Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Anti-Alzheimer’s Activity of Methanolic Tender Green Pod Extract of Cyamopsis Tetragonoloba (L.) Taub. on Scopolamine Induced Amnesia in Mice

Author(s): Lalitha Vivekanandan*, Rajalakshmi Murukeasan, Kiruthiga Natarajan, Hajasherief Sheik, Sengottuvelu Singaravel and Sivakumar Thangavel

Volume 18, Issue 7, 2022

Published on: 25 March, 2022

Article ID: e150222201148 Pages: 11

DOI: 10.2174/1573407218666220215141234

Price: $65

Abstract

Background: Alzheimer’s disease (AD) is a chronic and prevalent neurodegenerative disease that leads to memory loss, especially in the elderly. AD is caused by a lack of acetylcholine in the brain and oxidative stress. The Cyamopsis tetragonoloba, also known as Guar or cluster bean, is a legume that belongs to the family Fabaceae. It is cheap, widely consumed as a seasoned vegetable, and reported to counteract chronic diseases linked to oxidative stress, such as diabetes, dyslipidemia, inflammation, and ulcer.

Objective: The present study was undertaken to assess the anti-alzheimer’s activity of a tender green pod extract of Cyamopsis tetragonoloba on learning and memory impairment induced by scopolamine.

Methods: The extract's total phenolic and flavonoid content was determined using a UV-visible spectrophotometer. The Cyamopsis tetragonoloba methanolic pod extract (CTMPE) at a dose of 100 and 200 mg/kg and donepezil 2.5 mg/kg was administered orally for 7 successive days. On the seventh day, a single intraperitoneal injection of scopolamine was used to induce dementia. The behavioral experiments included an elevated plus maze, step-through passive avoidance, radial arm maze, and Y-maze tests were conducted. The mice were sacrificed and acetylcholine, acetylcholinesterase, and oxidative stress markers were measured in brain homogenate.

Results: The total phenolic and flavonoid content was found as 12.9 mg of GAE/g and 1.71 mg of QE/g, respectively. Scopolamine caused memory deterioration, as well as changes in acetylcholine, acetylcholinesterase, and increased oxidative stress in the brain. Mice pretreatment with CTMPE at both doses attenuated scopolamine-induced behavioral, neurochemical, and oxidative changes in a similar way to donepezil.

Conclusion: The CTMPE showed an anti-amnesic effect that makes it a promising candidate targeting multiple events as a potential strategy to curb the progression of cognitive impairment.

Keywords: Amnesia, anti-Alzheimer’s, cyamopsis tetragonoloba, scopolamine, donepezil, antioxidant.

Graphical Abstract

[1]
Desgranges, B.; Baron, J.C.; de la Sayette, V.; Petit-Taboué, M.C.; Benali, K.; Landeau, B.; Lechevalier, B.; Eustache, F. The neural sub-strates of memory systems impairment in Alzheimer’s disease. A PET study of resting brain glucose utilization. Brain, 1998, 121(Pt 4), 611-631.
[http://dx.doi.org/10.1093/brain/121.4.611] [PMID: 9577389]
[2]
Luo, W.; Wang, T.; Hong, C.; Yang, Y.C.; Chen, Y.; Cen, J.; Xie, S.Q.; Wang, C.J. Design, synthesis and evaluation of 4-dimethylamine flavonoid derivatives as potential multifunctional anti-Alzheimer agents. Eur. J. Med. Chem., 2016, 122, 17-26.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.022] [PMID: 27343850]
[3]
Berchtold, N.C.; Cotman, C.W. Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol. Aging, 1998, 19(3), 173-189.
[http://dx.doi.org/10.1016/S0197-4580(98)00052-9] [PMID: 9661992]
[4]
Henstridge, C.M.; Pickett, E.; Spires-Jones, T.L. Synaptic pathology: A shared mechanism in neurological disease. Ageing Res. Rev., 2016, 28, 72-84.
[http://dx.doi.org/10.1016/j.arr.2016.04.005] [PMID: 27108053]
[5]
Madeo, J.; Elsayad, C. The role of oxidative stress in alzheimer’s disease. J. Alzheimers Dis. Parkinsonism, 2013, 3(2), 116-121.
[http://dx.doi.org/10.4172/2161-0460.1000116]
[6]
Godyń J.; Jończyk, J.; Panek, D.; Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep., 2016, 68(1), 127-138.
[http://dx.doi.org/10.1016/j.pharep.2015.07.006] [PMID: 26721364]
[7]
Lu, S.H.; Wu, J.W.; Liu, H.L.; Zhao, J.H.; Liu, K.T.; Chuang, C.K.; Lin, H.Y.; Tsai, W.B.; Ho, Y. The discovery of potential acetylcholin-esterase inhibitors: A combination of pharmacophore modeling, virtual screening, and molecular docking studies. J. Biomed. Sci., 2011, 18(1), 8.
[http://dx.doi.org/10.1186/1423-0127-18-8] [PMID: 21251245]
[8]
Al-Okbi, SY; Mohamed, DA; Abdel Fatah, M Evaluation of plant food extracts in experimental model of alzheimer’s like disease induced by aluminum lactate in rats J Applied Pharm Sci, 2017, 7(07), 070-076.
[9]
Dyall, S.C. Amyloid-beta peptide, oxidative stress and inflammation in alzheimer’s disease: potential neuroprotective effects of omega-3 polyunsaturated fatty acids. Inter J Alzheimer’s Dis, 2010, 2010
[10]
Andrieu, S.; Coley, N.; Lovestone, S.; Aisen, P.S.; Vellas, B. Prevention of sporadic Alzheimer’s disease: lessons learned from clinical trials and future directions. Lancet Neurol., 2015, 14(9), 926-944.
[http://dx.doi.org/10.1016/S1474-4422(15)00153-2] [PMID: 26213339]
[11]
Bullock, R. New drugs for Alzheimer’s disease and other dementias. Br. J. Psychiatry, 2002, 180(2), 135-139.
[http://dx.doi.org/10.1192/bjp.180.2.135] [PMID: 11823323]
[12]
Yaacob, W.M.; Long, I.; Zakaria, R. Tualang honey and its methanolic fraction improve LPS-induced learning and memory impairment in male rats: comparison with memantine. Curr. Nutr. Food Sci., 2020, 16(3), 333-342.
[http://dx.doi.org/10.2174/1573401315666181130103456]
[13]
Wang, R.; Reddy, P.H. Role of glutamate and NMDA receptors in alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1041-1048.
[http://dx.doi.org/10.3233/JAD-160763] [PMID: 27662322]
[14]
Buisson, B.; Bertrand, D. Open-channel blockers at the human α4β2 neuronal nicotinic acetylcholine receptor. Mol. Pharmacol., 1998, 53(3), 555-563.
[http://dx.doi.org/10.1124/mol.53.3.555] [PMID: 9495824]
[15]
Bond, M.; Rogers, G.; Peters, J.; Anderson, R.; Hoyle, M.; Miners, A.; Moxham, T.; Davis, S.; Thokala, P.; Wailoo, A.; Jeffreys, M.; Hyde, C. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s dis-ease (review of Technology Appraisal No. 111): A systematic review and economic model. Health Technol. Assess., 2012, 16(21), 1-470.
[http://dx.doi.org/10.3310/hta16210] [PMID: 22541366]
[16]
Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem., 1992, 59(5), 1609-1623.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb10990.x] [PMID: 1402908]
[17]
Tönnies, E.; Trushina, E. Oxidative stress, synaptic dysfunction, and alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1105-1121.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[18]
Castello, M.A.; Jeppson, J.D.; Soriano, S. Moving beyond anti-amyloid therapy for the prevention and treatment of Alzheimer’s disease. BMC Neurol., 2014, 14(1), 169.
[http://dx.doi.org/10.1186/s12883-014-0169-0] [PMID: 25179671]
[19]
Chen, W.N.; Yeong, K.Y. Scopolamine, a toxin-induced experimental model, used for research in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2020, 19(2), 85-93.
[http://dx.doi.org/10.2174/1871527319666200214104331]
[20]
Park, S.J.; Kim, D.H.; Jung, J.M.; Kim, J.M.; Cai, M.; Liu, X.; Hong, J.G.; Lee, C.H.; Lee, K.R.; Ryu, J.H. The ameliorating effects of stig-masterol on scopolamine-induced memory impairments in mice. Eur. J. Pharmacol., 2012, 676(1-3), 64-70.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.050] [PMID: 22173129]
[21]
Venkatesan, R.; Subedi, L.; Yeo, E.J.; Kim, S.Y. Lactucopicrin ameliorates oxidative stress mediated by scopolamine-induced neurotoxici-ty through activation of the NRF2 pathway. Neurochem. Int., 2016, 99, 133-146.
[http://dx.doi.org/10.1016/j.neuint.2016.06.010] [PMID: 27346436]
[22]
Budzynska, B.; Boguszewska-Czubara, A.; Kruk-Slomka, M.; Skalicka-Wozniak, K.; Michalak, A.; Musik, I.; Biala, G. Effects of impera-torin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology (Berl.), 2015, 232(5), 931-942.
[http://dx.doi.org/10.1007/s00213-014-3728-6] [PMID: 25189792]
[23]
Morris, J.B. Legumes: nutraceutical and pharmaceutical uses. In: Encyclopedia of plant and crop science; Marcel Dekker: New York, 2004; pp. 651-655.
[http://dx.doi.org/10.1081/E-EPCS-120010422]
[24]
Punia, A.; Yadav, R.; Arora, P. Molecular and morphophysiological characterization of superior cluster bean (Cymopsis tetragonoloba) varieties. J. Crop Sci. Biotechnol., 2009, 12(3), 143.
[http://dx.doi.org/10.1007/s12892-009-0106-8]
[25]
Rai, P.S.; Dharmatti, P.R. Genetic divergence studies in cluster bean. Asian J. Hortic., 2014, 9(1), 202-205. [Cyamopsis tetragonoloba (L.) Taub]
[26]
Sabahelkheir Murwan, K.; Abdalla Abdelwahab, H.; Nouri Sulafa, H. Quality assessment of guar gum (endosperm) of guar (Cyamopsis tetragonoloba). Int. Res. J. Biol. Sci., 2012, 1, 67-70.
[27]
Ramasheshan, ST; Pitchaiah, P Maramreddy, PR Pharmacognostical Standardization of Goraksha pods: An important Nutritive and antidiabetic Plant Pharmacog J, 2016, 8(5)
[http://dx.doi.org/10.5530/pj.2016.5.2]
[28]
Khare, CP Indian herbal remedies: rational Western therapy, ayurvedic, and other traditional usage. Botany; 2004th ed.; Springer Science, 2004.
[29]
Mukhtar, H.M.; Ansari, S.H.; Ali, M.; Bhat, Z.A.; Naved, T. Effect of aqueous extract of Cyamopsis tetragonoloba Linn. beans on blood glucose level in normal and alloxan-induced diabetic rats. Indian J. Exp. Biol., 2004, 42(12), 1212-1215.
[PMID: 15623233]
[30]
Srivastava, A.; Longia, G.S.; Singh, S.P.; Joshi, L.D. Hypoglycaemic and hypolipaemic effects of Cyamopsis tetragonoloba (guar) in nor-mal and diabetic guinea pigs. Indian J. Physiol. Pharmacol., 1987, 31(2), 77-83.
[PMID: 3666887]
[31]
Hassan, S.M.; Haq, A.U.; Byrd, J.A. Haemolytic and antimicrobial activities of saponin-rich extracts from guar meal. Food Chem., 2010, 119(2), 600-605.
[http://dx.doi.org/10.1016/j.foodchem.2009.06.066]
[32]
Singh, S.; Devi, B. Anthelminthic activity of Cyamopsis tetragonoloba (L.) taub. Inter J Phar Res Dev., 2013, 5, 15-21.
[33]
Katewa, S.S.; Chaudhary, B.L.; Jain, A. Folk herbal medicines from tribal area of Rajasthan, India. J. Ethnopharmacol., 2004, 92(1), 41-46.
[http://dx.doi.org/10.1016/j.jep.2004.01.011] [PMID: 15099845]
[34]
Rafatullah, S.; Al-Yahya, M.A.; Al-Said, M.S. Gastric anti-ulcer and cytoprotective effects of Cyamopsis tetragonoloba (‘Guar’) in rats. Inter J Pharmacog., 1994, 32(2), 163-170.
[http://dx.doi.org/10.3109/13880209409082988]
[35]
Jayakumar, K. Antioxidant enzyme mechanism of cluster bean (Cyamopsis tetragonaloba (L.) Taub). under cobalt stress. World News Nat Sci., 2019, 24, 64-70.
[36]
Sharma, P.; Hullatti, K.K.; Kuppasth, I.J. Studies on anti-asthmatic property of Cyamopsis tetragonoloba (L.) Taub. leaf extracts. J. Nat. Rem., 2010, 10(1), 81-86.
[37]
Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol., 1999, 299, 152-178.
[http://dx.doi.org/10.1016/S0076-6879(99)99017-1]
[38]
Jing, L.; Ma, H.; Fan, P.; Gao, R.; Jia, Z. Antioxidant potential, total phenolic and total flavonoid contents of Rhododendron anthopogo-noides and its protective effect on hypoxia-induced injury in PC12 cells. BMC Complement. Altern. Med., 2015, 15(1), 287.
[http://dx.doi.org/10.1186/s12906-015-0820-3] [PMID: 26283543]
[39]
Lee, S.; Kim, J.; Seo, S.G.; Choi, B.R.; Han, J.S.; Lee, K.W.; Kim, J. Sulforaphane alleviates scopolamine-induced memory impairment in mice. Pharmacol. Res., 2014, 85, 23-32.
[http://dx.doi.org/10.1016/j.phrs.2014.05.003] [PMID: 24836869]
[40]
Parle, M.; Dhingra, D. Ascorbic Acid: A promising memory-enhancer in mice. J. Pharmacol. Sci., 2003, 93(2), 129-135.
[http://dx.doi.org/10.1254/jphs.93.129] [PMID: 14578579]
[41]
WB Sengottuvelu, S.; Haja, S.S.; Lalitha, V. Memory enhancing activities of Ficus religiosa leaves in rodents. Int. J. Res. Ayurveda Pharm., 2011, 2(3), 834-838.
[42]
Hritcu, L.; Cioanca, O.; Hancianu, M. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats. Phytomedicine, 2012, 19(6), 529-534.
[http://dx.doi.org/10.1016/j.phymed.2012.02.002] [PMID: 22402245]
[43]
Foyet, H.S.; Abaïssou, H.H.; Wado, E.; Acha, E.A.; Alin, C. Emilia coccinae (SIMS) G Extract improves memory impairment, cholinergic dysfunction, and oxidative stress damage in scopolamine-treated rats. BMC Complement. Altern. Med., 2015, 15(1), 333.
[http://dx.doi.org/10.1186/s12906-015-0864-4] [PMID: 26400617]
[44]
Stepánková, S. Vrańová, M.; Zdrazilová, P.; Komers, K.; Komersová, A.; Cegan, A. Two new methods monitoring kinetics of hydrolysis of acetylcholine and acetylthiocholine. Z. Naturforsch. C J. Biosci., 2005, 60(11-12), 943-946.
[http://dx.doi.org/10.1515/znc-2005-11-1220] [PMID: 16402558]
[45]
Ellman, G.L.; Courtney, K.D.; Andres, V., Jr; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[46]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[47]
Niehaus, W.G., Jr; Samuelsson, B. Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur. J. Biochem., 1968, 6(1), 126-130.
[http://dx.doi.org/10.1111/j.1432-1033.1968.tb00428.x] [PMID: 4387188]
[48]
Kakkar, P.; Das, B.; Viswanathan, P.N. A modified spectrophotometric assay of superoxide dismutase. Indian J. Biochem. Biophys., 1984, 21(2), 130-132.
[PMID: 6490072]
[49]
Aebi, H. Methods in enzymatic analysis, 2nd ed; Academic Press: New York, 1974, pp. 673-684.
[50]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[51]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. alzheimer’s disease: targeting the cholinergic System. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[52]
Raskin, J.; Cummings, J.; Hardy, J.; Schuh, K.; Dean, R.A. Neurobiology of alzheimer’s disease: integrated molecular, physiological, ana-tomical, biomarker, and cognitive dimensions. Curr. Alzheimer Res., 2015, 12(8), 712-722.
[http://dx.doi.org/10.2174/1567205012666150701103107] [PMID: 26412218]
[53]
Sharma, A.; Sharma, P. Genetic and phytochemical analysis of cluster bean (Cyamopsis tetragonaloba (L.) Taub) by RAPD and HPLC. Res. J. Recent Sci., 2013, 2(2), 1-9.
[54]
Wang, M.L.; Morris, J.B. Flavonoid content in seeds of guar germplasm using HPLC. Plant Genet. Resour., 2007, 5(2), 96.
[http://dx.doi.org/10.1017/S1479262107672335]
[55]
Lee, H.E.; Kim, D.H.; Park, S.J.; Kim, J.M.; Lee, Y.W.; Jung, J.M.; Lee, C.H.; Hong, J.G.; Liu, X.; Cai, M.; Park, K.J.; Jang, D.S.; Ryu, J.H. Neuroprotective effect of sinapic acid in a mouse model of amyloid β(1-42) protein-induced Alzheimer’s disease. Pharmacol. Biochem. Behav., 2012, 103(2), 260-266.
[http://dx.doi.org/10.1016/j.pbb.2012.08.015] [PMID: 22971592]
[56]
Socała, K.; Szopa, A.; Serefko, A.; Poleszak, E.; Wlaź P. Neuroprotective Effects of coffee bioactive compounds: A review. Int. J. Mol. Sci., 2020, 22(1), 107.
[http://dx.doi.org/10.3390/ijms22010107] [PMID: 33374338]
[57]
Habtemariam, S. Protective effects of caffeic acid and the alzheimer’s brain: An update. Mini Rev. Med. Chem., 2017, 17(8), 667-674.
[http://dx.doi.org/10.2174/1389557516666161130100947] [PMID: 27903226]
[58]
Ogunsuyi, O.B.; Oboh, G.; Oluokun, O.O. Gallic acid protects against neurochemical alterations in transgenic Drosophila model of alz-heimer’s disease. Adv Tradit Med., 2020, 20(1), 89-98.
[http://dx.doi.org/10.1007/s13596-019-00393-x]
[59]
Singh, Y.P.; Rai, H.; Singh, G.; Singh, G.K.; Mishra, S.; Kumar, S.; Srikrishna, S.; Modi, G. A review on ferulic acid and analogs based scaffolds for the management of Alzheimer’s disease. Eur. J. Med. Chem., 2021, 215, 113278.
[http://dx.doi.org/10.1016/j.ejmech.2021.113278] [PMID: 33662757]
[60]
Liu, M.; Guo, H.; Li, Z.; Zhang, C.; Zhang, X.; Cui, Q.; Tian, J. Molecular level insight into the benefit of myricetin and dihydromyricetin uptake in patients with alzheimer’s diseases. Front. Aging Neurosci., 2020, 12, 601603.
[http://dx.doi.org/10.3389/fnagi.2020.601603] [PMID: 33192493]
[61]
Kouhestani, S.; Jafari, A.; Babaei, P. Kaempferol attenuates cognitive deficit via regulating oxidative stress and neuroinflammation in an ovariectomized rat model of sporadic dementia. Neural Regen. Res., 2018, 13(10), 1827-1832.
[http://dx.doi.org/10.4103/1673-5374.238714] [PMID: 30136699]
[62]
Khan, H.; Ullah, H.; Aschner, M.; Cheang, W.S.; Akkol, E.K. Neuroprotective effects of quercetin in alzheimer’s disease. Biomolecules, 2019, 10(1), 59.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[63]
Wei, J.; Yang, F.; Gong, C.; Shi, X.; Wang, G. Protective effect of daidzein against streptozotocin-induced Alzheimer’s disease via improv-ing cognitive dysfunction and oxidative stress in rat model. J. Biochem. Mol. Toxicol., 2019, 33(6), e22319.
[http://dx.doi.org/10.1002/jbt.22319] [PMID: 30897277]
[64]
Uddin, M.S.; Kabir, M.T. Emerging signal-regulating potential of genistein against alzheimer’s disease: A promising molecule of interest. Front. Cell Dev. Biol., 2019, 7, 197.
[http://dx.doi.org/10.3389/fcell.2019.00197] [PMID: 31620438]
[65]
Lazarevic-Pasti, T.; Leskovac, A.; Momic, T.; Petrovic, S.; Vasic, V. Modulators of acetylcholinesterase activity: from alzheimer’s disease to anti-cancer drugs. Curr. Med. Chem., 2017, 24(30), 3283-3309.
[http://dx.doi.org/10.2174/0929867324666170705123509] [PMID: 28685687]
[66]
Soreq, H.; Seidman, S. Acetylcholinesterase--new roles for an old actor. Nat. Rev. Neurosci., 2001, 2(4), 294-302.
[http://dx.doi.org/10.1038/35067589] [PMID: 11283752]
[67]
Sadiq, Y.; Alexander, A.B.; Abdulkarim, A. Effect of Ziziphus mauritiana (L.) seed extracts on spatial recognition memory of rats as measured by the Y-maze test. J. Nat. Prod., 2009, 2(1), 31-39.
[68]
Gupta, J.; Kulshreshtha, M. Pharmacological investigation and unraveling mechanism of action of Jasminum sambac flowers for predicat-ed treatment of alzheimer’s disease. Curr. Nutr. Food Sci., 2018, 14(2), 128-135.
[http://dx.doi.org/10.2174/1573401313666170427123623]
[69]
Titus, A.D.; Shankaranarayana Rao, B.S.; Harsha, H.N.; Ramkumar, K.; Srikumar, B.N.; Singh, S.B.; Chattarji, S.; Raju, T.R. Hypobaric hypoxia-induced dendritic atrophy of hippocampal neurons is associated with cognitive impairment in adult rats. Neuroscience, 2007, 145(1), 265-278.
[http://dx.doi.org/10.1016/j.neuroscience.2006.11.037] [PMID: 17222983]
[70]
Grundmann, O.; Nakajima, J.; Seo, S.; Butterweck, V. Anti-anxiety effects of Apocynum venetum L. in the elevated plus maze test. J. Ethnopharmacol., 2007, 110(3), 406-411.
[http://dx.doi.org/10.1016/j.jep.2006.09.035] [PMID: 17101250]
[71]
Kadowaki, H.; Nishitoh, H.; Urano, F.; Sadamitsu, C.; Matsuzawa, A.; Takeda, K.; Masutani, H.; Yodoi, J.; Urano, Y.; Nagano, T.; Ichijo, H. Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ., 2005, 12(1), 19-24.
[http://dx.doi.org/10.1038/sj.cdd.4401528] [PMID: 15592360]
[72]
Pariyar, R.; Yoon, C.S.; Svay, T.; Kim, D.S.; Cho, H.K.; Kim, S.Y.; Oh, H.; Kim, Y.C.; Kim, J.; Lee, H.S.; Seo, J. Vitis labruscana leaf extract ameliorates scopolamine-induced impairments with activation of Akt, ERK and CREB in mice. Phytomedicine, 2017, 36, 8-17.
[http://dx.doi.org/10.1016/j.phymed.2017.09.008] [PMID: 29157831]
[73]
Duarte, A.I.; Santos, P.; Oliveira, C.R.; Santos, M.S.; Rego, A.C. Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3β signaling pathways and changes in protein expression. Biochim. Biophys. Acta, 2008, 1783(6), 994-1002.
[http://dx.doi.org/10.1016/j.bbamcr.2008.02.016] [PMID: 18348871]
[74]
Lee, J.E.; Song, H.S.; Park, M.N.; Kim, S.H.; Shim, B.S.; Kim, B. Ethanol extract of Oldenlandia diffusa Herba attenuates scopolamine-induced cognitive impairments in mice via activation of BDNF, P-CREB and inhibition of acetylcholinesterase. Int. J. Mol. Sci., 2018, 19(2), 363.
[http://dx.doi.org/10.3390/ijms19020363] [PMID: 29370115]
[75]
Beal, M.F. Oxidative damage as an early marker of Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging, 2005, 26(5), 585-586.
[http://dx.doi.org/10.1016/j.neurobiolaging.2004.09.022] [PMID: 15708432]
[76]
Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and down-stream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[77]
Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative stress, mitochondrial dysfunction and neu-rodegenerative diseases; a mechanistic insight. Biomed. Pharmacother., 2015, 74, 101-110.
[http://dx.doi.org/10.1016/j.biopha.2015.07.025] [PMID: 26349970]
[78]
Pande, S.; Srinivasan, K. Potentiation of antioxidant effect of dietary tender cluster beans (Cyamopsis tetragonoloba) by garlic (Allium sativum) in high-cholesterol-fed rats. Can. J. Physiol. Pharmacol., 2013, 91(10), 818-822.
[http://dx.doi.org/10.1139/cjpp-2013-0082] [PMID: 24144053]
[79]
Morris, J.B.; Wang, M.L. Functional vegetable guar (Cyamopsis tetragonoloba L. Taub.) accessions for improving flavonoid concentra-tions in immature pods. J. Diet. Suppl., 2017, 14(2), 146-157.
[http://dx.doi.org/10.1080/19390211.2016.1207002] [PMID: 27486053]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy