Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Mini-Review Article

Recent Development in Small Molecules for SARS-CoV-2 and the Opportunity for Fragment-Based Drug Discovery

Author(s): Sujit Mahato*

Volume 18, Issue 8, 2022

Published on: 06 April, 2022

Page: [847 - 858] Pages: 12

DOI: 10.2174/1573406418666220214091107

Price: $65

conference banner
Abstract

The ongoing pandemic of Covid-19 caused by SARS-CoV-2 is a major threat to global public health, drawing attention to develop new therapeutics for treatment. Much research work is focused on identifying or repurposing new small molecules to serve as potential inhibitors by interacting with viral or host-cell molecular targets and understanding the nature of the virus in the host cells. Identifying small molecules as potent inhibitors at an early stage is advantageous in developing a molecule with higher potency and then finding a lead compound for the development of drug discovery. Small molecules can show their inhibition property by targeting either the SARS-CoV-2 main protease (Mpro) enzyme, papain-like protease (PLpro) enzyme, or helicase (Hel), or blocking the spike (S) protein angiotensin-converting enzyme 2 (ACE2) receptor. A very recent outbreak of a new variant (B.1.617.2—termed as Delta variant) of SARS-CoV-2 worldwide posed a greater challenge as it is resistant to clinically undergoing vaccine trials. Thus, the development of new drug molecules is of potential interest to combat SARS-CoV-2 disease, and for that, the fragment-based drug discovery (FBDD) approach could be one of the ways to bring out an effective solution. Two cysteine protease enzymes would be an attractive choice of target for fragment-based drug discovery to tune the molecular structure at an early stage with suitable functionality. In this short review, the recent development in small molecules as inhibitors against Covid-19 is discussed, and the opportunity for FBDD is envisioned optimistically to provide an outlook regarding Covid-19 that may pave the way in the direction of the Covid-19 drug development paradigm.

Keywords: Small molecules, Covid-19, Mpro and PLpro proteases, fragments, inhibitors, drug discovery.

Graphical Abstract

[1]
SARS-CoV-2 viral mutations: Impact on COVID-19 tests. Available from: https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/sars-cov-2-viral-mutations-impact-covid-19-tests (accessed on September 1, 2021).
[2]
Delta variant: What we know about the science. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/delta-variant.html (accessed on September 1, 2021).
[3]
(a)Kyriakidis, N.C.; López-Cortés, A.; González, E.V.; Gri-maldos, A.B.; Prado, E.O. SARS-CoV-2 vaccines strategies: A comprehensive review of phase 3 candidates. NPJ. Vaccines (Basel), 2021, 6(1), 28-45.
[http://dx.doi.org/10.1038/s41541-021-00292-w] [PMID: 33430428]
(b)Krammer, F. SARS-CoV-2 vaccines in development. Nature, 2020, 586(7830), 516-527.
[http://dx.doi.org/10.1038/s41586-020-2798-3] [PMID: 32967006]
(c) Different COVID-19 vaccines. Available from: https://www. cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html (accessed on September 2, 2021).
[4]
Emergence of SARS-CoV-2 B.1.1.7. Lineage – United States. Morbidity and Mortality Weekly Report (MMWR). Available from: https://www.cdc.gov/mmwr/volumes/70/wr/mm7003e2.htm (accessed on September 2, 2021).
[5]
(a) How dangerous is the delta variant (B.1.617.2)? Available from: https://asm.org/Articles/2021/July/How-Dangerous-is-the-Delta-Variant-B-1-617-2 (accessed on September 2, 2021).
(b) What are the Covid variants and will vaccines still work? Available from: https://www.bbc.com/news/health-55659820 (accessed on September 2, 2021).
(c)Planas, D.; Veyer, D.; Baidaliuk, A.; Staropoli, I.; Guivel- Benhassine, F.; Rajah, M.M.; Planchais, C.; Porrot, F.; Robillard, N.; Puech, J.; Prot, M.; Gallais, F.; Gantner, P.; Velay, A.; Le Guen, J.; Kassis-Chikhani, N.; Edriss, D.; Belec, L.; Seve, A.; Courtellemont, L.; Péré, H.; Hocqueloux, L.; Fafi-Kremer, S.; Prazuck, T.; Mouquet, H.; Bruel, T.; Simon-Lorière, E.; Rey, F.A.; Schwartz, O. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 2021, 596(7871), 276-280.
[http://dx.doi.org/10.1038/s41586-021-03777-9] [PMID: 34237773]
[6]
Tracking SARS-CoV-2 variants. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants (accessed on September 2, 2021).
[7]
(a) King, M.D.; Long, T.; Pfalmer, D.L.; Andersen, T.L.; McDougal, O.M. SPIDR: Small-molecule peptide-influenced drug repurposing. BMC bioinfo, 2018, 19(1), 138-149.
[http://dx.doi.org/10.1186/s12859-018-2153-y]
(b)Savi, C.D.; Hughes, D.L.; Kvaerno, L. Quest for a COVID-19 cure by repurposing small-molecule drugs: Mechanism of action, clinical development, synthesis at scale, and outlook for supply. Org. Process Res. Dev., 2020, 24(6), 940-976.
[http://dx.doi.org/10.1021/acs.oprd.0c00233]
(c)Jang, W.D.; Jeon, S.; Kim, S.; Lee, S.Y. Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proc. Natl. Acad. Sci. USA, 2021, 118(30), e2024302118.
[http://dx.doi.org/10.1073/pnas.2024302118] [PMID: 34234012]
[8]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Val-let, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Ven-kataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klipp-sten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fu-jimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; García-Sastre, A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J.A. SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[9]
Lu, S.; Ye, Q.; Singh, D.; Cao, Y.; Diedrich, J.K.; Yates, J.R., III; Villa, E.; Cleveland, D.W.; Corbett, K.D. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M pro-tein. Nat. Commun., 2021, 12(1), 502-517.
[http://dx.doi.org/10.1038/s41467-020-20768-y] [PMID: 33479198]
[10]
Shulla, A.; Gallagher, T. Role of spike protein endodomains in regulating coronavirus entry. J. Biol. Chem., 2009, 284(47), 32725-32734.
[http://dx.doi.org/10.1074/jbc.M109.043547] [PMID: 19801669]
[11]
Wang, L.; Xiang, Y. Spike glycoprotein-mediated entry of SARS coronaviruses. Viruses, 2020, 12(11), 1289-1302.
[http://dx.doi.org/10.3390/v12111289] [PMID: 33187074]
[12]
Maginnis, M.S. Virus-receptor interactions: The key to cellu-lar invasion. J. Mol. Biol., 2018, 430(17), 2590-2611.
[http://dx.doi.org/10.1016/j.jmb.2018.06.024] [PMID: 29924965]
[13]
Erukainure, O.L.; Matsabisa, M.G.; Muhammad, A.; Abarshi, M.M.; Amaku, J.F.; Katsayal, S.B.; Nde, A.L. Targeting of protein’s messenger RNA for viral replication, assembly and release in SARS-CoV-2 using whole genomic data from South Africa: Therapeutic potentials of Cannabis sativa L. Front. Pharmacol., 2021, 12, 736511.
[http://dx.doi.org/10.3389/fphar.2021.736511] [PMID: 34539415]
[14]
Thiel, V.; Ivanov, K.A.; Putics, Á.; Hertzig, T.; Schelle, B.; Bayer, S.; Weißbrich, B.; Snijder, E.J.; Rabenau, H.; Doerr, H.W.; Gorbalenya, A.E.; Ziebuhr, J. Mechanisms and en-zymes involved in SARS coronavirus genome expression. J. Gen. Virol., 2003, 84(Pt 9), 2305-2315.
[http://dx.doi.org/10.1099/vir.0.19424-0] [PMID: 12917450]
[15]
Ziebuhr, J. Molecular biology of severe acute respiratory syndrome coronavirus. Curr. Opin. Microbiol., 2004, 7(4), 412-419.
[http://dx.doi.org/10.1016/j.mib.2004.06.007] [PMID: 15358261]
[16]
Ziebuhr, J.; Snijder, E.J.; Gorbalenya, A.E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol., 2000, 81(Pt 4), 853-879.
[http://dx.doi.org/10.1099/0022-1317-81-4-853] [PMID: 10725411]
[17]
Ziebuhr, J.; Thiel, V.; Gorbalenya, A.E. The autocatalytic release of a putative RNA virus transcription factor from its polyprotein precursor involves two paralogous papain-like proteases that cleave the same peptide bond. J. Biol. Chem., 2001, 276(35), 33220-33232.
[http://dx.doi.org/10.1074/jbc.M104097200] [PMID: 11431476]
[18]
Báez-Santos, Y.M.; St John, S.E.; Mesecar, A.D. The SARS-coronavirus papain-like protease: Structure, function and in-hibition by designed antiviral compounds. Antiviral Res., 2015, 115, 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[19]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discov-ery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[20]
Osipiuk, J.; Azizi, S.A.; Dvorkin, S.; Endres, M.; Jedrzejczak, R.; Jones, K.A.; Kang, S.; Kathayat, R.S.; Kim, Y.; Lisnyak, V.G.; Maki, S.L.; Nicolaescu, V.; Taylor, C.A.; Tesar, C.; Zhang, Y.A.; Zhou, Z.; Randall, G.; Michalska, K.; Snyder, S.A.; Dickinson, B.C.; Joachimiak, A. Structure of papain-like protease from SARS-CoV-2 and its complexes with non-covalent inhibitors. Nat. Commun., 2021, 12(1), 743-752.
[http://dx.doi.org/10.1038/s41467-021-21060-3] [PMID: 33531496]
[21]
Pendyala, B.; Patras, A.; Dash, C. Phycobilins as potent food bioactive broad-spectrum inhibitors against proteases of SARS-CoV-2 and other coronaviruses: A preliminary study. Front. Microbiol., 2021, 12, 645713.
[http://dx.doi.org/10.3389/fmicb.2021.645713] [PMID: 34177827]
[22]
Du, Q.S.; Wang, S.Q.; Zhu, Y.; Wei, D.Q.; Guo, H.; Sirois, S.; Chou, K.C. Polyprotein cleavage mechanism of SARS CoV Mpro and chemical modification of the octapeptide. Peptides, 2004, 25(11), 1857-1864.
[http://dx.doi.org/10.1016/j.peptides.2004.06.018] [PMID: 15501516]
[23]
Tian, X.; Lu, G.; Gao, F.; Peng, H.; Feng, Y.; Ma, G.; Bartlam, M.; Tian, K.; Yan, J.; Hilgenfeld, R.; Gao, G.F. Structure and cleavage specificity of the chymotrypsin-like serine protease (3CLSP/nsp4) of Porcine Reproductive and Respiratory Syn-drome Virus (PRRSV). J. Mol. Biol., 2009, 392(4), 977-993.
[http://dx.doi.org/10.1016/j.jmb.2009.07.062] [PMID: 19646449]
[24]
Senger, M.R.; Evangelista, T.C.S.; Dantas, R.F.; Santana, M.V.D.S.; Gonçalves, L.C.S.; de Souza Neto, L.R.; Ferreira, S.B.; Silva-Junior, F.P. COVID-19: Molecular targets, drug re-purposing and new avenues for drug discovery. Mem. Inst. Oswaldo Cruz, 2020, 115(e200254), e200254.
[http://dx.doi.org/10.1590/0074-02760200254] [PMID: 33027420]
[25]
Gorkhali, R.; Koirala, P.; Rijal, S.; Mainali, A.; Baral, A.; Bhat-tarai, H.K. Structure and function of major SARS-CoV-2 and SARS-CoV proteins. Bioinform. Biol. Insights, 2021, 15, 11779322211025876.
[http://dx.doi.org/10.1177/11779322211025876] [PMID: 34220199]
[26]
Mengist, H.M.; Dilnessa, T.; Jin, T. Structural basis of poten-tial inhibitors targeting SARS-CoV-2 main protease. Front Chem., 2021, 9, 622898.
[http://dx.doi.org/10.3389/fchem.2021.622898] [PMID: 33889562]
[27]
Gaoa, X.; Qin, B.; Chen, P.; Zhu, K.; Hou, P.; Wojdyla, J.A.; Wang, M.; Cui, S. Crystal structure of SARS-CoV-2 papain-like protease. Acta Pharm. Sin. B, 2021, 11(1), 237-245.
[http://dx.doi.org/10.1016/j.apsb.2020.08.014] [PMID: 32895623]
[28]
Barretto, N.; Jukneliene, D.; Ratia, K.; Chen, Z.; Mesecar, A.D.; Baker, S.C. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activi-ty. J. Virol., 2005, 79(24), 15189-15198.
[http://dx.doi.org/10.1128/JVI.79.24.15189-15198.2005] [PMID: 16306590]
[29]
Tian, D.; Liu, Y.; Liang, C.; Xin, L.; Xie, X.; Zhang, D.; Wan, M.; Li, H.; Fu, X.; Liu, H.; Cao, W. An update review of emerging small-molecule therapeutic options for COVID-19. Biomed. Pharmacother., 2021, 137, 111313-111330.
[http://dx.doi.org/10.1016/j.biopha.2021.111313] [PMID: 33556871]
[30]
Weng, Y.L.; Naik, S.R.; Dingelstad, N.; Lugo, M.R.; Kal-yaanamoorthy, S.; Ganesan, A. Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity. Sci. Rep., 2021, 11(1), 7429-7451.
[http://dx.doi.org/10.1038/s41598-021-86471-0] [PMID: 33795718]
[31]
Kneller, D.W.; Phillips, G.; O’Neill, H.M.; Jedrzejczak, R.; Stols, L.; Langan, P.; Joachimiak, A.; Coates, L.; Kovalevsky, A. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat. Commun., 2020, 11(1), 3202-3208.
[http://dx.doi.org/10.1038/s41467-020-16954-7] [PMID: 32581217]
[32]
Anand, K.; Palm, G.J.; Mesters, J.R.; Siddell, S.G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main proteinase re-veals combination of a chymotrypsin fold with an extra &-helical domain. EMBO J., 2002, 21(13), 3213-3224.
[http://dx.doi.org/10.1093/emboj/cdf327] [PMID: 12093723]
[33]
Kneller, D.W.; Phillips, G.; Weiss, K.L.; Pant, S.; Zhang, Q.; O’Neill, H.M.; Coates, L.; Kovalevsky, A. Unusual zwitteri-onic catalytic site of SARS-CoV-2 main protease revealed by neutron crystallography. J. Biol. Chem., 2020, 295(50), 17365-17373.
[http://dx.doi.org/10.1074/jbc.AC120.016154] [PMID: 33060199]
[34]
Douangamath, A.; Fearon, D.; Gehrtz, P.; Krojer, T.; Lukacik, P.; Owen, C.D.; Resnick, E.; Strain-Damerell, C.; Aimon, A.; Ábrányi-Balogh, P.; Brandão-Neto, J.; Carbery, A.; Davison, G.; Dias, A.; Downes, T.D.; Dunnett, L.; Fairhead, M.; Firth, J.D.; Jones, S.P.; Keeley, A.; Keserü, G.M.; Klein, H.F.; Mar-tin, M.P.; Noble, M.E.M.; O’Brien, P.; Powell, A.; Reddi, R.N.; Skyner, R.; Snee, M.; Waring, M.J.; Wild, C.; London, N.; von Delft, F.; Walsh, M.A. Crystallographic and electro-philic fragment screening of the SARS-CoV-2 main protease. Nat. Commun., 2020, 11(1), 5047-5058.
[http://dx.doi.org/10.1038/s41467-020-18709-w] [PMID: 33028810]
[35]
Li, C.; Teng, X.; Qi, Y.; Tang, B.; Shi, H.; Ma, X.; Lai, L. Conformational flexibility of a short loop near the active site of the SARS-3CLpro is essential to maintain catalytic activity. Sci. Rep., 2016, 6, 20918-20927.
[http://dx.doi.org/10.1038/srep20918] [PMID: 26879383]
[36]
Goyal, B.; Goyal, D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum thera-peutic strategy. ACS Comb. Sci., 2020, 22(6), 297-305.
[http://dx.doi.org/10.1021/acscombsci.0c00058] [PMID: 32402186]
[37]
Tallei, T.E.; Tumilaar, S.G.; Niode, N.J. Fatimawali; Kepel, B.J.; Idroes, R.; Effendi, Y.; Sakib, S.A.; Emran, T.B. Poten-tial of plant bioactive compounds as SARS-CoV-2 Main Pro-tease (Mpro) and Spike (S) glycoprotein inhibitors: A molecu-lar docking study. Scientifica (Cairo), 2020, 2020, 6307457.
[http://dx.doi.org/10.1155/2020/6307457] [PMID: 33425427]
[38]
Muratov, E.N.; Amaro, R.; Andrade, C.H.; Brown, N.; Ekins, S.; Fourches, D.; Isayev, O.; Kozakov, D.; Medina-Franco, J.L.; Merz, K.M.; Oprea, T.I.; Poroikov, V.; Schneider, G.; Todd, M.H.; Varnek, A.; Winkler, D.A.; Zakharov, A.V.; Cherkasov, A.; Tropsha, A. A critical overview of computa-tional approaches employed for COVID-19 drug discovery. Chem. Soc. Rev., 2021, 50(16), 9121-9151.
[http://dx.doi.org/10.1039/D0CS01065K] [PMID: 34212944]
[39]
Ghosh, K.; Amin, S.A.; Gayen, S.; Jha, T. Chemical-informatics approach to COVID-19 drug discovery: Explora-tion of important fragments and data mining based prediction of some hits from natural origins as main protease (Mpro) in-hibitors. J. Mol. Struct., 2021, 1224, 129026.
[http://dx.doi.org/10.1016/j.molstruc.2020.129026] [PMID: 32834115]
[40]
Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M.Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N.E.; Martinez, A. COVID-19: Drug targets and po-tential treatments. J. Med. Chem., 2020, 63(21), 12359-12386.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00606] [PMID: 32511912]
[41]
Abdul-Hammed, M.; Adedotun, I.O.; Falade, V.A.; Adepoju, A.J.; Olasupo, S.B.; Akinboade, M.W. Target-based drug dis-covery, ADMET profiling and bioactivity studies of antibiot-ics as potential inhibitors of SARS-CoV-2 main protease (Mpro). Virusdisease, 2021, 32, 1-15.
[http://dx.doi.org/10.1007/s13337-021-00717-z] [PMID: 34226871]
[42]
Zhang, Y.; Tang, L.V. Overview of targets and potential drugs of SARS-CoV-2 according to the viral replication. J. Proteome Res., 2021, 20(1), 49-59.
[http://dx.doi.org/10.1021/acs.jproteome.0c00526] [PMID: 33347311]
[43]
Breidenbach, J.; Lemke, C.; Pillaiyar, T.; Schäkel, L.; Al Hamwi, G.; Diett, M.; Gedschold, R.; Geiger, N.; Lopez, V.; Mirza, S.; Namasivayam, V.; Schiedel, A.C.; Sylvester, K.; Thimm, D.; Vielmuth, C.; Phuong Vu, L.; Zyulina, M.; Bodem, J.; Gütschow, M.; Müller, C.E. Targeting the main protease of SARS-CoV-2: From the establishment of high throughput screening to the design of tailored inhibitors. Angew. Chem. Int. Ed. Engl., 2021, 60(18), 10423-10429.
[http://dx.doi.org/10.1002/anie.202016961] [PMID: 33655614]
[44]
Amin, S.A.; Banerjee, S.; Ghosh, K.; Gayen, S.; Jha, T. Prote-ase targeted COVID-19 drug discovery and its challenges: In-sight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorg. Med. Chem., 2021, 29, 115860-115760.
[http://dx.doi.org/10.1016/j.bmc.2020.115860] [PMID: 33191083]
[45]
Erlanson, D.A.; Jahnke, W. The concept of fragment-based drug discovery. In: Fragment‐based Approaches in Drug Discovery; Jahnke, W.; Erlanson, D.A., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2006; pp. 1-9.
[http://dx.doi.org/10.1002/3527608761.ch1]
[46]
Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty years on: The impact of fragments on drug discov-ery. Nat. Rev. Drug Discov., 2016, 15(9), 605-619.
[http://dx.doi.org/10.1038/nrd.2016.109] [PMID: 27417849]
[47]
Li, Q. Application of fragment-based drug discovery to versa-tile targets. Front. Mol. Biosci., 2020, 7, 180-193.
[http://dx.doi.org/10.3389/fmolb.2020.00180] [PMID: 32850968]
[48]
Bhattarai, A.; Pawnikar, S.; Miao, Y. Mechanism of ligand recognition by human ACE2 receptor. J. Phys. Chem. Lett., 2021, 12(20), 4814-4822.
[http://dx.doi.org/10.1021/acs.jpclett.1c01064] [PMID: 33999630]
[49]
Hattori, S.I.; Higashi-Kuwata, N.; Hayashi, H.; Allu, S.R.; Raghavaiah, J.; Bulut, H.; Das, D.; Anson, B.J.; Lendy, E.K.; Takamatsu, Y.; Takamune, N.; Kishimoto, N.; Murayama, K.; Hasegawa, K.; Li, M.; Davis, D.A.; Kodama, E.N.; Yarchoan, R.; Wlodawer, A.; Misumi, S.; Mesecar, A.D.; Ghosh, A.K.; Mitsuya, H. A small molecule compound with an indole moiety inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun., 2021, 12(1), 668-680.
[http://dx.doi.org/10.1038/s41467-021-20900-6] [PMID: 33510133]
[50]
Vuong, W.; Khan, M.B.; Fischer, C.; Arutyunova, E.; Lamer, T.; Shields, J.; Saffran, H.A.; McKay, R.T.; van Belkum, M.J.; Joyce, M.A.; Young, H.S.; Tyrrell, D.L.; Vederas, J.C.; Lemieux, M.J. Feline coronavirus drug inhibits the main pro-tease of SARS-CoV-2 and blocks virus replication. Nat. Commun., 2020, 11(1), 4282-4290.
[http://dx.doi.org/10.1038/s41467-020-18096-2] [PMID: 32855413]
[51]
Morse, J.S.; Lalonde, T.; Xu, S.; Liu, W.R. Learning from the past: Possible urgent prevention and treatment options for se-vere acute respiratory infections caused by 2019-nCoV. ChemBioChem, 2020, 21(5), 730-738.
[http://dx.doi.org/10.1002/cbic.202000047] [PMID: 32022370]
[52]
Kim, Y.; Liu, H.; Kankanamalage, A.C.G.; Weerasekara, S.; Hua, D.H.; Groutas, W.C.; Chang, K.; Pedersen, N.C. Reversal of the progression of fatal coronavirus infection in cats by a broad-spectrum coronavirus protease inhibitor. PLoS Pathog., 2016, 12(5), e1005650.
[http://dx.doi.org/10.1371/journal.ppat.1005650] [PMID: 27166862]
[53]
Freitas, B.T.; Durie, I.A.; Murray, J.; Longo, J.E.; Miller, H.C.; Crich, D.; Hogan, R.J.; Tripp, R.A.; Pegan, S.D. Characteriza-tion and noncovalent inhibition of the deubiquitinase and de-ISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect. Dis., 2020, 6(8), 2099-2109.
[http://dx.doi.org/10.1021/acsinfecdis.0c00168] [PMID: 32428392]
[54]
Xiu, S.; Dick, A.; Ju, H.; Mirzaie, S.; Abdi, F.; Cocklin, S.; Zhan, P.; Liu, X. Inhibitors of SARS-CoV-2 entry: Current and future opportunities. J. Med. Chem., 2020, 63(21), 12256-12274.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00502] [PMID: 32539378]
[55]
Vankadari, N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int. J. Antimicrob. Agents, 2020, 56(2), 105998-106002.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105998] [PMID: 32360231]
[56]
(a) Efficacy of intravenous almitrine in reducing the need for mechanical ventilation in patients with hypoxemic acute respiratory failure due to Covid-19-related pneumonia (AIRVM-COVID). Available from: https://clinicaltrials.gov/ct2/show/NCT04357457 (accessed on September 25, 2021).
(b) Prediction of potential commercially inhibitors against SARSCoV-2 by multi-task deep model. Available from: https://arxiv.org/ftp/arxiv/papers/2003/2003.00728.pdf (accessed on November 9, 2021).
[57]
Yang, L.; Pei, R.J.; Li, H.; Ma, X.N.; Zhou, Y.; Zhu, F.H.; He, P.L.; Tang, W.; Zhang, Y.C.; Xiong, J.; Xiao, S.Q.; Tong, X.K.; Zhang, B.; Zuo, J.P. Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacol. Sin., 2021, 42(8), 1347-1353.
[http://dx.doi.org/10.1038/s41401-020-00556-6] [PMID: 33116249]
[58]
Choudhury, C. Fragment tailoring strategy to design novel chemical entities as potential binders of novel corona virus main protease. J. Biomol. Struct. Dyn., 2021, 39(10), 3733-3746.
[http://dx.doi.org/10.1080/07391102.2020.1771424] [PMID: 32452282]
[59]
Manandhar, A.; Srinivasulu, V.; Hamad, M.; Tarazi, H.; Omar, H.; Colussi, D.J.; Gordon, J.; Childers, W.; Klein, M.L.; Al-Tel, T.H.; Abou-Gharbia, M.; Elokely, K.M. Discovery of novel small-molecule inhibitors of SARS-CoV-2 main prote-ase as potential leads for COVID-19 treatment. J. Chem. Inf. Model., 2021, 61(9), 4745-4757.
[http://dx.doi.org/10.1021/acs.jcim.1c00684] [PMID: 34403259]
[60]
Chen, Z.; Cui, Q.; Cooper, L.; Zhang, P.; Lee, H.; Chen, Z.; Wang, Y.; Liu, X.; Rong, L.; Du, R. Ginkgolic acid and ana-cardic acid are specific covalent inhibitors of SARS-CoV-2 cysteine proteases. Cell Biosci., 2021, 11(1), 45-53.
[http://dx.doi.org/10.1186/s13578-021-00564-x] [PMID: 33640032]
[61]
Tong, S.; Su, Y.; Yu, Y.; Wu, C.; Chen, J.; Wang, S.; Jiang, J. Ribavirin therapy for severe COVID-19: A retrospective co-hort study. Int. J. Antimicrob. Agents, 2020, 56(3), 106114-106119.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106114] [PMID: 32712334]
[62]
Xiang, R.; Yu, Z.; Wang, Y.; Wang, L.; Huo, S.; Li, Y.; Liang, R.; Hao, Q.; Ying, T.; Gao, Y.; Yu, F.; Jiang, S. Recent ad-vances in developing small-molecule inhibitors against SARS-CoV-2. Acta Pharm. Sin. B, 2021. in press
[http://dx.doi.org/10.1016/j.apsb.2021.06.016]
[63]
Hassanipour, S.; Arab-Zozani, M.; Amani, B.; Heidarzad, F.; Fathalipour, M.; Martinez-de-Hoyo, R. The efficacy and safe-ty of Favipiravir in treatment of COVID-19: A systematic re-view and meta-analysis of clinical trials. Sci. Rep., 2021, 11(1), 11022-11033.
[http://dx.doi.org/10.1038/s41598-021-90551-6] [PMID: 34040117]
[64]
Efficacy and safety of molnupiravir (MK-4482) in hospitalized adult participants with COVID-19 (MK-4482-001). Available from: https://clinicaltrials.gov/ct2/show/NCT04575584 (accessed on September 25, 2021).
[65]
Jin, Z.; Zhao, Y.; Sun, Y.; Zhang, B.; Wang, H.; Wu, Y.; Zhu, Y.; Zhu, C.; Hu, T.; Du, X.; Duan, Y.; Yu, J.; Yang, X.; Yang, X.; Yang, K.; Liu, X.; Guddat, L.W.; Xiao, G.; Zhang, L.; Yang, H.; Rao, Z. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat. Struct. Mol. Biol., 2020, 27(6), 529-532.
[http://dx.doi.org/10.1038/s41594-020-0440-6] [PMID: 32382072]
[66]
Riva, L.; Yuan, S.; Yin, X.; Martin-Sancho, L.; Matsunaga, N.; Pache, L.; Burgstaller-Muehlbacher, S.; De Jesus, P.D.; Teriete, P.; Hull, M.V.; Chang, M.W.; Chan, J.F-W.; Cao, J.; Poon, V.K-M.; Herbert, K.M.; Cheng, K.; Nguyen, T.H.; Rubanov, A.; Pu, Y.; Nguyen, C.; Choi, A.; Rathnasinghe, R.; Schotsaert, M.; Miorin, L.; Dejosez, M.; Zwaka, T.P.; Sit, K.Y.; Martinez-Sobrido, L.; Liu, W.C.; White, K.M.; Chap-man, M.E.; Lendy, E.K.; Glynne, R.J.; Albrecht, R.; Ruppin, E.; Mesecar, A.D.; Johnson, J.R.; Benner, C.; Sun, R.; Schultz, P.G.; Su, A.I.; García-Sastre, A.; Chatterjee, A.K.; Yuen, K.Y.; Chanda, S.K. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature, 2020, 586(7827), 113-119.
[http://dx.doi.org/10.1038/s41586-020-2577-1] [PMID: 32707573]
[67]
Zhang, Q.; Xiang, R.; Huo, S.; Zhou, Y.; Jiang, S.; Wang, Q.; Yu, F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct. Target. Ther., 2021, 6(1), 233-252.
[http://dx.doi.org/10.1038/s41392-021-00653-w] [PMID: 34117216]
[68]
(a)Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andro-grapholide as a potential inhibitor of SARS-CoV-2 main pro-tease: An in silico approach. J. Biomol. Struct. Dyn., 2021, 39(9), 3092-3098.
[http://dx.doi.org/10.1080/07391102.2020.1760136] [PMID: 32329419]
(b)Lim, X.Y.; Chan, J.S.W.; Tan, T.Y.C.; Teh, B.P.; Razak, M.R.M.A.; Mohamad, S.; Mohamed, A.F.S. Andrographis paniculata (Burm. F.) Wall. Ex Nees, andrographolide, and andrographolide analogues as SARS-CoV-2 antivirals? A Rapid Review. Nat. Prod. Commun. , 2021, 16(5), 1-15.
[http://dx.doi.org/10.1177/1934578X211016610]
(c)Shi, T.H.; Huang, Y.L.; Chen, C.C.; Pi, W.C.; Hsu, Y-L.; Lo, L.C.; Chen, W.Y.; Fu, S.L.; Lin, C.H. Andro-grapholide and its fluorescent derivative inhibit the main pro-teases of 2019-nCoV and SARS-CoV through covalent link-age. Biochem. Biophys. Res. Commun., 2020, 533(3), 467-473.
[http://dx.doi.org/10.1016/j.bbrc.2020.08.086] [PMID: 32977949]
[69]
Lee, J.; Worrall, L.J.; Vuckovic, M.; Rosell, F.I.; Gentile, F.; Ton, A-T.; Caveney, N.A.; Ban, F.; Cherkasov, A.; Paetzel, M.; Strynadka, N.C.J. Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nat. Commun., 2020, 11(1), 5877-5886.
[http://dx.doi.org/10.1038/s41467-020-19662-4] [PMID: 33208735]
[70]
Namchuk, M.N. Early returns on small molecule therapeutics for SARS-CoV-2. ACS Infect. Dis., 2021, 7(6), 1298-1302.
[http://dx.doi.org/10.1021/acsinfecdis.0c00874] [PMID: 33417425]
[71]
Erlanson, D.A. Many small steps towards a COVID-19 drug. Nat. Commun., 2020, 11(1), 5048-5052.
[http://dx.doi.org/10.1038/s41467-020-18710-3] [PMID: 33028832]
[72]
Sreeramulu, S.; Richter, C.; Kuehn, T.; Azzaoui, K.; Blom-mers, M.J.J.; Del Conte, R.; Fragai, M.; Trieloff, N.; Schmied-er, P.; Nazaré, M.; Specker, E.; Ivanov, V.; Oschkinat, H.; Banci, L.; Schwalbe, H. NMR quality control of fragment li-braries for screening. J. Biomol. NMR, 2020, 74(10-11), 555-563.
[http://dx.doi.org/10.1007/s10858-020-00327-9] [PMID: 32533387]
[73]
Ahmad, S.; Usman Mirza, M.; Yean Kee, L.; Nazir, M.; Abdul Rahman, N.; Trant, J.F.; Abdullah, I. Fragment-based in silico design of SARS-CoV-2 main protease inhibitors. Chem. Biol. Drug Des., 2021, 98(4), 604-619.
[http://dx.doi.org/10.1111/cbdd.13914] [PMID: 34148292]
[74]
Ghosh, K.; Amin, S.A.; Gayen, S.; Jha, T. Unmasking of cru-cial structural fragments for coronavirus protease inhibitors and its implications in COVID-19 drug discovery. J. Mol. Struct., 2021, 1237, 130366-130377.
[http://dx.doi.org/10.1016/j.molstruc.2021.130366] [PMID: 33814612]
[75]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[76]
Hossain, M.U.; Bhattacharjee, A.; Emon, M.T.H.; Chow-dhury, Z.M.; Ahammad, I.; Mosaib, M.G.; Moniruzzaman, M.; Rahman, M.H.; Islam, M.N.; Ahmed, I.; Amin, M.R.; Rashed, A.; Das, K.C.; Keya, C.A.; Salimullah, M. Novel mu-tations in NSP-1 and PLPro of SARS-CoV-2 NIB-1 genome mount for effective therapeutics. J. Genet. Eng. Biotechnol., 2021, 19(1), 52-62.
[http://dx.doi.org/10.1186/s43141-021-00152-z] [PMID: 33797663]
[77]
Douangamath, A.; Powell, A.; Fearon, D.; Collins, P.M.; Tal-on, R.; Krojer, T.; Skyner, R.; Brandao-Neto, J.; Dunnett, L.; Dias, A.; Aimon, A.; Pearce, N.M.; Wild, C.; Gorrie-Stone, T.; von Delft, F. Achieving efficient fragment screening at XChem facility at diamond light source. J. Vis. Exp., 2021, 171(171), e62414.
[http://dx.doi.org/10.3791/62414] [PMID: 34125095]
[78]
Edink, E.; Jansen, C.; Leurs, R.; Esch, I.J.P. The heat is on: Thermodynamic analysis in fragment-based drug discovery. Drug Discov. Today. Technol., 2010, 7(3), e147-e202.
[http://dx.doi.org/10.1016/j.ddtec.2010.12.001] [PMID: 24103770]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy