Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Styrylquinolines Derivatives: SAR Study and Synthetic Approaches

Author(s): Monika Saini, Rina Das, Dinesh Kumar Mehta* and Samrat Chauhan

Volume 18, Issue 8, 2022

Published on: 06 April, 2022

Page: [859 - 870] Pages: 12

DOI: 10.2174/1573406418666220214085856

Price: $65

conference banner
Abstract

In the present-day scenario, heterocyclic derivatives have revealed the primary function of various medicinal agents precious for humanity. Out of a diverse range of heterocycles, Styrylquinolines scaffolds have been proved to play an essential role in a broad range of biological activities, including anti-HIV-1, antimicrobial, anti-inflammatory, anti-Alzheimer activity with antiproliferative effects on tumor cell lines.

Due to the immense pharmacological importance, distinct synthetic methods have been executed to attain new drug entities from Styrylquinolines. Various schemes for synthesizing Styrylquinolines derivatives like one-pot, ultrasound-promoted heterogeneous acid-catalysed, microwave-assisted, solvent-free, and green synthesis were discussed in the present review. Some products of Styrylquinolines are in clinical trials, and patents are also granted for the novel synthesis of Styrylquinolines.

According to the structure-activity relationship, replacement at the R-7 and R-8 positions is required for various activities.

In this review, recent synthetic approaches in the medicinal chemistry of Styrylquinolines and potent Styrylquinolines derivatives based on structural activity relationships (SAR) are outlined. Moreover, their primary methods and modifications are also discussed.

Keywords: Heterocycles, styrylquinolines, SAR study, synthetic schemes, quinoline, styryl moiety.

Graphical Abstract

[1]
Ebenso, E.E.; Khaled, K.; Shukla, S.K.; Singh, A.K.; Eddy, N.; Saracoglu, M. Quantum chemical investigations on quinoline derivatives as effective corrosion inhibitors for mild steel in acidic medium. Int. J. Electrochem. Sci., 2012, 7, 5643-5676.
[2]
Mirza, B.; Samiei, S.S. Microwave assisted one-pot preparation of quinoline derivatives without any solvent according to green chemistry. JCCE, 2011, 5(7), 644-647.
[3]
El-Subbagh, H.I.; Abu-Zaid, S.M.; Mahran, M.A.; Badria, F.A.; Al-Obaid, A.M. Synthesis and biological evaluation of certain α,β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents. J. Med. Chem., 2000, 43(15), 2915-2921.
[http://dx.doi.org/10.1021/jm000038m] [PMID: 10956199]
[4]
Gahtori, P.; Ghosh, S.K.; Parida, P.; Prakash, A.; Gogoi, K.; Bhat, H.R.; Singh, U.P. Antimalarial evaluation and docking studies of hybrid phenylthiazolyl-1,3,5-triazine derivatives: A novel and potential antifolate lead for Pf-DHFR-TS inhibition. Exp. Parasitol., 2012, 130(3), 292-299.
[http://dx.doi.org/10.1016/j.exppara.2011.12.014] [PMID: 22233734]
[5]
LaMontagne, M.P.; Markovac, A.; Khan, M.S. Antimalarials. 13. 5-Alkoxy analogues of 4-methylprimaquine. J. Med. Chem., 1982, 25(8), 964-968.
[http://dx.doi.org/10.1021/jm00350a016] [PMID: 6750123]
[6]
Wen, X.; Wang, S.B.; Liu, D.C.; Gong, G.H.; Quan, Z.S. Synthesis and evaluation of the anti-inflammatory activity of quinoline deriva-tives. Med. Chem. Res., 2015, 24(6), 2591-2603.
[http://dx.doi.org/10.1007/s00044-015-1323-y]
[7]
Sharma, R.; Kour, P.; Kumar, A. A review on transition-metal mediated synthesis of quinolines. J. Chem. Sci., 2018, 130(6), 1-25.
[http://dx.doi.org/10.1007/s12039-018-1466-8]
[8]
Gaurav, A.; Singh, R. Pharmacophore modeling, 3DQSAR, and docking-based design of polysubstituted quinolines derivatives as inhibi-tors of phosphodiesterase 4, and preliminary evaluation of their anti-asthmatic potential. Med. Chem. Res., 2014, 23(12), 5008-5030.
[http://dx.doi.org/10.1007/s00044-014-1048-3]
[9]
Musiol, R.; Jampilek, J.; Nycz, J.E.; Pesko, M.; Carroll, J.; Kralova, K.; Vejsova, M.; O’Mahony, J.; Coffey, A.; Mrozek, A.; Polanski, J. Investigating the activity spectrum for ring-substituted 8-hydroxyquinolines. Molecules, 2010, 15(1), 288-304.
[http://dx.doi.org/10.3390/molecules15010288] [PMID: 20110891]
[10]
Bhat, H.R.; Gupta, S.K.; Singh, U.P. Discovery of potent, novel antibacterial hybrid conjugates from 4-aminoquinoline and 1, 3, 5-triazine: Design, synthesis and antibacterial evaluation. RSC Adv., 2012, 2(33), 12690-12695.
[http://dx.doi.org/10.1039/c2ra22353h]
[11]
Cieslik, W.; Spaczynska, E.; Malarz, K.; Tabak, D.; Nevin, E.; O’Mahony, J.; Coffey, A.; Mrozek-Wilczkiewicz, A.; Jampilek, J.; Musiol, R. Investigation of the antimycobacterial activity of 8-hydroxyquinolines. Med. Chem., 2015, 11(8), 771-779.
[http://dx.doi.org/10.2174/1573406410666150807111703] [PMID: 26256587]
[12]
Jampilek, J.; Musiol, R.; Pesko, M.; Kralova, K.; Vejsova, M.; Carroll, J.; Coffey, A.; Finster, J.; Tabak, D.; Niedbala, H.; Kozik, V.; Polan-ski, J.; Csollei, J.; Dohnal, J. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and biological activity. Molecules, 2009, 14(3), 1145-1159.
[http://dx.doi.org/10.3390/molecules14031145] [PMID: 19305366]
[13]
Musiol, R.; Jampilek, J.; Pesko, M.; Kralova, K.; Kowalczyk, W.; Finster, J. Preparation and herbicidal properties of ring-substituted 4-chloro-2-styrylquinazolines. Int. Electron. Conf. Synth. Org. Chem., 2011, 15.
[14]
Rams-Baron, M.; Dulski, M.; Mrozek-Wilczkiewicz, A.; Korzec, M.; Cieslik, W. Spaczyńska, E.; Bartczak, P.; Ratuszna, A.; Polanski, J.; Musiol, R. Synthesis of new styrylquinoline cellular dyes, fluorescent properties, cellular localization and cytotoxic behavior. PLoS One, 2015, 10(6), e0131210.
[http://dx.doi.org/10.1371/journal.pone.0131210] [PMID: 26114446]
[15]
Sissi, C.; Palumbo, M. The quinolone family: From antibacterial to anticancer agents. Curr. Med. Chem. Anticancer Agents, 2003, 3(6), 439-450.
[http://dx.doi.org/10.2174/1568011033482279] [PMID: 14529452]
[16]
Sharma, V.; Mehta, D.K.; Das, R. Synthetic Methods of Quinoline derivatives as potent Anticancer agents. Mini Rev. Med. Chem., 2017, 17(16), 1557-1572.
[http://dx.doi.org/10.2174/1389557517666170510104954] [PMID: 28494729]
[17]
Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as antimalarials. Eur. J. Med. Chem., 2010, 45(8), 3245-3264.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.011] [PMID: 20466465]
[18]
Machura, B.; Wolff, M.; Kowalczyk, W.; Musiol, R. Novel rhenium (V) complexes of 8-hydroxyquinoline derivatives-Synthesis, spectro-scopic characterization, X-ray structure and DFT calculations. Polyhedron, 2012, 33(1), 388-395.
[http://dx.doi.org/10.1016/j.poly.2011.11.051]
[19]
Machura, B.; Wolff, M. Cieślik, W.; Musioł R. Novel oxorhenium (V) complexes of 8-hydroxyquinoline derivatives–Synthesis, spectro-scopic characterization, X-ray crystal structures and DFT calculations. Polyhedron, 2013, 51, 263-274.
[http://dx.doi.org/10.1016/j.poly.2012.12.028]
[20]
Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur. J. Med. Chem., 2009, 44(10), 4244-4248.
[http://dx.doi.org/10.1016/j.ejmech.2009.05.021] [PMID: 19540630]
[21]
Bawa, S.; Kumar, S.; Drabu, S.; Kumar, R. Structural modifications of quinoline-based antimalarial agents: Recent developments. J. Pharm. Bioallied Sci., 2010, 2(2), 64-71.
[http://dx.doi.org/10.4103/0975-7406.67002] [PMID: 21814435]
[22]
Özyanik, M.; Demirci, S.; Bektaş, H.; Demirbaş, N.; Demirbaş, A.; Karaoğlu, Ş.A. Preparation and antimicrobial activity evaluation of some quinoline derivatives containing an azole nucleus. Turk. J. Chem., 2012, 36(2), 233-246.
[23]
Graves, P.R.; Kwiek, J.J.; Fadden, P.; Ray, R.; Hardeman, K.; Coley, A.M.; Foley, M.; Haystead, T.A. Discovery of novel targets of quino-line drugs in the human purine binding proteome. Mol. Pharmacol., 2002, 62(6), 1364-1372.
[http://dx.doi.org/10.1124/mol.62.6.1364] [PMID: 12435804]
[24]
Solomon, V.R.; Lee, H. Chloroquine and its analogs: A new promise of an old drug for effective and safe cancer therapies. Eur. J. Pharmacol., 2009, 625(1-3), 220-233.
[http://dx.doi.org/10.1016/j.ejphar.2009.06.063] [PMID: 19836374]
[25]
Sharma, V.; Das, R.; Mehta, D.K.; Sharma, D.; Sahu, R.K. Exploring quinolone scaffold: Unravelling the chemistry of anticancer drug design. Mini Rev. Med. Chem., 2021, 22(1), 69-88.
[http://dx.doi.org/10.2174/1389557521666210112142136] [PMID: 33438536]
[26]
Huang, H.; Jiang, H.; Chen, K.; Liu, H. A simple and convenient copper-catalyzed tandem synthesis of quinoline-2-carboxylates at room temperature. J. Org. Chem., 2009, 74(15), 5476-5480.
[http://dx.doi.org/10.1021/jo901101v] [PMID: 19572501]
[27]
Rubtsov, M.V.; Pershin, G.N.; Yanbuktin, N.A.; Pelenitsina, L.A.; Gurevich, T.J.; Novitskaya, N.A.; Milovanova, S.N.; Vichkanova, S.A. Derivatives of 2-styrylquinoline. J. Med. Pharm. Chem., 1960, 2(2), 113-131.
[http://dx.doi.org/10.1021/jm50009a001] [PMID: 14439929]
[28]
Li, Y.; Shi, X.; Xie, N.; Zhao, Y.; Li, S. 3, 3-Dimethyl-1 H-pyrrolo [3, 2-g] quinolin-2 (3 H)-one derivatives as novel Raf kinase inhibi-tors. MedChemComm, 2013, 4(2), 367-370.
[http://dx.doi.org/10.1039/C2MD20275A] [PMID: 23585921]
[29]
Dhanawat, M.; Mehta, D.K.; Das, R. An elite scaffold and a wonder pharmacophore in drug discovery. Styrylquinoline. Mini. Rev. Med. Chem., 2021, 21(14), 1849-1864.
[30]
Ouali, M.; Laboulais, C.; Leh, H.; Gill, D.; Desmaële, D.; Mekouar, K.; Zouhiri, F.; d’Angelo, J.; Auclair, C.; Mouscadet, J.F.; Le Bret, M. Modeling of the inhibition of retroviral integrases by styrylquinoline derivatives. J. Med. Chem., 2000, 43(10), 1949-1957.
[http://dx.doi.org/10.1021/jm9911581] [PMID: 10821707]
[31]
Polański, J.; Niedbała, H.; Musioł, R.; Tabak, D.; Podeszwa, B.; Gieleciak, R.; Bak, A.; Pałka, A.; Magdziarz, T. Analogues of the styrylquinoline and styrylquinazoline HIV-1 integrase inhibitors: Design and synthetic problems. Acta Pol. Pharm., 2004, 61(Suppl.), 3-4.
[PMID: 15909921]
[32]
Cieslik, W.; Musiol, R.; Nycz, J.E.; Jampilek, J.; Vejsova, M.; Wolff, M.; Machura, B.; Polanski, J. Contribution to investigation of antimi-crobial activity of styrylquinolines. Bioorg. Med. Chem., 2012, 20(24), 6960-6968.
[http://dx.doi.org/10.1016/j.bmc.2012.10.027] [PMID: 23159041]
[33]
Vandekerckhove, S.; De Moor, S.; Segers, D.; de Kock, C.; Smith, P.J.; Chibale, K. Synthesis and antiplasmodial evaluation of aziridine–(iso) quinoline hybrids and their ring-opening products. MedChemComm, 2013, 4(4), 724-730.
[http://dx.doi.org/10.1039/c3md20377h]
[34]
Bhat, H.R.; Singh, U.P.; Gahtori, P.; Ghosh, S.K.; Gogoi, K.; Prakash, A. Antimalarial activity and docking studies of novel bi-functional hybrids derived from 4-aminoquinoline and 1, 3, 5-triazine against wild and mutant malaria parasites as pf-DHFR inhibitor. RSC Adv., 2013, 3(9), 2942-2952.
[http://dx.doi.org/10.1039/c2ra21915h]
[35]
Bhat, H.R.; Singh, U.P.; Gahtori, P.; Ghosh, S.K.; Gogoi, K.; Prakash, A. 4-Aminoquinoline-1, 3, 5-triazine: Design, synthesis, in vitro antimalarial activity and docking studies. New J. Chem., 2013, 37(9), 2654-2662.
[http://dx.doi.org/10.1039/c3nj00317e]
[36]
Roberts, B.F.; Zheng, Y.; Cleaveleand, J.; Lee, S.; Lee, E.; Ayong, L.; Yuan, Y.; Chakrabarti, D. 4-Nitro styrylquinoline is an antimalarial inhibiting multiple stages of Plasmodium falciparum asexual life cycle. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(1), 120-129.
[http://dx.doi.org/10.1016/j.ijpddr.2017.02.002] [PMID: 28285258]
[37]
Wang, X-Q.; Xia, C-L.; Chen, S-B.; Tan, J-H.; Ou, T-M.; Huang, S-L.; Li, D.; Gu, L.Q.; Huang, Z.S. Design, synthesis, and biological eval-uation of 2-arylethenylquinoline derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2015, 89, 349-361.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.018] [PMID: 25462251]
[38]
Musiol, R. Styrylquinoline - A versatile scaffold in medicinal chemistry. Med. Chem., 2020, 16(2), 141-154.
[http://dx.doi.org/10.2174/1573406415666190603103012] [PMID: 31161997]
[39]
Musiol, R. An overview of quinoline as a privileged scaffold in cancer drug discovery. Expert Opin. Drug Discov., 2017, 12(6), 583-597.
[http://dx.doi.org/10.1080/17460441.2017.1319357] [PMID: 28399679]
[40]
Kumar, D.; Kumar, A.; Qadri, M.M.; Ansari, M.I.; Gautam, A.; Chakraborti, A.K. In (OTf) 3-catalyzed synthesis of 2-styryl quinolines: Scope and limitations of metal Lewis acids for tandem Friedländer annulation–Knoevenagel condensation. RSC Adv., 2015, 5(4), 2920-2927.
[http://dx.doi.org/10.1039/C4RA10613J]
[41]
Czaplinska, B.; Spaczynska, E.; Musiol, R. Quinoline fluorescent probes for zinc–from diagnostic to therapeutic molecules in treating neurodegenerative diseases. Med. Chem., 2018, 14(1), 19-33.
[http://dx.doi.org/10.2174/1573406413666171002121817] [PMID: 28969572]
[42]
Mahajan, S.; Gupta, S.; Jariwala, N.; Bhadane, D.; Bhutani, L.K.; Kulkarni, S. Design, synthesis and anti-HIV-1 activity of modified styrylquinolines. Lett. Drug Des. Discov., 2018, 15(9), 937-944.
[http://dx.doi.org/10.2174/1570180815666171212143339]
[43]
Zouhiri, F.; Mouscadet, J-F.; Mekouar, K.; Desmaële, D.; Savouré, D.; Leh, H.; Subra, F.; Le Bret, M.; Auclair, C.; d’Angelo, J. Structure-activity relationships and binding mode of styrylquinolines as potent inhibitors of HIV-1 integrase and replication of HIV-1 in cell culture. J. Med. Chem., 2000, 43(8), 1533-1540.
[http://dx.doi.org/10.1021/jm990467o] [PMID: 10780910]
[44]
Jiao, Z-G.; He, H-Q.; Zeng, C-C.; Tan, J-J.; Hu, L-M.; Wang, C-X. Design, synthesis and anti-HIV integrase evaluation of N-(5-chloro-8-hydroxy-2-styrylquinolin-7-yl)benzenesulfonamide derivatives. Molecules, 2010, 15(3), 1903-1917.
[http://dx.doi.org/10.3390/molecules15031903] [PMID: 20336021]
[45]
Normand-Bayle, M.; Bénard, C.; Zouhiri, F.; Mouscadet, J-F.; Leh, H.; Thomas, C-M.; Mbemba, G.; Desmaële, D.; d’Angelo, J. New HIV-1 replication inhibitors of the styryquinoline class bearing aroyl/acyl groups at the C-7 position: Synthesis and biological activity. Bioorg. Med. Chem. Lett., 2005, 15(18), 4019-4022.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.036] [PMID: 16002283]
[46]
Deprez, E.; Barbe, S.; Kolaski, M.; Leh, H.; Zouhiri, F.; Auclair, C.; Brochon, J.C.; Le Bret, M.; Mouscadet, J.F. Mechanism of HIV-1 integrase inhibition by styrylquinoline derivatives in vitro. Mol. Pharmacol., 2004, 65(1), 85-98.
[http://dx.doi.org/10.1124/mol.65.1.85] [PMID: 14722240]
[47]
Mrozek-Wilczkiewicz, A.; Kuczak, M.; Malarz, K.; Cieślik, W.; Spaczyńska, E.; Musiol, R. The synthesis and anticancer activity of 2-styrylquinoline derivatives. A p53 independent mechanism of action. Eur. J. Med. Chem., 2019, 177, 338-349.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.061] [PMID: 31158748]
[48]
Prachayasittikul, V.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. 8-Hydroxyquinolines: A review of their metal chelating properties and medicinal applications. Drug Des. Devel. Ther., 2013, 7, 1157-1178.
[http://dx.doi.org/10.2147/DDDT.S49763] [PMID: 24115839]
[49]
Mrozek-Wilczkiewicz, A.; Malarz, K.; Rams-Baron, M.; Serda, M.; Bauer, D.; Montforts, F-P.; Ratuszna, A.; Burley, T.; Polanski, J.; Mu-siol, R. Iron chelators and exogenic photosensitizers. Synergy through oxidative stress gene expression. J. Cancer, 2017, 8(11), 1979-1987.
[http://dx.doi.org/10.7150/jca.17959] [PMID: 28819397]
[50]
Mrozek-Wilczkiewicz, A.; Spaczynska, E.; Malarz, K.; Cieslik, W.; Rams-Baron, M.; Kryštof, V.; Musiol, R. Design, synthesis and in vitro activity of anticancer styrylquinolines. The p53 independent mechanism of action. PLoS One, 2015, 10(11), e0142678.
[http://dx.doi.org/10.1371/journal.pone.0142678] [PMID: 26599982]
[51]
Sliman, F.; Blairvacq, M.; Durieu, E.; Meijer, L.; Rodrigo, J.; Desmaële, D. Identification and structure-activity relationship of 8-hydroxy-quinoline-7-carboxylic acid derivatives as inhibitors of Pim-1 kinase. Bioorg. Med. Chem. Lett., 2010, 20(9), 2801-2805.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.061] [PMID: 20363627]
[52]
Kharchenko, O.; Smokal, V.; Krupka, A.; Kolendo, A. Design, synthesis, and photochemistry of styrylquinoline-containing polymers. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 2016, 640(1), 71-77.
[http://dx.doi.org/10.1080/15421406.2016.1255516]
[53]
Oliveri, V.; Vecchio, G. 8-Hydroxyquinolines in medicinal chemistry: A structural perspective. Eur. J. Med. Chem., 2016, 120, 252-274.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.007] [PMID: 27191619]
[54]
Valko, K.; My Du, C.; Bevan, C.; Reynolds, D.P.; Abraham, M.H. Rapid method for the estimation of octanol/water partition coefficient (log P(oct)) from gradient RP-HPLC retention and a hydrogen bond acidity term (zetaalpha(2)(H)). Curr. Med. Chem., 2001, 8(9), 1137-1146.
[http://dx.doi.org/10.2174/0929867013372643] [PMID: 11472245]
[55]
Machura, B. Miłek, J.; Kusz, J.; Nycz, J.; Tabak, D. Reactivity of oxorhenium (V) complexes towards quinoline carboxylic acids. X-ray structure of [ReOCl2 (hquin-7-COOH)(PPh3)]· OPPh3, [ReOBr2 (hquin-7-COOH)(PPh3)] and [ReOX2 (hmquin-7-COOH) (PPh3) DFT and TD-DFT calculations for. Polyhedron, 2008, 27(3), 1121-1130.
[http://dx.doi.org/10.1016/j.poly.2007.12.006]
[56]
Huang, Y-M.; Alharbi, N.S.; Sun, B.; Shantharam, C.S.; Rakesh, K.P.; Qin, H-L. Synthetic routes and structure-activity relationships (SAR) of anti-HIV agents: A key review. Eur. J. Med. Chem., 2019, 181, 111566.
[http://dx.doi.org/10.1016/j.ejmech.2019.111566] [PMID: 31401538]
[57]
Kumar, D.; Sharma, P.; Kaur, R.; Lobe, M.M.; Gupta, G.K.; Ntie-Kang, F. In search of therapeutic candidates for HIV/AIDS: Rational approaches, design strategies, structure–activity relationship and mechanistic insights. RSC Adv., 2021, 11(29), 17936-17964.
[http://dx.doi.org/10.1039/D0RA10655K]
[58]
Anderson, V.E.; Osheroff, N. Type II topoisomerases as targets for quinolone antibacterials: Turning Dr. Jekyll into Mr. Hyde. Curr. Pharm. Des., 2001, 7(5), 337-353.
[http://dx.doi.org/10.2174/1381612013398013] [PMID: 11254893]
[59]
Pierre, F.; Stefan, E.; Nédellec, A-S.; Chevrel, M-C.; Regan, C.F.; Siddiqui-Jain, A.; Macalino, D.; Streiner, N.; Drygin, D.; Haddach, M.; O’Brien, S.E.; Anderes, K.; Ryckman, D.M. 7-(4H-1,2,4-Triazol-3-yl)benzo[c][2,6]naphthyridines: A novel class of Pim kinase inhibitors with potent cell antiproliferative activity. Bioorg. Med. Chem. Lett., 2011, 21(22), 6687-6692.
[http://dx.doi.org/10.1016/j.bmcl.2011.09.059] [PMID: 21982499]
[60]
Musiol, R.; Podeszwa, B.; Finster, J.; Niedbala, H.; Polanski, J. An efficient microwave-assisted synthesis of structurally diverse styrylquinolines. Monatsh. Chem., 2006, 137(9), 1211-1217.
[http://dx.doi.org/10.1007/s00706-006-0513-1]
[61]
Dubrovin, A.; Mikhalev, A.; Ukhov, S.; Goldshtein, A.; Novikova, V.; Odegova, T. Synthesis, properties, and biological activities of 2-methyl-and 2-styrylquinoline-4-carboxylic acids. Pharm. Chem. J., 2015, 49(5), 309-312.
[http://dx.doi.org/10.1007/s11094-015-1275-z]
[62]
Shan, Y.; Zhang, J.; Liu, Z.; Wang, M.; Dong, Y. Developments of combretastatin A-4 derivatives as anticancer agents. Curr. Med. Chem., 2011, 18(4), 523-538.
[http://dx.doi.org/10.2174/092986711794480221] [PMID: 21143124]
[63]
Sewell, P.; Hawking, F. Chemotherapy of experimental filariasis. Br. J. Pharmacol. Chemother., 1950, 5(2), 239-260.
[http://dx.doi.org/10.1111/j.1476-5381.1950.tb01011.x] [PMID: 15426727]
[64]
Muscia, G.C.; Asis, S.E.; Buldain, G.Y. Microwave-assisted synthesis of 2-styrylquinoline-4-carboxylic acids as antitubercular agents. Med. Chem., 2017, 13(5), 448-452.
[http://dx.doi.org/10.2174/1573406412666160901102710] [PMID: 27585570]
[65]
Dabiri, M.; Salehi, P.; Baghbanzadeh, M.; Nikcheh, M.S. A new and efficient one-pot procedure for the synthesis of 2-styrylquinolines. Tetrahedron Lett., 2008, 49(37), 5366-5368.
[http://dx.doi.org/10.1016/j.tetlet.2008.06.054]
[66]
Gao, W.; Li, Z.; Xu, Q.; Li, Y. First synthesis of novel 2, 4-bis ((E)-styryl) quinoline-3-carboxylate derivatives and their antitumor activi-ty. RSC Adv., 2018, 8(68), 38844-38849.
[http://dx.doi.org/10.1039/C8RA08023B]
[67]
Kowalski, K.; Koceva-Chyła, A.; Szczupak, Ł.; Hikisz, P.J. Bernasi nska, A. Rajnisz, J. Solecka, B. Therrien. J. Organomet. Chem., 2013, 7, 41-742.
[68]
Li, V.; Gavrishova, T.; Budyka, M. Microwave-assisted solvent-free synthesis of 2-styrylquinolines in the presence of zinc chloride. Russ. J. Org. Chem., 2012, 48(6), 823-828.
[http://dx.doi.org/10.1134/S1070428012060139]
[69]
Li, F.; Wang, L.; Wang, S.; Zhang, Z. Solvent-Free synthesis of styryl dyes with quinoline nucleus using microwave irradiation. Youji Huaxue, 2004, 24(1), 50-52.
[70]
Musiol, R.; Jampilek, J.; Kralova, K.; Richardson, D.R.; Kalinowski, D.; Podeszwa, B.; Finster, J.; Niedbala, H.; Palka, A.; Polanski, J. Investigating biological activity spectrum for novel quinoline analogues. Bioorg. Med. Chem., 2007, 15(3), 1280-1288.
[http://dx.doi.org/10.1016/j.bmc.2006.11.020] [PMID: 17142046]
[71]
Kamal, A.; Rahim, A.; Riyaz, S.; Poornachandra, Y.; Balakrishna, M.; Kumar, C.G.; Hussaini, S.M.; Sridhar, B.; Machiraju, P.K. Regiose-lective synthesis, antimicrobial evaluation and theoretical studies of 2-styryl quinolines. Org. Biomol. Chem., 2015, 13(5), 1347-1357.
[http://dx.doi.org/10.1039/C4OB02277G] [PMID: 25465871]
[72]
Suresh, L.; Poornachandra, Y.; Kanakaraju, S.; Ganesh Kumar, C.; Chandramouli, G.V. One-pot three-component domino protocol for the synthesis of novel pyrano[2,3-d]pyrimidines as antimicrobial and anti-biofilm agents. Org. Biomol. Chem., 2015, 13(26), 7294-7306.
[http://dx.doi.org/10.1039/C5OB00693G] [PMID: 26054925]
[73]
Furlani, R.E.; Yeagley, A.A.; Melander, C. A flexible approach to 1,4-di-substituted 2-aminoimidazoles that inhibit and disperse biofilms and potentiate the effects of β-lactams against multi-drug resistant bacteria. Eur. J. Med. Chem., 2013, 62, 59-70.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.005] [PMID: 23353733]
[74]
Gomez, C.M.; Kouznetsov, V.V. Recent developments on antimicrobial quinoline chemistry. In: Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Mendez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2013; pp. 666-677.
[75]
Sakurai, T.; Kitadate, K.; Nishioka, H.; Fujii, H.; Ogasawara, J.; Kizaki, T.; Sato, S.; Fujiwara, T.; Akagawa, K.; Izawa, T.; Ohno, H. Oligo-merised lychee fruit-derived polyphenol attenuates cognitive impairment in senescence-accelerated mice and endoplasmic reticulum stress in neuronal cells. Br. J. Nutr., 2013, 110(9), 1549-1558.
[http://dx.doi.org/10.1017/S000711451300086X] [PMID: 23537529]
[76]
Chang, F-S.; Chen, W.; Wang, C.; Tzeng, C-C.; Chen, Y-L. Synthesis and antiproliferative evaluations of certain 2-phenyl-vinylquinoline (2-styrylquinoline) and 2-furanylvinylquinoline derivatives. Bioorg. Med. Chem., 2010, 18(1), 124-133.
[http://dx.doi.org/10.1016/j.bmc.2009.11.012] [PMID: 19944612]
[77]
Chen, Y.-L.; Huang, C.-J.; Huang, Z.-Y.; Tseng, C.-H.; Chang, F.- S.; Yang, S.-H.; Lin, S.R.; Tzeng, C.C. Synthesis and antiproliferative evaluation of certain 4-anilino-8-methoxy-2-phenylquinoline and 4-anilino-8-hydroxy-2-phenylquinoline derivatives. Bioorg. Med. Chem., 2006, 14(9), 3098-3105.
[http://dx.doi.org/10.1016/j.bmc.2005.12.017] [PMID: 16412647]
[78]
Chen, Y-L.; Zhao, Y-L.; Lu, C-M.; Tzeng, C-C.; Wang, J-P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)quinoline derivatives. Part 4. Bioorg. Med. Chem., 2006, 14(13), 4373-4378.
[http://dx.doi.org/10.1016/j.bmc.2006.02.039] [PMID: 16524734]
[79]
Polanski, J.; Niedbala, H.; Musiol, R.; Podeszwa, B.; Tabak, D.; Palka, A. 5-Hydroxy-6-quinaldic acid as a novel molecular scaffold for HIV-1 integrase inhibitors. Lett. Drug Des. Discov., 2006, 3(3), 175-178.
[http://dx.doi.org/10.2174/157018006776286934]
[80]
Zouhiri, F.; Danet, M.; Bénard, C.; Normand-Bayle, M.; Mouscadet, J-F.; Leh, H. HIV-1 replication inhibitors of the styrylquinoline class: Introduction of an additional carboxyl group at the C-5 position of the quinoline. Tetrahedron Lett., 2005, 46(13), 2201-2205.
[http://dx.doi.org/10.1016/j.tetlet.2005.02.033]
[81]
Weizmann, M.; Bograchov, E. Derivatives of 5-chloro-8-hydroxyquinoline. J. Am. Chem. Soc., 1947, 69(5), 1222-1223.
[http://dx.doi.org/10.1021/ja01197a516] [PMID: 20342278]
[82]
Polanski, J.; Zouhiri, F.; Jeanson, L.; Desmaële, D.; d’Angelo, J.; Mouscadet, J-F.; Gieleciak, R.; Gasteiger, J.; Le Bret, M. Use of the Ko-honen neural network for rapid screening of ex vivo anti-HIV activity of styrylquinolines. J. Med. Chem., 2002, 45(21), 4647-4654.
[http://dx.doi.org/10.1021/jm020845g] [PMID: 12361391]
[83]
Yoo, H.; Lee, J.Y.; Park, J.H.; Chung, B.Y.; Lee, Y.S. Synthesis of styrylbenzofuran derivatives as styrylquinoline analogues for HIV-1 integrase inhibitor. Farmaco, 2003, 58(12), 1243-1250.
[http://dx.doi.org/10.1016/j.farmac.2003.08.001] [PMID: 14630234]
[84]
Korzec, M.; Bartczak, P.; Niemczyk, A.; Szade, J.; Kapkowski, M.; Zenderowska, P. Bimetallic nano-Pd/PdO/Cu system as a highly effec-tive catalyst for the Sonogashira reaction. J. Catal., 2014, 313, 1-8.
[http://dx.doi.org/10.1016/j.jcat.2014.02.008]
[85]
Pillai, S.; Kozlov, M.; Marras, S.A.; Krasnoperov, L.N.; Mustaev, A. New cross-linking quinoline and quinolone derivatives for sensitive fluorescent labeling. J. Fluoresc., 2012, 22(4), 1021-1032.
[http://dx.doi.org/10.1007/s10895-012-1039-z] [PMID: 22450725]
[86]
Rosania, G.R.; Lee, J.W.; Ding, L.; Yoon, H-S.; Chang, Y-T. Combinatorial approach to organelle-targeted fluorescent library based on the styryl scaffold. J. Am. Chem. Soc., 2003, 125(5), 1130-1131.
[http://dx.doi.org/10.1021/ja027587x] [PMID: 12553790]
[87]
Jiang, N.; Zhai, X.; Li, T.; Liu, D.; Zhang, T.; Wang, B.; Gong, P. Design, synthesis and antiproliferative activity of novel 2-substituted-4-amino-6-halogenquinolines. Molecules, 2012, 17(5), 5870-5881.
[http://dx.doi.org/10.3390/molecules17055870] [PMID: 22592090]
[88]
Marrelli, M.; Conforti, F.; Statti, G.A.; Cachet, X.; Michel, S.; Tillequin, F.; Menichini, F. Biological potential and structure-activity rela-tionships of most recently developed vascular disrupting agents: An overview of new derivatives of natural combretastatin a-4. Curr. Med. Chem., 2011, 18(20), 3035-3081.
[http://dx.doi.org/10.2174/092986711796391642] [PMID: 21651481]
[89]
Musiol, R.; Tabak, D.; Niedbala, H.; Podeszwa, B.; Jampilek, J.; Kralova, K.; Dohnal, J.; Finster, J.; Mencel, A.; Polanski, J. Investigating biological activity spectrum for novel quinoline analogues 2: Hydroxyquinolinecarboxamides with photosynthesis-inhibiting activity. Bioorg. Med. Chem., 2008, 16(8), 4490-4499.
[http://dx.doi.org/10.1016/j.bmc.2008.02.065] [PMID: 18342517]
[90]
Podeszwa, B.; Niedbala, H.; Polanski, J.; Musiol, R.; Tabak, D.; Finster, J.; Serafin, K.; Milczarek, M.; Wietrzyk, J.; Boryczka, S.; Mol, W.; Jampilek, J.; Dohnal, J.; Kalinowski, D.S.; Richardson, D.R. Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines. Bioorg. Med. Chem. Lett., 2007, 17(22), 6138-6141.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.040] [PMID: 17904844]
[91]
Polanski, J.; Kurczyk, A.; Bak, A.; Musiol, R. Privileged structures - dream or reality: preferential organization of azanaphthalene scaffold. Curr. Med. Chem., 2012, 19(13), 1921-1945.
[http://dx.doi.org/10.2174/092986712800167356] [PMID: 22376032]
[92]
Gomes, R.; Diniz, A.M.; Jesus, A.; Parola, A.J.; Pina, F. The synthesis and reaction network of 2-styryl-1-benzopyrylium salts: An unex-ploited class of potential colorants. Dyes Pigm., 2009, 81(1), 69-79.
[http://dx.doi.org/10.1016/j.dyepig.2008.09.007]
[93]
Sandmeyer, T. About isonitrosoacetanilides and their condensation to isatins. Helv. Chim. Acta, 1919, 2(1), 234-242.
[http://dx.doi.org/10.1002/hlca.19190020125]
[94]
Massoud, M.A.; El Bialy, S.A.; Bayoumi, W.A.; El Husseiny, W.M. Synthesis of new 2-and 3-hydroxyquinoline-4-carboxylic acid deriva-tives as potential antioxidants. Heterocycl. Commun., 2014, 20(2), 81-88.
[http://dx.doi.org/10.1515/hc-2013-0163]
[95]
Holla, B.S.; Poojary, K.N.; Poojary, B.; Bhat, K.S.; Kumari, N.S. Synthesis, characterization and antibacterial activity studies on some fluorine containing quinoline-4-carboxylic acids and their derivatives. Indian J. Chem., 2005, 44B, 2114-2119.
[96]
El-Sayed, M.A-A.; El-Husseiny, W.M.; Abdel-Aziz, N.I.; El-Azab, A.S.; Abuelizz, H.A.; Abdel-Aziz, A.A-M. Synthesis and biological evaluation of 2-styrylquinolines as antitumour agents and EGFR kinase inhibitors: Molecular docking study. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 199-209.
[http://dx.doi.org/10.1080/14756366.2017.1407926] [PMID: 29251017]
[97]
Alanazi, A.M.; Abdel-Aziz, A.A-M.; Shawer, T.Z.; Ayyad, R.R.; Al-Obaid, A.M.; Al-Agamy, M.H.; Maarouf, A.R.; El-Azab, A.S. Synthe-sis, antitumor and antimicrobial activity of some new 6-methyl-3-phenyl-4(3H)-quinazolinone analogues: In silico studies. J. Enzyme Inhib. Med. Chem., 2016, 31(5), 721-735.
[http://dx.doi.org/10.3109/14756366.2015.1060482] [PMID: 26162029]
[98]
Musiol, R. Quinoline-based HIV integrase inhibitors. Cur Pharm des., 2013, 19(10), 1835-1849.
[http://dx.doi.org/10.2174/1381612811319100008] [PMID: 23092281]
[99]
Szczepaniak, J.; Cieślik, W.; Romanowicz, A.; Musioł, R.; Krasowska, A. Blocking and dislocation of Candida albicans Cdr1p transporter by styrylquinolines. Int. J. Antimicrob. Agents, 2017, 50(2), 171-176.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.01.044] [PMID: 28602766]
[100]
Laurent, T. Styrylquinolines, their process of preparation, and their therapeutic uses. U.S. Patent 2010120847, 2010.
[101]
Georges, W.C.; Laurent, T. Styrlyquinolines, their process of preparation, and their therapeutic uses. U.S. Patent 2011224242, 2011.
[102]
Cheng, L.K.; Cheng, L.A. Photobleachable compounds for use in flexographic printing plates. U.S. Patent 6864039, 2005.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy