Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Perspective

Electron Communications and Correlations in Subsystems

Author(s): Roman F. Nalewajski*

Volume 12, Issue 2, 2022

Published on: 10 May, 2022

Page: [95 - 116] Pages: 22

DOI: 10.2174/1877946812666220211150808

Abstract

The quantum entanglement of molecular fragments in reactive systems is approached. The "external" (inter-fragment) and “internal” (intra-fragment) correlation energies are expressed in terms of the DFT average correlation holes resulting from the coupling constant integration of the scaled electron repulsion terms in the electronic Hamiltonian. Information networks in the local and configuration resolutions are examined, and their conditional entropy (covalency) and mutual information (iconicity) descriptors are summarized. The local channels in the single Slater determinant approximation of HF theory are explored in some detail. The multisite events in the bond system for the specified molecular state are tackled, cascade (bridge) propagations are examined, and the Fermi (exchange) correlation of HF theory is discussed. The partial density matrices of interacting fragments are introduced, and their role in shaping the ensemble averages of physical observables and effective communications within reactants is examined.

Keywords: Adiabatic connections, coupling constant integration, electron correlation, kohn-sham theory, local communications, reactive systems.

[1]
Fisher, R.A. Theory of statistical estimation. Proc. Camb. Philos. Soc., 1925, 22, 700-725.
[http://dx.doi.org/10.1017/S0305004100009580]
[2]
Shannon, C.E. The mathematical theory of communication. Bell Syst. Tech. J., 1948, 7, 379-493.
[3]
Nalewajski, R.F. Information theory of molecular systems; Elsevier: Amsterdam, 2006.
[4]
Nalewajski, R.F. Information origins of the chemical bond; Nova Science Publishers: New York, 2010.
[5]
Nalewajski, R.F. Perspectives in electronic structure theory; Springer: Heidelberg, 2012.
[http://dx.doi.org/10.1007/978-3-642-20180-6]
[6]
Nalewajski, R.F. Quantum information theory of molecular states; Nova Science Publishers: New York, 2016.
[7]
Nalewajski, R.F. Understanding electronic structure and chemical reactivity: Quantum-information perspective. Appl. Sci., 2019, 9, 1262-1292.
[http://dx.doi.org/10.3390/app9061262]
[8]
Nalewajski, R.F. Phase equalization, charge transfer, information flows and electron communications in donor-acceptor systems. Appl. Sci., 2020, 10, 3615-3646.
[http://dx.doi.org/10.3390/app10103615]
[9]
Nalewajski, R.F. On entropy/information description of reactivity phenomena. In: Advances in mathematics research; Baswell, A.R., Ed.; Nova Science Publishers: New York, 2019; 26, pp. 97-157.
[10]
Nalewajski, R.F. Information theory insights into molecular electronic structure and reactivity. Struct. Bond., 2012, 149, 51-94.
[http://dx.doi.org/10.1007/978-3-642-32753-7_2]
[11]
Nalewajski, R.F. Phase description of reactive systems. In: Conceptual density functional theory; pp 217-249 Apple Academic Press/CRC Press: Palm Bay, 2018; pp. 217-249.
[http://dx.doi.org/10.1201/b22471-8]
[12]
Nalewajski, R.F. Chemical reactivity description in density-functional and information theories. Acta Physico-Chimica Sinica, 2017, 33, 2491-2509.
[13]
Nalewajski, R.F. Probing the interplay between electronic and geometric degrees-of-freedom in molecules and reactive systems. Adv. Quantum Chem., 2006, 51, 235-305.
[http://dx.doi.org/10.1016/S0065-3276(06)51006-8]
[14]
Nalewajski, R.F.; Błażewicz, D.; Mrozek, J. Compliance approach to coupling between electronic and geometric structures of open and closed molecular systems. J. Math. Chem., 2008, 44, 325-364.
[http://dx.doi.org/10.1007/s10910-007-9312-0]
[15]
Nalewajski, R.F. Probing the coupling between electronic and geometric structures of open and closed molecular systems. In: Chemical reactivity theory: A density functional view; Taylor & Francis/CRC: London, 2009; pp. 453-478.
[http://dx.doi.org/10.1201/9781420065442.ch30]
[16]
Nalewajski, R.F.; Parr, R.G. Information theory, atoms in molecules, and molecular similarity. Proc. Natl. Acad. Sci. USA, 2000, 97(16), 8879-8882.
[http://dx.doi.org/10.1073/pnas.97.16.8879] [PMID: 10922049]
[17]
Nalewajski, R.F.; Parr, R.G. Information-theoretic thermodynamics of molecules and their Hirshfeld fragments. J. Phys. Chem. A, 2001, 105, 7391-7400.
[http://dx.doi.org/10.1021/jp004414q]
[18]
Parr, R.G.; Ayers, P.W.; Nalewajski, R.F. What is an atom in a molecule? J. Phys. Chem. A, 2005, 109(17), 3957-3959.
[http://dx.doi.org/10.1021/jp0404596] [PMID: 16833715]
[19]
Nalewajski, R.F.; Broniatowska, E. Atoms-in-Molecules from the stockholder partition of molecular two-electron distribution. Theor. Chem. Acc., 2007, 117, 7-27.
[http://dx.doi.org/10.1007/s00214-006-0078-4]
[20]
Heidar-Zadeh, F.; Ayers, P.W.; Verstraelen, T.; Vinogradov, I.; Vöhringer-Martinez, E.; Bultinck, P. Information-theoretic approaches to Atoms-in-Molecules: Hirshfeld family of partitioning schemes. J. Phys. Chem. A, 2018, 122(17), 4219-4245.
[http://dx.doi.org/10.1021/acs.jpca.7b08966] [PMID: 29148815]
[21]
Hirshfeld, F.L. Bonded-atom fragments for describing molecular charge densities. Theory Chim. Acta (Berl), 1977, 44, 129-138.
[http://dx.doi.org/10.1007/BF00549096]
[22]
Hammond, G.S. A correlation of reaction rates. J. Am. Chem. Soc., 1955, 77, 334-338.
[http://dx.doi.org/10.1021/ja01607a027]
[23]
Nalewajski, R.F.; Broniatowska, E. Information distance approach to Hammond Postulate. Chem. Phys. Lett., 2003, 376, 33-39.
[http://dx.doi.org/10.1016/S0009-2614(03)00915-1]
[24]
Nalewajski, R.F. Entropic measures of bond multiplicity from the information theory. J. Phys. Chem. A, 2000, 104, 11940-11951.
[http://dx.doi.org/10.1021/jp001999f]
[25]
Nalewajski, R.F. Entropy descriptors of the chemical bond in Information Theory: I. Basic concepts and relations. Mol Phys 102:531-546; II. Application to simple orbital models. Mol. Phys., 2004, 102, 547-566.
[http://dx.doi.org/10.1080/00268970410001675572]
[26]
Nalewajski, R.F. Entropic and difference bond multiplicities from the two-electron probabilities in orbital resolution. Chem. Phys. Lett., 2004, 386, 265-271.
[http://dx.doi.org/10.1016/j.cplett.2004.01.064]
[27]
Nalewajski, R.F. Reduced communication channels of molecular fragments and their entropy/information bond indices. Theor. Chem. Acc., 2005, 114, 4-18.
[http://dx.doi.org/10.1007/s00214-005-0638-z]
[28]
Nalewajski, R.F. Multiple, localized and delocalized/conjugated bonds in the orbital-communication theory of molecular systems. Adv. Quantum Chem., 2009, 56, 217-250.
[http://dx.doi.org/10.1016/S0065-3276(08)00405-X]
[29]
Nalewajski, R.F.; Szczepanik, D.; Mrozek, J. Bond differentiation and orbital decoupling in the orbital communication theory of the chemical bond. Adv. Quantum Chem., 2011, 61, 1-48.
[http://dx.doi.org/10.1016/B978-0-12-386013-2.00001-2]
[30]
Nalewajski, R.F. Electron communications and chemical bonds. In: Frontiers of quantum chemistry; Wójcik, M.; Nakatsuji, H.; Kirtman, B.; Ozaki, Y., Eds.; Springer: Singapore, 2017; pp. 315-351.
[31]
Nalewajski, R.F. Through-space and through-bridge components of chemical bonds. J. Math. Chem., 2011, 49, 371-392.
[http://dx.doi.org/10.1007/s10910-010-9747-6]
[32]
Nalewajski, R.F. Chemical bonds from through-bridge orbital communications in prototype molecular systems. J. Math. Chem., 2011, 49, 546-561.
[http://dx.doi.org/10.1007/s10910-010-9761-8]
[33]
Nalewajski, R.F. On interference of orbital communications in molecular systems. J. Math. Chem., 2011, 49, 806-815.
[http://dx.doi.org/10.1007/s10910-010-9777-0]
[34]
Nalewajski, R.F.; Gurdek, P. On the implicit bond-dependency origins of bridge interactions. J. Math. Chem., 2011, 49, 1226-1237.
[http://dx.doi.org/10.1007/s10910-011-9815-6]
[35]
Nalewajski, R.F. Direct (through-space) and indirect (through-bridge) components of molecular bond multiplicities. Int. J. Quantum Chem., 2012, 112, 2355-2370.
[http://dx.doi.org/10.1002/qua.23217]
[36]
Nalewajski, R.F.; Gurdek, P. Bond-order and entropic probes of the chemical bonds. Struct. Chem., 2012, 23, 1383-1398.
[http://dx.doi.org/10.1007/s11224-012-0060-9]
[37]
Nalewajski, R.F. Use of Fisher information in quantum chemistry. Int. J. Quantum Chem., 2008, 108, 2230-2252.
[http://dx.doi.org/10.1002/qua.21752]
[38]
Nalewajski, R.F.; Köster, A.M.; Escalante, S. Electron localization function as information measure. J. Phys. Chem. A, 2005, 109(44), 10038-10043.
[http://dx.doi.org/10.1021/jp053184i] [PMID: 16838922]
[39]
Becke, A.D.; Edgecombe, K.E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys., 1990, 92, 5397-5403.
[http://dx.doi.org/10.1063/1.458517]
[40]
Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature, 1994, 371, 683-686.
[http://dx.doi.org/10.1038/371683a0]
[41]
Savin, A.; Nesper, R.; Wengert, S.; Fässler, T.F. ELF: The electron localization function. Angew. Chem. Int. Ed. Engl., 1997, 36, 1808-1832.
[http://dx.doi.org/10.1002/anie.199718081]
[42]
Nalewajski, R.F.; de Silva, P.; Mrozek, J. Use of non-additive Fisher information in probing the chemical bonds. J. Mol. Struct. THEOCHEM, 2010, 954, 57-74.
[http://dx.doi.org/10.1016/j.theochem.2010.01.028]
[43]
Parr, R.G.; Yang, W. Density-functional theory of atoms and molecules; Oxford University Press: New York, 1989.
[44]
Nalewajski, R.F.; Korchowiec, J.; Michalak, A. Reactivity criteria in charge sensitivity analysis. In: Density functional theory IV. Topics in Current Chemistry; Nalewajski, R.F., Ed.; , 1996; 183, pp. 25-141.
[http://dx.doi.org/10.1007/3-540-61131-2_2]
[45]
Nalewajski, R.F.; Korchowiec, J. Charge sensitivity approach to electronic structure and chemical reactivity; World Scientific: Singapore, 1997.
[http://dx.doi.org/10.1142/2735]
[46]
Nalewajski, R.F. Sensitivity analysis of charge transfer systems: in situ quantities, intersecting-state model and its implications. Int. J. Quantum Chem., 1994, 49, 675-703.
[http://dx.doi.org/10.1002/qua.560490512]
[47]
Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual density functional theory. Chem. Rev., 2003, 103(5), 1793-1873.
[http://dx.doi.org/10.1021/cr990029p] [PMID: 12744694]
[48]
Nalewajski, R.F. Chemical reactivity in quantum mechanics and information theory., 2021.
[49]
Nalewajski, R.F. Resultant information description of electronic states and chemical processes. J. Phys. Chem. A, 2019, 123(45), 9737-9752.
[http://dx.doi.org/10.1021/acs.jpca.9b06752] [PMID: 31664834]
[50]
Nalewajski, R.F. Charge response criteria of chemical reactivity: Fukui finction indices and populational reference frames reflecting the inter-reactant charge coupling. Int. J. Quantum Chem., 2010, 61, 181-196.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:2<181::AID-QUA1>3.0.CO;2-S]
[51]
Nalewajski, R.F. Exploring molecular equilibria using quantum information measures. Ann Phys (Leipzig), 2013, 525, 256-268.
[http://dx.doi.org/10.1002/andp.201200230]
[52]
Nalewajski, R.F. On phase/current components of entropy/information descriptors of molecular states. Mol. Phys., 2014, 112, 2587-2601.
[http://dx.doi.org/10.1080/00268976.2014.897394]
[53]
Nalewajski, R.F. Complex entropy and resultant information measures. J. Math. Chem., 2016, 54, 1777-1782.
[http://dx.doi.org/10.1007/s10910-016-0651-6]
[54]
Nalewajski, R.F. Quantum information measures and their use in chemistry. Curr. Phys. Chem., 2017, 7, 94-117.
[http://dx.doi.org/10.2174/1877946806666160622075208]
[55]
Nalewajski, R.F. Information equilibria, subsystem entanglement, and dynamics of the overall entropic descriptors of molecular electronic structure. J. Mol. Model., 2018, 24(8), 212-227.
[http://dx.doi.org/10.1007/s00894-018-3699-3] [PMID: 30027486]
[56]
Nalewajski, R.F. Quantum information measures and molecular phase equilibria. In: Advances in mathematics research; Baswell, AR, Ed.; Nova Science Publishers: New York, 2015; 19, pp. 53-86.
[57]
Nalewajski, R.F. Continuity relations, probability acceleration, current sources and internal communications in interacting fragments. Acad. J. Chem., 2020, 5, 58-68.
[http://dx.doi.org/10.32861/ajc.56.58.68]
[58]
Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev., 1965, 140A, 133-1138.
[http://dx.doi.org/10.1103/PhysRev.140.A1133]
[59]
Nalewajski, R.F. On entangled states of molecular fragments. Trends Phys. Chem., 2016, 16, 71-85.
[60]
Wesołowski, T.A. Quantum chemistry “without orbitals” – An old idea and recent developments. Chimia (Aarau), 2004, 58, 311-315.
[http://dx.doi.org/10.2533/000942904777677885]
[61]
Thakkar, A.J. Comparison of kinetic-energy density functionals. Phys. Rev. A, 1992, 46(11), 6920-6924.
[http://dx.doi.org/10.1103/PhysRevA.46.6920] [PMID: 9908024]
[62]
Chan, G.K.L.; Handy, N.C. An extensive study of gradient approximations to the exchange-correlation and kinetic energy functionals. J. Chem. Phys., 2000, 112, 5639-5653.
[http://dx.doi.org/10.1063/1.481139]
[63]
Cortona, P. Self-consistently determined properties of solids without band-structure calculations. Phys. Rev. B Condens. Matter, 1991, 44(16), 8454-8458.
[http://dx.doi.org/10.1103/PhysRevB.44.8454] [PMID: 9998800]
[64]
Wesołowski, T.A.; Weber, J. Kohn-Sham equations with constrained electron density: the efect of various kinetic energy functional parametrizations on the ground-state molecular properties. Int. J. Quantum Chem., 1997, 61, 303-311.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:2<303::AID-QUA13>3.0.CO;2-C]
[65]
Wesołowski, T.A. One-electron equations for embedded electron density: challenge for theory and practical payoffs in multi-scale modelling of complex polyatomic molecules. In: Computational chemistry: Reviews of current trends; Leszczyński, J., Ed.; World Scientific: Singapore, 2006; pp. 1-82.
[http://dx.doi.org/10.1142/9789812773876_0001]
[66]
Harris, J.; Jones, R.O. The surface energy of a bounded electron gas. J. Phys. F, 1974, 4, 1170-1186.
[http://dx.doi.org/10.1088/0305-4608/4/8/013]
[67]
Gunnarsson, O.; Lundqvist, B.I. Exchange and correlation in atoms, molecules and solids by the spin-density-functional formalism. Phys. Rev. B, 1976, 13, 4274-4298.
[http://dx.doi.org/10.1103/PhysRevB.13.4274]
[68]
Langreth, D.C.; Perdew, J.P. The exchange-correlation energy of a metallic surface: Wave-vector analysis. Phys. Rev. B, 1977, 15, 2884-2901.
[http://dx.doi.org/10.1103/PhysRevB.15.2884]
[69]
Perdew, J.P. What do the Kohn-Sham orbital energies mean? How do atoms dissociate? In: Proceedings of a NATO ASI on Density functional methods in phys-ics; Dreizler, RM; da Providencia, J, Eds.; Plenum Press: New York, 1985; pp. 265-308.
[http://dx.doi.org/10.1007/978-1-4757-0818-9_10]
[70]
Nalewajski, R.F. Coupling constant integration analysis of density functionals for subsystems. Adv. Quantum Chem., 2000, 38, 217-277.
[http://dx.doi.org/10.1016/S0065-3276(00)38005-4]
[71]
Levy, M. Universal variational functionals of electron densities, first-order density matrices, and natural spin-orbitals and solution of the v-representability problem. Proc. Natl. Acad. Sci. USA, 1979, 76(12), 6062-6065.
[http://dx.doi.org/10.1073/pnas.76.12.6062] [PMID: 16592733]
[72]
Nalewajski, R.F. Entropic bond descriptors of molecular information systems in local resolution. J. Math. Chem., 2008, 44, 414-445.
[http://dx.doi.org/10.1007/s10910-007-9318-7]
[73]
Nalewajski, R.F. Entropic bond descriptors of the chemical bond in H2: Local resolution of stockholder atoms. J. Math. Chem., 2009, 45, 1041-1054.
[http://dx.doi.org/10.1007/s10910-008-9391-6]
[74]
Nalewajski, R.F. Information-theoretic multiplicities of chemical bond in Shull’s model of H2. J. Math. Chem., 2013, 51, 7-20.
[http://dx.doi.org/10.1007/s10910-012-0054-2]
[75]
Nalewajski, R.F. Communications in molecules: Local and multi-configurational channels and their entropic descriptors of bond multiplicity and composition. J. Math. Chem., 2014, 52, 42-71.
[http://dx.doi.org/10.1007/s10910-013-0245-5]
[76]
Nalewajski, R.F.; Köster, A.M.; Jug, K. Chemical valence from the two-particle density matrix. Theory Chim. Acta (Berlin), 1993, 85, 463-484.
[http://dx.doi.org/10.1007/BF01112985]
[77]
Nalewajski, R.F.; Mrozek, J. Modified valence indices from the two-particle density matrix. Int. J. Quantum Chem., 1994, 51, 187-200.
[http://dx.doi.org/10.1002/qua.560510403]
[78]
Nalewajski, R.F.; Mrozek, J.; Mazur, G. Quantum mechanical valence indices from the one-determinantal difference approach. Can. J. Chem., 1996, 100, 1121-1130.
[http://dx.doi.org/10.1139/v96-126]
[79]
Nalewajski, R.F.; Mrozek, J.; Michalak, A. Two-electron valence indices from the Kohn-Sham orbitals. Int. J. Quantum Chem., 1997, 61, 589-601.
[http://dx.doi.org/10.1002/(SICI)1097-461X(1997)61:3<589::AID-QUA28>3.0.CO;2-2]
[80]
Davydov, A.S. Quantum mechanics; Pergamon Press: Oxford, 1965.
[81]
Cohen-Tannoudji, C.; Diu, B.; Laloë, F. Quantum mechanics; Wiley: New York, 1977.
[82]
Nalewajski, R.F. Interacting subsystems and their molecular ensembles. Acad. J. Chem., 2020, 5, 25-30.
[http://dx.doi.org/10.32861/ajc.54.25.30]
[83]
Nalewajski, R.F. Information-theoretic descriptors of molecular states and electronic communications between reactants. Entropy (Basel), 2020, 22(7), 749-769.
[http://dx.doi.org/10.3390/e22070749] [PMID: 33286520]
[84]
Nalewajski, R.F. Information-theoretic concepts in theory of electronic structure and chemical reactivity. In: Chemical reactivity theories: principles and approaches; Kaya, S.; Szentpály, L., Eds.; Taylor and Francis: London, 2021.
[85]
Löwdin, P-O. Quantum theory of many-particle systems. I. Physical interpretation by means of density matrices, natural spin-orbitals, and convergence problems in the method of configuration interaction. Phys. Rev., 1955, 97, 1474-1489.
[http://dx.doi.org/10.1103/PhysRev.97.1474]
[86]
Löwdin, P-O. Quantum theory of many-particle systems. II. Study of the ordinary Hartree-Fock approximation. Phys. Rev., 1955, 97, 1490-1508.
[http://dx.doi.org/10.1103/PhysRev.97.1490]
[87]
Dirac, P.A.M. The principles of quantum mechanics; Oxford University Press: Oxford, 1967.
[88]
Nalewajski, R.F. Manifestations of the maximum complementarity principle for matching atomic softnesses in model chemisorption systems. Top. Catal., 2000, 11, 469-485.
[http://dx.doi.org/10.1023/A:1027273730694]
[89]
Chandra, A.K.; Michalak, A.; Nguyen, M.T.; Nalewajski, R.F. On regional matching of atomic softnesses in chemical reactions: two-reactant charge sensitivity study. J. Phys. Chem. A, 1998, 102, 10182-10188.
[http://dx.doi.org/10.1021/jp983122a]
[90]
Parr, R.G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc., 1984, 106, 4049-4050.
[http://dx.doi.org/10.1021/ja00326a036]
[91]
Parr, R.G.; Pearson, R.G. Absolute hardness: Companion parameter to absolute electronegativity. J. Am. Chem. Soc., 1983, 105, 7512-7516.
[http://dx.doi.org/10.1021/ja00364a005]
[92]
Berkowitz, M.; Parr, R.G. Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J. Chem. Phys., 1988, 88, 2554-2557.
[http://dx.doi.org/10.1063/1.454034]
[93]
Nalewajski, R.F.; Korchowiec, J.; Zhou, Z. Molecular hardness and softness parameters and their use in chemistry. Int. J. Quantum Chem. Symp., 1988, 22, 349-366.
[http://dx.doi.org/10.1002/qua.560340840]
[94]
Sanderson, R.T. An interpretation of bond lengths and a classification of bonds. Science, 1951, 114(2973), 670-672.
[http://dx.doi.org/10.1126/science.114.2973.670] [PMID: 17770191]
[95]
Sanderson, R.T. Chemical bonds and bond energy, 2nd ed; Academic Press: New York, 1976.

© 2024 Bentham Science Publishers | Privacy Policy