kloeckener-Gruissem, B.; Neidhardt, J. The molecular basis of human retinal and vitreoretinal diseases. Prog. Retin. Eye Res., 2010, 29(5), 335-375.
[http://dx.doi.org/10.1016/j.preteyeres.2010.03.004] [PMID: 20362068]
[26]
Dias, M.F.; Joo, K.; Kemp, J.A.; Fialho, S.L.; da Silva Cunha, A., Jr; Woo, S.J.; Kwon, Y.J. Molecular genetics and emerging therapies for retinitis pigmentosa: Basic research and clinical perspectives. Prog. Retin. Eye Res., 2018, 63, 107-131.
[http://dx.doi.org/10.1016/j.preteyeres.2017.10.004] [PMID: 29097191]
[27]
Weisschuh, N.; Obermaier, C.D.; Battke, F.; Bernd, A.; Kuehlewein, L.; Nasser, F.; Zobor, D.; Zrenner, E.; Weber, E.; Wissinger, B.; Biskup, S.; Stingl, K.; Kohl, S. Genetic architecture of inherited retinal degeneration in Germany: A large cohort study from a single diagnostic center over a 9-year period. Hum. Mutat., 2020, 41(9), 1514-1527.
[http://dx.doi.org/10.1002/humu.24064] [PMID: 32531858]
[28]
Ma, D.J.; Lee, H.S.; Kim, K.; Choi, S.; Jang, I.; Cho, S.H.; Yoon, C.K.; Lee, E.K.; Yu, H.G. Whole-exome sequencing in 168 Korean patients with inherited retinal degeneration. BMC Med. Genomics, 2021, 14(1), 74.
[http://dx.doi.org/10.1186/s12920-021-00874-6] [PMID: 33691693]
[29]
Chen, T.C.; Huang, D.S.; Lin, C.W.; Yang, C.H.; Yang, C.M.; Wang, V.Y.; Lin, J.W.; Luo, A.C.; Hu, F.R.; Chen, P.L. Genetic characteristics and epidemiology of inherited retinal degeneration in Taiwan. NPJ Genom. Med., 2021, 6(1), 16.
[http://dx.doi.org/10.1038/s41525-021-00180-1] [PMID: 33608557]
[30]
Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet, 2006, 368(9549), 1795-1809.
[http://dx.doi.org/10.1016/S0140-6736(06)69740-7] [PMID: 17113430]
[31]
Moore, A.T. Cone and cone-rod dystrophies. J. Med. Genet., 1992, 29(5), 289-290.
[http://dx.doi.org/10.1136/jmg.29.5.289] [PMID: 1583653]
[32]
Hafler, B.P. Clinical progress in inherited retinal degenerations: Gene therapy clinical trials and advances in genetic sequencing. Retina, 2017, 37(3), 417-423.
[http://dx.doi.org/10.1097/IAE.0000000000001341] [PMID: 27753762]
[33]
Nash, B.M.; Wright, D.C.; Grigg, J.R.; Bennetts, B.; Jamieson, R.V. Retinal dystrophies, genomic applications in diagnosis and prospects for therapy. Transl. Pediatr., 2015, 4(2), 139-163.
[PMID: 26835369]
[34]
van Soest, S.; Westerveld, A.; de Jong, P.T.; Bleeker-Wagemakers, E.M.; Bergen, A.A. Retinitis pigmentosa: Defined from a molecular point of view. Surv. Ophthalmol., 1999, 43(4), 321-334.
[http://dx.doi.org/10.1016/S0039-6257(98)00046-0] [PMID: 10025514]
[35]
Lev, S. Molecular aspects of retinal degenerative diseases. Cell. Mol. Neurobiol., 2001, 21(6), 575-589.
[http://dx.doi.org/10.1023/A:1015183500719] [PMID: 12043834]
[36]
Prado, D.A.; Acosta-Acero, M.; Maldonado, R.S. Gene therapy beyond luxturna: A new horizon of the treatment for inherited retinal disease. Curr. Opin. Ophthalmol., 2020, 31(3), 147-154.
[http://dx.doi.org/10.1097/ICU.0000000000000660] [PMID: 32175942]
[37]
Manes, G.; Cheguru, P.; Majumder, A.; Bocquet, B.; Sénéchal, A.; Artemyev, N.O.; Hamel, C.P.; Brabet, P. A truncated form of rod photoreceptor PDE6 β-subunit causes autosomal dominant congenital stationary night blindness by interfering with the inhibitory activity of the γ-subunit. PLoS One, 2014, 9(4), e95768.
[http://dx.doi.org/10.1371/journal.pone.0095768] [PMID: 24760071]
[38]
Zeitz, C.; Méjécase, C.; Stévenard, M.; Michiels, C.; Audo, I.; Marmor, M.F. A novel heterozygous missense mutation in GNAT1 leads to autosomal dominant riggs type of congenital stationary night blindness. BioMed Res. Int., 2018, 2018, 7694801.
[http://dx.doi.org/10.1155/2018/7694801] [PMID: 29850563]
[39]
Naeem, M.A.; Chavali, V.R.; Ali, S.; Iqbal, M.; Riazuddin, S.; Khan, S.N.; Husnain, T.; Sieving, P.A.; Ayyagari, R.; Riazuddin, S.; Hejtmancik, J.F.; Riazuddin, S.A. GNAT1 associated with autosomal recessive congenital stationary night blindness. Invest. Ophthalmol. Vis. Sci., 2012, 53(3), 1353-1361.
[http://dx.doi.org/10.1167/iovs.11-8026] [PMID: 22190596]
[40]
Meng, X.; Long, Y.; Ren, J.; Wang, G.; Yin, X.; Li, S. Ocular characteristics of patients with Bardet-Biedl syndrome caused by pathogenic BBS gene variation in a Chinese Cohort. Front. Cell Dev. Biol., 2021, 9, 635216.
[http://dx.doi.org/10.3389/fcell.2021.635216] [PMID: 33777945]
[41]
Scott, C.A.; Marsden, A.N.; Rebagliati, M.R.; Zhang, Q.; Chamling, X.; Searby, C.C.; Baye, L.M.; Sheffield, V.C.; Slusarski, D.C. Nuclear/cytoplasmic transport defects in BBS6 underlie congenital heart disease through perturbation of a chromatin remodeling protein. PLoS Genet., 2017, 13(7), e1006936.
[http://dx.doi.org/10.1371/journal.pgen.1006936] [PMID: 28753627]
[42]
Coppieters, F.; Lefever, S.; Leroy, B.P.; De Baere, E. CEP290, a gene with many faces: Mutation overview and presentation of CEP290base. Hum. Mutat., 2010, 31(10), 1097-1108.
[http://dx.doi.org/10.1002/humu.21337] [PMID: 20690115]
[43]
Léveillard, T.; Klipfel, L. Mechanisms underlying the visual benefit of cell transplantation for the treatment of retinal degenerations. Int. J. Mol. Sci., 2019, 20(3), E557.
[http://dx.doi.org/10.3390/ijms20030557] [PMID: 30696106]
[44]
Wallace, D.C. Mitochondrial DNA mutations in diseases of energy metabolism. J. Bioenerg. Biomembr., 1994, 26(3), 241-250.
[http://dx.doi.org/10.1007/BF00763096] [PMID: 8077179]
[45]
Ross, M.; Ofri, R. The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen. Res., 2021, 16(9), 1751-1759.
[http://dx.doi.org/10.4103/1673-5374.306063] [PMID: 33510064]
[46]
Ramlogan-Steel, C.A.; Murali, A.; Andrzejewski, S.; Dhungel, B.; Steel, J.C.; Layton, C.J. Gene therapy and the adeno-associated virus in the treatment of genetic and acquired ophthalmic diseases in humans: Trials, future directions and safety considerations. Clin. Exp. Ophthalmol., 2019, 47(4), 521-536.
[http://dx.doi.org/10.1111/ceo.13416] [PMID: 30345694]
[47]
Dalkara, D.; Goureau, O.; Marazova, K.; Sahel, J.A. Let there be light: Gene and cell therapy for blindness. Hum. Gene Ther., 2016, 27(2), 134-147.
[http://dx.doi.org/10.1089/hum.2015.147] [PMID: 26751519]
[48]
Trapani, I.; Auricchio, A. Seeing the light after 25 years of retinal gene therapy. Trends Mol. Med., 2018, 24(8), 669-681.
[http://dx.doi.org/10.1016/j.molmed.2018.06.006] [PMID: 29983335]
[49]
Frederick, A.; Sullivan, J.; Liu, L.; Adamowicz, M.; Lukason, M.; Raymer, J.; Luo, Z.; Jin, X.; Rao, K.N.; O’Riordan, C. Engineered capsids for efficient gene delivery to the retina and cornea. Hum. Gene Ther., 2020, 31(13-14), 756-774.
[http://dx.doi.org/10.1089/hum.2020.070] [PMID: 32578442]
[50]
Gruntman, A.M.; Flotte, T.R. The rapidly evolving state of gene therapy. FASEB J., 2018, 32(4), 1733-1740.
[http://dx.doi.org/10.1096/fj.201700982R] [PMID: 31282760]
[51]
Gupta, P.R.; Huckfeldt, R.M. Gene therapy for inherited retinal degenerations: Initial successes and future challenges. J. Neural Eng., 2017, 14(5), 051002.
[http://dx.doi.org/10.1088/1741-2552/aa7a27] [PMID: 28829759]
[52]
Planul, A.; Dalkara, D. Vectors and gene delivery to the retina. Annu. Rev. Vis. Sci., 2017, 3, 121-140.
[http://dx.doi.org/10.1146/annurev-vision-102016-061413] [PMID: 28937950]
[53]
Kotterman, M.A.; Yin, L.; Strazzeri, J.M.; Flannery, J.G.; Merigan, W.H.; Schaffer, D.V. Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Ther., 2015, 22(2), 116-126.
[http://dx.doi.org/10.1038/gt.2014.115] [PMID: 25503696]
[54]
Botto, C.; Rucli, M.; Tekinsoy, M.D.; Pulman, J.; Sahel, J.A.; Dalkara, D. Early and late stage gene therapy interventions for inherited retinal degenerations. Prog. Retin. Eye Res., 2021, 6, 100975.
[http://dx.doi.org/10.1016/j.preteyeres.2021.100975] [PMID: 34058340]
[55]
Peng, Y.; Tang, L.; Zhou, Y. Subretinal injection: A review on the novel route of therapeutic delivery for vitreoretinal diseases. Ophthalmic Res., 2017, 58(4), 217-226.
[http://dx.doi.org/10.1159/000479157] [PMID: 28858866]
[56]
Daich Varela, M.; Cabral de Guimaraes, T.A.; Georgiou, M.; Michaelides, M. Leber congenital amaurosis/early-onset severe retinal dystrophy: Current management and clinical trials. Br. J. Ophthalmol., 2022, 106(4), 445-451.
[http://dx.doi.org/10.1136/bjophthalmol-2020-318483] [PMID: 33712480]
[57]
Wang, D.; Tai, P.W.L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov., 2019, 18(5), 358-378.
[http://dx.doi.org/10.1038/s41573-019-0012-9] [PMID: 30710128]
[58]
Rodrigues, G.A.; Shalaev, E.; Karami, T.K.; Cunningham, J.; Slater, N.K.H.; Rivers, H.M. Pharmaceutical development of AAV-based gene therapy products for the eye. Pharm. Res., 2018, 36(2), 29.
[http://dx.doi.org/10.1007/s11095-018-2554-7] [PMID: 30591984]
[59]
Stewart, H.J.; Leroux-Carlucci, M.A.; Sion, C.J.; Mitrophanous, K.A.; Radcliffe, P.A. Development of inducible EIAV-based lentiviral vector packaging and producer cell lines. Gene Ther., 2009, 16(6), 805-814.
[http://dx.doi.org/10.1038/gt.2009.20] [PMID: 19262613]
[60]
Williams, M.L.; Coleman, J.E.; Haire, S.E.; Aleman, T.S.; Cideciyan, A.V.; Sokal, I.; Palczewski, K.; Jacobson, S.G.; Semple-Rowland, S.L. Lentiviral expression of retinal guanylate cyclase-1 (RetGC1) restores vision in an avian model of childhood blindness. PLoS Med., 2006, 3(6), e201.
[http://dx.doi.org/10.1371/journal.pmed.0030201] [PMID: 16700630]
[61]
Verrier, J.D.; Madorsky, I.; Coggin, W.E.; Geesey, M.; Hochman, M.; Walling, E.; Daroszewski, D.; Eccles, K.S.; Ludlow, R.; Semple-Rowland, S.L. Bicistronic lentiviruses containing a viral 2A cleavage sequence reliably co-express two proteins and restore vision to an animal model of LCA1. PLoS One, 2011, 6(5), e20553.
[http://dx.doi.org/10.1371/journal.pone.0020553] [PMID: 21647387]
[62]
Semple-Rowland, S.L.; Berry, J. Use of lentiviral vectors to deliver and express bicistronic transgenes in developing chicken embryos. Methods, 2014, 66(3), 466-473.
[http://dx.doi.org/10.1016/j.ymeth.2013.06.026] [PMID: 23816789]
[63]
Busskamp, V.; Duebel, J.; Balya, D.; Fradot, M.; Viney, T.J.; Siegert, S.; Groner, A.C.; Cabuy, E.; Forster, V.; Seeliger, M.; Biel, M.; Humphries, P.; Paques, M.; Mohand-Said, S.; Trono, D.; Deisseroth, K.; Sahel, J.A.; Picaud, S.; Roska, B. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science, 2010, 329(5990), 413-417.
[http://dx.doi.org/10.1126/science.1190897] [PMID: 20576849]
[64]
Sengupta, A.; Chaffiol, A.; Macé, E.; Caplette, R.; Desrosiers, M.; Lampič, M.; Forster, V.; Marre, O.; Lin, J.Y.; Sahel, J.A.; Picaud, S.; Dalkara, D.; Duebel, J. Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Mol. Med., 2016, 8(11), 1248-1264.
[http://dx.doi.org/10.15252/emmm.201505699] [PMID: 27679671]
[65]
Carvalho, LS; Vandenberghe, LH Promising and delivering gene therapies for vision loss. Vision research, 2015, 111(Pt B), 124-133.
[http://dx.doi.org/10.1016/j.visres.2014.07.013]
[66]
Chan, L.; Mahajan, V.B.; Tsang, S.H. Genome surgery and gene therapy in retinal disorders. Yale J. Biol. Med., 2017, 90(4), 523-532.
[PMID: 29259518]
[67]
Hastie, E.; Samulski, R.J. Adeno-associated virus at 50: A golden anniversary of discovery, research, and gene therapy success--a personal perspective. Hum. Gene Ther., 2015, 26(5), 257-265.
[http://dx.doi.org/10.1089/hum.2015.025] [PMID: 25807962]
[68]
Adijanto, J.; Naash, M.I. Nanoparticle-based technologies for retinal gene therapy. Eur. J. Pharm. Biopharm, 2015, 95(Pt B), 353-367.
[http://dx.doi.org/10.1016/j.ejpb.2014.12.028]
[69]
Bordet, T.; Behar-Cohen, F. Ocular gene therapies in clinical practice: Viral vectors and nonviral alternatives. Drug Discov. Today, 2019, 24(8), 1685-1693.
[http://dx.doi.org/10.1016/j.drudis.2019.05.038] [PMID: 31173914]
[70]
Trapani, I.; Puppo, A.; Auricchio, A. Vector platforms for gene therapy of inherited retinopathies. Prog. Retin. Eye Res., 2014, 43, 108-128.
[http://dx.doi.org/10.1016/j.preteyeres.2014.08.001] [PMID: 25124745]
[71]
Xue, K.; MacLaren, R.E. Antisense oligonucleotide therapeutics in clinical trials for the treatment of inherited retinal diseases. Expert Opin. Investig. Drugs, 2020, 29(10), 1163-1170.
[http://dx.doi.org/10.1080/13543784.2020.1804853] [PMID: 32741234]
[72]
Goyal, N.; Narayanaswami, P. Making sense of antisense oligonucleotides: A narrative review. Muscle Nerve, 2018, 57(3), 356-370.
[http://dx.doi.org/10.1002/mus.26001] [PMID: 29105153]
[73]
Temsamani, J.; Pari, G.S.; Guinot, P. Antisense approach for the treatment of cytomegalovirus infection. Expert Opin. Investig. Drugs, 1997, 6(9), 1157-1167.
[http://dx.doi.org/10.1517/13543784.6.9.1157] [PMID: 15991890]
[74]
Ran, F.A.; Hsu, P.D.; Lin, C.Y.; Gootenberg, J.S.; Konermann, S.; Trevino, A.E.; Scott, D.A.; Inoue, A.; Matoba, S.; Zhang, Y.; Zhang, F. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6), 1380-1389.
[http://dx.doi.org/10.1016/j.cell.2013.08.021] [PMID: 23992846]
[75]
Komor, A.C.; Badran, A.H.; Liu, D.R. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell, 2017, 168(1-2), 20-36.
[http://dx.doi.org/10.1016/j.cell.2016.10.044] [PMID: 27866654]
[76]
Peddle, C.F.; MacLaren, R.E. The application of CRISPR/Cas9 for the treatment of retinal diseases. Yale J. Biol. Med., 2017, 90(4), 533-541.
[PMID: 29259519]
[77]
Yu, W.; Wu, Z. Ocular delivery of CRISPR/Cas genome editing components for treatment of eye diseases. Adv. Drug Deliv. Rev., 2021, 168, 181-195.
[http://dx.doi.org/10.1016/j.addr.2020.06.011] [PMID: 32603815]
[78]
Burnight, E.R.; Gupta, M.; Wiley, L.A.; Anfinson, K.R.; Tran, A.; Triboulet, R. Using CRISPR-Cas9 to generate gene-corrected autologous ipscs for the treatment of inherited retinal degeneration. Mol. Ther, 2017, 25(9), 1999-2013.
[79]
Ku, C.A.; Pennesi, M.E. The new landscape of retinal gene therapy. Am. J. Med. Genet. C. Semin. Med. Genet., 2020, 184(3), 846-859.
[http://dx.doi.org/10.1002/ajmg.c.31842] [PMID: 32888388]
[80]
Uyama, H.; Mandai, M.; Takahashi, M. Stem-cell-based therapies for retinal degenerative diseases: Current challenges in the establishment of new treatment strategies. Dev. Growth Differ., 2021, 63(1), 59-71.
[http://dx.doi.org/10.1111/dgd.12704] [PMID: 33315237]
[81]
Tang, Z.; Zhang, Y.; Wang, Y.; Zhang, D.; Shen, B.; Luo, M.; Gu, P. Progress of stem/progenitor cell-based therapy for retinal degeneration. J. Transl. Med., 2017, 15(1), 99.
[http://dx.doi.org/10.1186/s12967-017-1183-y] [PMID: 28486987]
[82]
Scholl, H.P.; Strauss, R.W.; Singh, M.S.; Dalkara, D.; Roska, B.; Picaud, S.; Sahel, J.A. Emerging therapies for inherited retinal degeneration. Sci. Transl. Med., 2016, 8(368), 368rv6.
[http://dx.doi.org/10.1126/scitranslmed.aaf2838] [PMID: 27928030]
[83]
Li, Z.; Zeng, Y.; Chen, X.; Li, Q.; Wu, W.; Xue, L.; Xu, H.; Yin, Z.Q. Neural stem cells transplanted to the subretinal space of rd1 mice delay retinal degeneration by suppressing microglia activation. Cytotherapy, 2016, 18(6), 771-784.
[http://dx.doi.org/10.1016/j.jcyt.2016.03.001] [PMID: 27067610]
[84]
Ding, S.L.S.; Kumar, S.; Mok, P.L. Cellular reparative mechanisms of mesenchymal stem cells for retinal diseases. Int. J. Mol. Sci., 2017, 18(8), E1406.
[http://dx.doi.org/10.3390/ijms18081406] [PMID: 28788088]
[85]
Enzmann, V.; Lecaudé, S.; Kruschinski, A.; Vater, A. CXCL12/SDF-1-dependent retinal migration of endogenous bone marrow-derived stem cells improves visual function after pharmacologically induced retinal degeneration. Stem Cell Rev. Rep., 2017, 13(2), 278-286.
[http://dx.doi.org/10.1007/s12015-016-9706-0] [PMID: 27924617]
[86]
McLelland, B.T.; Lin, B.; Mathur, A.; Aramant, R.B.; Thomas, B.B.; Nistor, G.; Keirstead, H.S.; Seiler, M.J. Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Invest. Ophthalmol. Vis. Sci., 2018, 59(6), 2586-2603.
[http://dx.doi.org/10.1167/iovs.17-23646] [PMID: 29847666]
[87]
Jin, Z.B.; Gao, M.L.; Deng, W.L.; Wu, K.C.; Sugita, S.; Mandai, M.; Takahashi, M. Stemming retinal regeneration with pluripotent stem cells. Prog. Retin. Eye Res., 2019, 69, 38-56.
[http://dx.doi.org/10.1016/j.preteyeres.2018.11.003] [PMID: 30419340]
[88]
Ludwig, P.E.; Freeman, S.C.; Janot, A.C. Novel stem cell and gene therapy in diabetic retinopathy, age related macular degeneration, and retinitis pigmentosa. Int. J. Retina Vitreous, 2019, 5, 7.
[http://dx.doi.org/10.1186/s40942-019-0158-y] [PMID: 30805203]
[89]
Aharony, I.; Michowiz, S.; Goldenberg-Cohen, N. The promise of stem cell-based therapeutics in ophthalmology. Neural Regen. Res., 2017, 12(2), 173-180.
[http://dx.doi.org/10.4103/1673-5374.200793] [PMID: 28400789]
[90]
Wong, W.L.; Su, X.; Li, X.; Cheung, C.M.; Klein, R.; Cheng, C.Y.; Wong, T.Y. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis. Lancet Glob. Health, 2014, 2(2), e106-e116.
[http://dx.doi.org/10.1016/S2214-109X(13)70145-1] [PMID: 25104651]
[91]
Coulson-Thomas, V.J.; Coulson-Thomas, Y.M.; Gesteira, T.F.; Kao, W.W. Extrinsic and intrinsic mechanisms by which mesenchymal stem cells suppress the immune system. Ocul. Surf., 2016, 14(2), 121-134.
[http://dx.doi.org/10.1016/j.jtos.2015.11.004] [PMID: 26804815]
[92]
He, X.Y.; Zhao, C.J.; Xu, H.; Chen, K.; Bian, B.S.; Gong, Y.; Weng, C.H.; Zeng, Y.X.; Fu, Y.; Liu, Y.; Yin, Z.Q. Synaptic repair and vision restoration in advanced degenerating eyes by transplantation of retinal progenitor cells. Stem Cell Reports, 2021, 16(7), 1805-1817.
[http://dx.doi.org/10.1016/j.stemcr.2021.06.002] [PMID: 34214489]
[93]
Gao, H.; Ni, N.; Zhang, D.; Wang, Y.; Tang, Z.; Sun, N.; Ju, Y.; Dai, X.; Zhang, Y.; Liu, Y.; Gu, P. miR-762 regulates the proliferation and differentiation of retinal progenitor cells by targeting NPDC1. Cell Cycle, 2020, 19(14), 1754-1767.
[http://dx.doi.org/10.1080/15384101.2020.1777805] [PMID: 32544377]
[94]
Eintracht, J.; Toms, M.; Moosajee, M. The use of induced pluripotent stem cells as a model for developmental eye disorders. Front. Cell. Neurosci., 2020, 14, 265.
[http://dx.doi.org/10.3389/fncel.2020.00265] [PMID: 32973457]
[95]
Jha, B.S.; Farnoodian, M.; Bharti, K. Regulatory considerations for developing a phase I investigational new drug application for autologous induced pluripotent stem cells-based therapy product. Stem Cells Transl. Med., 2021, 10(2), 198-208.
[http://dx.doi.org/10.1002/sctm.20-0242] [PMID: 32946199]
[96]
Khateb, S.; Jha, S.; Bharti, K.; Banin, E. Cell-based therapies for age-related macular degeneration. Adv. Exp. Med. Biol., 2021, 1256, 265-293.
[http://dx.doi.org/10.1007/978-3-030-66014-7_11] [PMID: 33848006]
[97]
Li, X.L.; Zeng, D.; Chen, Y.; Ding, L.; Li, W.J.; Wei, T.; Ou, D.B.; Yan, S.; Wang, B.; Zheng, Q.S. Role of alpha- and beta-adrenergic receptors in cardiomyocyte differentiation from murine-induced pluripotent stem cells. Cell Prolif., 2017, 50(1), e12310.
[http://dx.doi.org/10.1111/cpr.12310] [PMID: 27790820]
[98]
Wang, Y.; Tang, Z.; Gu, P. Stem/progenitor cell-based transplantation for retinal degeneration: A review of clinical trials. Cell Death Dis., 2020, 11(9), 793.
[http://dx.doi.org/10.1038/s41419-020-02955-3] [PMID: 32968042]
[99]
Mannino, G.; Russo, C.; Longo, A.; Anfuso, C.D.; Lupo, G.; Lo Furno, D.; Giuffrida, R.; Giurdanella, G. Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases. World J. Stem Cells, 2021, 13(6), 632-644.
[http://dx.doi.org/10.4252/wjsc.v13.i6.632] [PMID: 34249232]
[100]
Ding, S.S.L.; Subbiah, S.K.; Khan, M.S.A.; Farhana, A.; Mok, P.L. Empowering mesenchymal stem cells for ocular degenerative disorders. Int. J. Mol. Sci., 2019, 20(7), E1784.
[http://dx.doi.org/10.3390/ijms20071784] [PMID: 30974904]
[101]
Li, Y.; Zhang, Y.; Qi, S.; Su, G. Retinal organotypic culture - A candidate for research on retinas. Tissue Cell, 2018, 51, 1-7.
[http://dx.doi.org/10.1016/j.tice.2018.01.005] [PMID: 29622082]
[102]
Bull, N.D.; Johnson, T.V.; Welsapar, G.; DeKorver, N.W.; Tomarev, S.I.; Martin, K.R. Use of an adult rat retinal explant model for screening of potential retinal ganglion cell neuroprotective therapies. Invest. Ophthalmol. Vis. Sci., 2011, 52(6), 3309-3320.
[http://dx.doi.org/10.1167/iovs.10-6873] [PMID: 21345987]
[103]
White, A.J.; Heller, J.P.; Leung, J.; Tassoni, A.; Martin, K.R. Retinal ganglion cell neuroprotection by an angiotensin II blocker in an ex vivo retinal explant model. J. Renin Angiotensin Aldosterone Syst., 2015, 16(4), 1193-1201.
[http://dx.doi.org/10.1177/1470320314566018] [PMID: 25628311]
[104]
Kimura, A.; Namekata, K.; Guo, X.; Harada, C.; Harada, T. Neuroprotection, growth factors and BDNF-TrkB signalling in retinal degeneration. Int. J. Mol. Sci., 2016, 17(9), E1584.
[http://dx.doi.org/10.3390/ijms17091584] [PMID: 27657046]
[105]
Smedowski, A.; Pietrucha-Dutczak, M.; Maniar, R.; Ajeleti, M.; Matuszek, I.; Lewin-Kowalik, J. FluoroGold-Labeled organotypic retinal explant culture for neurotoxicity screening studies. Oxid. Med. Cell. Longev., 2018, 2018, 2487473.
[http://dx.doi.org/10.1155/2018/2487473] [PMID: 29560079]
[106]
McKinnon, S.J.; Schlamp, C.L.; Nickells, R.W. Mouse models of retinal ganglion cell death and glaucoma. Exp. Eye Res., 2009, 88(4), 816-824.
[http://dx.doi.org/10.1016/j.exer.2008.12.002] [PMID: 19105954]
[107]
Pattamatta, U.; McPherson, Z.; White, A. A mouse retinal explant model for use in studying neuroprotection in glaucoma. Exp. Eye Res., 2016, 151, 38-44.
[http://dx.doi.org/10.1016/j.exer.2016.07.010] [PMID: 27450912]
[108]
Singh, H.P.; Wang, S.; Stachelek, K.; Lee, S.; Reid, M.W.; Thornton, M.E.; Craft, C.M.; Grubbs, B.H.; Cobrinik, D. Developmental stage-specific proliferation and retinoblastoma genesis in RB-deficient human but not mouse cone precursors. Proc. Natl. Acad. Sci. USA, 2018, 115(40), E9391-E9400.
[http://dx.doi.org/10.1073/pnas.1808903115] [PMID: 30213853]
[109]
Taylor, L.; Arnér, K.; Engelsberg, K.; Ghosh, F. Effects of glial cell line-derived neurotrophic factor on the cultured adult full-thickness porcine retina. Curr. Eye Res., 2013, 38(4), 503-515.
[http://dx.doi.org/10.3109/02713683.2013.763989] [PMID: 23373824]
[110]
Yang, G.; Wei, J.; Liu, P.; Zhang, Q.; Tian, Y.; Hou, G.; Meng, L.; Xin, Y.; Jiang, X. Role of the gut microbiota in type 2 diabetes and related diseases. Metabolism, 2021, 117, 154712.
[http://dx.doi.org/10.1016/j.metabol.2021.154712] [PMID: 33497712]
[111]
Fernandes, R.; Viana, S.D.; Nunes, S.; Reis, F. Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(7), 1876-1897.
[http://dx.doi.org/10.1016/j.bbadis.2018.09.032] [PMID: 30287404]
[112]
Zinkernagel, M.S.; Zysset-Burri, D.C.; Keller, I.; Berger, L.E.; Leichtle, A.B.; Largiadèr, C.R.; Fiedler, G.M.; Wolf, S. Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Sci. Rep., 2017, 7, 40826.
[http://dx.doi.org/10.1038/srep40826] [PMID: 28094305]
[113]
Rowan, S.; Jiang, S.; Korem, T.; Szymanski, J.; Chang, M.L.; Szelog, J.; Cassalman, C.; Dasuri, K.; McGuire, C.; Nagai, R.; Du, X.L.; Brownlee, M.; Rabbani, N.; Thornalley, P.J.; Baleja, J.D.; Deik, A.A.; Pierce, K.A.; Scott, J.M.; Clish, C.B.; Smith, D.E.; Weinberger, A.; Avnit-Sagi, T.; Lotan-Pompan, M.; Segal, E.; Taylor, A. Involvement of a gut-retina axis in protection against dietary glycemia-induced age-related macular degeneration. Proc. Natl. Acad. Sci. USA, 2017, 114(22), E4472-E4481.
[http://dx.doi.org/10.1073/pnas.1702302114] [PMID: 28507131]
[114]
Gong, H.; Zhang, S.; Li, Q.; Zuo, C.; Gao, X.; Zheng, B.; Lin, M. Gut microbiota compositional profile and serum metabolic phenotype in patients with primary open-angle glaucoma. Exp. Eye Res., 2020, 191, 107921.
[http://dx.doi.org/10.1016/j.exer.2020.107921] [PMID: 31917963]
[115]
Das, T.; Jayasudha, R.; Chakravarthy, S.; Prashanthi, G.S.; Bhargava, A.; Tyagi, M.; Rani, P.K.; Pappuru, R.R.; Sharma, S.; Shivaji, S. Alterations in the gut bacterial microbiome in people with type 2 diabetes mellitus and diabetic retinopathy. Sci. Rep., 2021, 11(1), 2738.
[http://dx.doi.org/10.1038/s41598-021-82538-0] [PMID: 33531650]
[116]
Rinninella, E.; Mele, M.C.; Merendino, N.; Cintoni, M.; Anselmi, G.; Caporossi, A.; Gasbarrini, A.; Minnella, A.M. The role of diet, micronutrients and the gut microbiota in age-related macular degeneration: New perspectives from the gut-retina axis. Nutrients, 2018, 10(11), E1677.
[http://dx.doi.org/10.3390/nu10111677] [PMID: 30400586]
[117]
Shivaji, S. A systematic review of gut microbiome and ocular inflammatory diseases: Are they associated? Indian J. Ophthalmol., 2021, 69(3), 535-542.
[http://dx.doi.org/10.4103/ijo.IJO_1362_20] [PMID: 33595467]
[118]
Olszak, T.; An, D.; Zeissig, S.; Vera, M.P.; Richter, J.; Franke, A.; Glickman, J.N.; Siebert, R.; Baron, R.M.; Kasper, D.L.; Blumberg, R.S. Microbial exposure during early life has persistent effects on natural killer T cell function. Science, 2012, 336(6080), 489-493.
[http://dx.doi.org/10.1126/science.1219328] [PMID: 22442383]
[119]
Khan, R.; Sharma, A.; Ravikumar, R.; Parekh, A.; Srinivasan, R.; George, R.J.; Raman, R. Association between gut microbial abundance and sight-threatening diabetic retinopathy. Invest. Ophthalmol. Vis. Sci., 2021, 62(7), 19.
[http://dx.doi.org/10.1167/iovs.62.7.19] [PMID: 34132747]
[120]
Shang, J.; Liu, F.; Zhang, B.; Dong, K.; Lu, M.; Jiang, R.; Xu, Y.; Diao, L.; Zhao, J.; Tang, H. Liraglutide-induced structural modulation of the gut microbiota in patients with type 2 diabetes mellitus. PeerJ, 2021, 9, e11128.
[http://dx.doi.org/10.7717/peerj.11128] [PMID: 33850659]
[121]
Subramaniam, S.; Fletcher, C. Trimethylamine N-oxide: breathe new life. Br. J. Pharmacol., 2018, 175(8), 1344-1353.
[http://dx.doi.org/10.1111/bph.13959] [PMID: 28745401]
[122]
Zhuang, R.; Ge, X.; Han, L.; Yu, P.; Gong, X.; Meng, Q.; Zhang, Y.; Fan, H.; Zheng, L.; Liu, Z.; Zhou, X. Gut microbe-generated metabolite trimethylamine N-oxide and the risk of diabetes: A systematic review and dose-response meta-analysis. Obes. Rev., 2019, 20(6), 883-894.
[http://dx.doi.org/10.1111/obr.12843] [PMID: 30868721]
[123]
Liu, W.; Wang, C.; Xia, Y.; Xia, W.; Liu, G.; Ren, C.; Gu, Y.; Li, X.; Lu, P. Elevated plasma trimethylamine-N-oxide levels are associated with diabetic retinopathy. Acta Diabetol., 2021, 58(2), 221-229.
[http://dx.doi.org/10.1007/s00592-020-01610-9] [PMID: 33064205]
[124]
Heianza, Y.; Sun, D.; Li, X.; DiDonato, J.A.; Bray, G.A.; Sacks, F.M.; Qi, L. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: The POUNDS Lost trial. Gut, 2019, 68(2), 263-270.
[http://dx.doi.org/10.1136/gutjnl-2018-316155] [PMID: 29860242]
[125]
Winther, S.A.; Øllgaard, J.C.; Tofte, N.; Tarnow, L.; Wang, Z.; Ahluwalia, T.S.; Jorsal, A.; Theilade, S.; Parving, H.H.; Hansen, T.W.; Hazen, S.L.; Pedersen, O.; Rossing, P. utility of plasma concentration of trimethylamine n-oxide in predicting cardiovascular and renal complications in individuals with Type 1 Diabetes. Diabetes Care, 2019, 42(8), 1512-1520.
[http://dx.doi.org/10.2337/dc19-0048] [PMID: 31123156]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy