Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Short Communication

Thermal Stability and Specific Heat Estimation of Pyridinium Cation-Based Surfactant Ionic Liquids Using TGA-DSC

Author(s): Gaurav R. Gupta*

Volume 12, Issue 2, 2022

Published on: 15 July, 2022

Page: [171 - 177] Pages: 7

DOI: 10.2174/1877946812666220510152622

Price: $65

Abstract

Background: In recent years, the ultimate goal has been to learn how to select ionic liquids specifically for materialistic or molecular level applications of these neoteric materials. Progress has been initiated, but much more is needed to optimize the full potential of ionic liquids in every aspect of modern-day science.

Methods: A number of engineering parameters need to be determined for the challenging flourishing of ionic liquids in sustainable commercial applications.

Results & Discussion: In particular, the general absence of specific heat capacity (Cp) data is a substantial obstacle to the design of chemical reactors and heat transfer systems if any ionic liquid-based processes are to be developed beyond the laboratory scale. The specific heat capacities of ionic liquids and their mixtures have significant importance in chemical engineering work, accompanying the design and operation of reactors and heat-related operations required for the commercialization of ionic liquids and technologies associated with them.

Conclusion: In this work, thermal profiles of the surfactant or sponge ionic liquids have been explored very aptly to measure the specific heat capacity (Cp) of the pyridinium cation- based surfactant or sponge ionic liquids.

Keywords: Thermal stability, pyridinium cation, surfactant ionic liquids, heat capacity neoteric materials, ion-rich media.

« Previous
[1]
Ali, E. Polymerized Ionic Liquids; The Royal Society of Chemistry: U. K, 2018.
[2]
Shaikh, V.R.; Terdale, S.S.; Gupta, G.R.; Hundiwale, D.G.; Patil, K.J. Thermodynamic studies of ionic interactions in aqueous solutions of N-butyl-pyridinium bromide at 298.15 K. J. Mol. Liq., 2013, 186, 14-22.
[http://dx.doi.org/10.1016/j.molliq.2013.04.027]
[3]
Gupta, G.R.; Chaudhari, G.R.; Tomar, P.A.; Gaikwad, Y.; Rameez, A.; Pandya, G.H.; Wagulde, G.P.; Patil, K.J. Mass spectrometry of ionic liquids: ESI-MS/MS studies. Asian J. Chem., 2013, 25(15), 8261-8265.
[http://dx.doi.org/10.14233/ajchem.2013.14702]
[4]
Ali, E. Ionic Liquid Devices; The Royal Society of Chemistry: U.K., 2018.
[5]
Gupta, G.R.; Girase, T.R.; Kapdi, A.R. Ionic liquid as a sustainable reaction medium for diels-alder reaction. Encyclopedia of Ionic Liquids; Zhang, S., Ed.; Springer: Singapore, 2019.
[http://dx.doi.org/10.1007/978-981-10-6739-6_27-1]
[6]
MacFarlane, D.R.; Kar, M.; Pringle, J.M. Fundamentals of Ionic Liquids; From Chemistry to Applications, Wiley-VCH Verlag GmbH & Co: Germany, 2017.
[http://dx.doi.org/10.1002/9783527340033]
[7]
Pedro, L. Sustainable Catalysis in Ionic Liquids. Taylor & Francis Group, LLC; CRC Press: U. S. A., 2019.
[8]
Antonietti, M.; Kuang, D.; Smarsly, B.; Zhou, Y. Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew. Chem. Int. Ed., 2004, 43(38), 4988-4992.
[http://dx.doi.org/10.1002/anie.200460091] [PMID: 15372641]
[9]
(a)Smirnova, N.A.; Safonova, E.A. Ionic liquids as surfactants. Russ. J. Phys. Chem. A. Focus Chem., 2010, 84(10), 1695-1704.
[http://dx.doi.org/10.1134/S0036024410100067]
(b)Porcar, R.; Burguete, M.I.; Lozano, P.; Garcia-Verdugo, E.; Luis, S.V. Supramolecular interactions based on ionic liquids for tuning of the catalytic efficiency of (l)-proline. ACS Sustain. Chem.& Eng., 2016, 4(11), 6062-6071.
[http://dx.doi.org/10.1021/acssuschemeng.6b01394]
(c)Rizzo, C.; Marullo, S.; Campodonico, P.R.; Pibiri, I.; Dintcheva, N.; Noto, R.; Millan, D.; D’Anna, F. Self-sustaining supramolecular ionic liquid gels for dye adsorption. ACS Sustain. Chem.& Eng., 2018, 6(9), 12453-12462.
[http://dx.doi.org/10.1021/acssuschemeng.8b03002]
(d)Yoshio, M.; Mukai, T.; Ohno, H.; Kato, T. One-dimensional ion transport in self-organized columnar ionic liquids. J. Am. Chem. Soc., 2004, 126(4), 994-995.
[http://dx.doi.org/10.1021/ja0382516] [PMID: 14746447]
(e)Blesic, M.; Lopes, A.; Melo, E.; Petrovski, Z.; Plechkova, N.V.; Canongia Lopes, J.N.; Seddon, K.R.; Rebelo, L.P.; Rebelo, N. On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J. Phys. Chem. B, 2008, 112(29), 8645-8650.
[http://dx.doi.org/10.1021/jp802179j] [PMID: 18590308]
[10]
(a)Hezave, A.Z.; Dorostkar, S.; Ayatollahi, S.; Nabipour, M.; Hemmateenejad, B. Investigating the effect of ionic liquid (1-dodecyl-3-methylimidazolium chloride ([C12mim] [Cl])) on the water/oil interfacial tension as a novel surfactant. Colloids Surf. A Physicochem. Eng. Asp., 2013, 421, 63-71.
[http://dx.doi.org/10.1016/j.colsurfa.2012.12.008]
(b)Tourné-Péteilh, C.; Devoisselle, J-M.; Vioux, A.; Judeinstein, P. In, M.; Viau, L. Surfactant properties of ionic liquids containing short alkyl chain imidazolium cations and ibuprofenate anions. Phys. Chem. Chem. Phys., 2011, 13(34), 15523-15529.
[http://dx.doi.org/10.1039/c1cp21057b] [PMID: 21799958]
(c)Rodrıguez-Palmeiro, I.; Rodrıguez-Escontrela, I.; Rodrıguez, O.; Arce, A.; Soto, A. Characterization and interfacial properties of the surfactant ionic liquid 1-dodecyl-3-methyl imidazolium acetate for enhanced oil recovery. RSC Advances, 2015, 5(47), 37392-37398.
[http://dx.doi.org/10.1039/C5RA05247E]
(d)Brown, P.; Butts, C.; Dyer, R.; Eastoe, J.; Grillo, I.; Guittard, F.; Rogers, S.; Heenan, R. Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions. Langmuir, 2011, 27(8), 4563-4571.
[http://dx.doi.org/10.1021/la200387n] [PMID: 21410213]
(e)Brown, P.; Butts, C.P.; Eastoe, J.; Fermin, D.; Grillo, I.; Lee, H-C.; Parker, D.; Plana, D.; Richardson, R.M. Anionic surfactant ionic liquids with 1-butyl-3-methyl-imidazolium cations: Characterization and application. Langmuir, 2012, 28(5), 2502-2509.
[http://dx.doi.org/10.1021/la204557t] [PMID: 22208500]
[11]
(a)Malik, N.A.; Ali, A.; Farooq, U.; Nabi, F. Interaction of hexadecylpyridinium bromide with glycine in aqueous medium using the Krafft temperature from conductivity measurement. J. Mol. Liq., 2016, 216, 224-228.
[http://dx.doi.org/10.1016/j.molliq.2016.01.003]
(b)Chavoshpour-Natanzi, Z.; Sahihi, M.; Gharaghani, S. Structural stability of β-lactoglobulin in the presence of cetylpyridinum bromide: Spectroscopic and molecular docking studies. J. Biomol. Struct. Dyn., 2017, 36(3), 753-760.
(c)Guo, Q.; Zhang, Z.; Song, Y.; Liu, S.; Gao, W.; Qiao, H.; Guo, L.; Wang, J. Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies. Chemosphere, 2017, 168, 599-605.
[12]
Qin, L.-J.; Huang, Y.-C. Improvement in Cr nanoparticle content in Ni–Cr film by co-deposition with combined surfactant HPB and CTAB. Acta Metall. Sin. (Engl. Lett.), 2017, 30, 999-1007.
[13]
(a)Arancibia, V.; Gracia-Beltran, O.; Hurtado, J.; Nagles, E. Adsorptive stripping voltammetric determination of morin in tea infusions and chocolate drinks on a gold electrode. effect of cetylpyridinium bromide on the sensitivity of the method. Int. J. Electrochem. Sci., 2017, 12, 9408-9417.
[http://dx.doi.org/10.20964/2017.10.07]
(b)He, X.; Zhu, L. Direct electrochemistry of hemoglobin in cetylpyridinium bromide film: Redox thermodynamics and electrocatalysis to nitric oxide. Electrochem. Commun., 2006, 8(4), 615-620.
[http://dx.doi.org/10.1016/j.elecom.2006.02.005]
[14]
Karatapanis, A.E.; Fiamegos, Y.; Stalikas, C.D. Silica-modified magnetic nanoparticles functionalized with cetylpyridinium bromide for the preconcentration of metals after complexation with 8-hydroxyquinoline. Talanta, 2011, 84(3), 834-839.
[http://dx.doi.org/10.1016/j.talanta.2011.02.013] [PMID: 21482290]
[15]
Wang, L.; Yoshida, J.; Ogata, N.; Sasaki, S.; Kajiyama, T. Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)−cationic surfactant complexes: Large-scale preparation and optical and thermal properties. Chem. Mater., 2001, 13(4), 1273-1281.
[http://dx.doi.org/10.1021/cm000869g]
[16]
(a)Zhan, Y.; Lin, J.; Zhu, Z. Removal of nitrate from aqueous solution using cetylpyridinium bromide (CPB) modified zeolite as adsorbent. J. Hazard. Mater., 2011, 186(2-3), 1972-1978.
[http://dx.doi.org/10.1016/j.jhazmat.2010.12.090] [PMID: 21237561]
(b)Zhao, X.; Shi, Y.; Wang, T.; Cai, Y.; Jiang, G. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J. Chromatogr. A, 2008, 1188(2), 140-147.
[http://dx.doi.org/10.1016/j.chroma.2008.02.069] [PMID: 18329033]
[17]
Verma, R.; Mishra, A.; Mitchell-Koch, K.R. Molecular modeling of cetylpyridinium bromide, a cationic surfactant, in solutions and micelle. J. Chem. Theory Comput., 2015, 11(11), 5415-5425.
[http://dx.doi.org/10.1021/acs.jctc.5b00475] [PMID: 26574330]
[18]
Sarode, C.H.; Gupta, G.R.; Chaudhari, G.R.; Waghulde, G.P. Investigations related to the suitability of imidazolium based room temperature ionic liquids and pyridinium based sponge ionic liquids towards the synthesis of 2-aminothiazole compounds as reaction medium and catalyst. Curr. Green Chem., 2018, 5(3), 191-197.
[http://dx.doi.org/10.2174/2213346105666181001111019]
[19]
Shirsath, N.B.; Gupta, G.R.; Gite, V.V.; Meshram, J.S. Studies of thermally assisted interactions of polysulphide polymer with ionic liquids. Bull. Mater. Sci., 2018, 41(2), 63-69.
[http://dx.doi.org/10.1007/s12034-018-1562-x]
[20]
Handy, S.T. Applications of ionic liquids in science and technology; InTech: Croatia, 2011.
[http://dx.doi.org/10.5772/1769]
[21]
Inamuddin, ; Abdullah, M. A. Nanotechnology-Based Industrial Applications of Ionic Liquids; Springer Nature: Switzerland, 2020.
[22]
Girase, T.R.; Patil, K.J.; Kapdi, A.R.; Gupta, G.R. Palladium acetate/[CPy][Br]: An efficient catalytic system towards the synthesis of biologically relevant stilbene derivatives via heck cross‐coupling reaction. ChemistrySelect, 2020, 5(14), 4251-4262.
[http://dx.doi.org/10.1002/slct.201904837]
[23]
Paulechka, Y.U.; Kabo, A.G.; Blokhin, A.V.; Kabo, G.J.; Shevelyova, M.P. Heat capacity of ionic liquids: Experimental determination and correlations with molar volume. J. Chem. Eng. Data, 2010, 55(8), 2719-2724.
[http://dx.doi.org/10.1021/je900974u]
[24]
Gupta, G.R.; Patil, P.D.; Shaikh, V.R.; Kolhapurkar, R.R.; Dagade, D.H.; Patil, K.J. Analytical estimation of water, specific heat capacity and thermal profiles associated with enzymatic model compound β-cyclodextrin. Curr. Sci., 2018, 114(12), 2525-2529.
[http://dx.doi.org/10.18520/cs/v114/i12/2525-2529]
[25]
Patil, K.S.; Zope, P.H.; Patil, U.T.; Patil, P.D.; Dubey, R.S.; Gupta, G.R. Synthesis and thermophysical studies of polyanilines. Bull. Mater. Sci., 2019, 42(1), 24-32.
[http://dx.doi.org/10.1007/s12034-018-1705-0]
[26]
Bhirud, J.D.; Gupta, G.R.; Narkhede, H.P. Oxidative cyclization of chalcones in presence of sulfamic acid as catalyst. Synthesis, biological activity of thermal properties of 1,3,5-trisubstituted pyrazoles. Russ. J. Org. Chem., 2020, 56(10), 1815-1822.
[http://dx.doi.org/10.1134/S1070428020100243]
[27]
Gupta, G.R.; Shaikh, V.R.; Kalas, S.S.; Hundiwale, D.G.; Patil, K.J. Studies of thermal analysis and specific heat capacity for quaternaryammonium salts. Specific Heat; Nova Scientific Publisher: U.S.A., 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy