Abstract
Background: In recent years, the ultimate goal has been to learn how to select ionic liquids specifically for materialistic or molecular level applications of these neoteric materials. Progress has been initiated, but much more is needed to optimize the full potential of ionic liquids in every aspect of modern-day science.
Methods: A number of engineering parameters need to be determined for the challenging flourishing of ionic liquids in sustainable commercial applications.
Results & Discussion: In particular, the general absence of specific heat capacity (Cp) data is a substantial obstacle to the design of chemical reactors and heat transfer systems if any ionic liquid-based processes are to be developed beyond the laboratory scale. The specific heat capacities of ionic liquids and their mixtures have significant importance in chemical engineering work, accompanying the design and operation of reactors and heat-related operations required for the commercialization of ionic liquids and technologies associated with them.
Conclusion: In this work, thermal profiles of the surfactant or sponge ionic liquids have been explored very aptly to measure the specific heat capacity (Cp) of the pyridinium cation- based surfactant or sponge ionic liquids.
Keywords: Thermal stability, pyridinium cation, surfactant ionic liquids, heat capacity neoteric materials, ion-rich media.
[http://dx.doi.org/10.1016/j.molliq.2013.04.027]
[http://dx.doi.org/10.14233/ajchem.2013.14702]
[http://dx.doi.org/10.1007/978-981-10-6739-6_27-1]
[http://dx.doi.org/10.1002/9783527340033]
[http://dx.doi.org/10.1002/anie.200460091] [PMID: 15372641]
[http://dx.doi.org/10.1134/S0036024410100067]
(b)Porcar, R.; Burguete, M.I.; Lozano, P.; Garcia-Verdugo, E.; Luis, S.V. Supramolecular interactions based on ionic liquids for tuning of the catalytic efficiency of (l)-proline. ACS Sustain. Chem.& Eng., 2016, 4(11), 6062-6071.
[http://dx.doi.org/10.1021/acssuschemeng.6b01394]
(c)Rizzo, C.; Marullo, S.; Campodonico, P.R.; Pibiri, I.; Dintcheva, N.; Noto, R.; Millan, D.; D’Anna, F. Self-sustaining supramolecular ionic liquid gels for dye adsorption. ACS Sustain. Chem.& Eng., 2018, 6(9), 12453-12462.
[http://dx.doi.org/10.1021/acssuschemeng.8b03002]
(d)Yoshio, M.; Mukai, T.; Ohno, H.; Kato, T. One-dimensional ion transport in self-organized columnar ionic liquids. J. Am. Chem. Soc., 2004, 126(4), 994-995.
[http://dx.doi.org/10.1021/ja0382516] [PMID: 14746447]
(e)Blesic, M.; Lopes, A.; Melo, E.; Petrovski, Z.; Plechkova, N.V.; Canongia Lopes, J.N.; Seddon, K.R.; Rebelo, L.P.; Rebelo, N. On the self-aggregation and fluorescence quenching aptitude of surfactant ionic liquids. J. Phys. Chem. B, 2008, 112(29), 8645-8650.
[http://dx.doi.org/10.1021/jp802179j] [PMID: 18590308]
[http://dx.doi.org/10.1016/j.colsurfa.2012.12.008]
(b)Tourné-Péteilh, C.; Devoisselle, J-M.; Vioux, A.; Judeinstein, P. In, M.; Viau, L. Surfactant properties of ionic liquids containing short alkyl chain imidazolium cations and ibuprofenate anions. Phys. Chem. Chem. Phys., 2011, 13(34), 15523-15529.
[http://dx.doi.org/10.1039/c1cp21057b] [PMID: 21799958]
(c)Rodrıguez-Palmeiro, I.; Rodrıguez-Escontrela, I.; Rodrıguez, O.; Arce, A.; Soto, A. Characterization and interfacial properties of the surfactant ionic liquid 1-dodecyl-3-methyl imidazolium acetate for enhanced oil recovery. RSC Advances, 2015, 5(47), 37392-37398.
[http://dx.doi.org/10.1039/C5RA05247E]
(d)Brown, P.; Butts, C.; Dyer, R.; Eastoe, J.; Grillo, I.; Guittard, F.; Rogers, S.; Heenan, R. Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions. Langmuir, 2011, 27(8), 4563-4571.
[http://dx.doi.org/10.1021/la200387n] [PMID: 21410213]
(e)Brown, P.; Butts, C.P.; Eastoe, J.; Fermin, D.; Grillo, I.; Lee, H-C.; Parker, D.; Plana, D.; Richardson, R.M. Anionic surfactant ionic liquids with 1-butyl-3-methyl-imidazolium cations: Characterization and application. Langmuir, 2012, 28(5), 2502-2509.
[http://dx.doi.org/10.1021/la204557t] [PMID: 22208500]
[http://dx.doi.org/10.1016/j.molliq.2016.01.003]
(b)Chavoshpour-Natanzi, Z.; Sahihi, M.; Gharaghani, S. Structural stability of β-lactoglobulin in the presence of cetylpyridinum bromide: Spectroscopic and molecular docking studies. J. Biomol. Struct. Dyn., 2017, 36(3), 753-760.
(c)Guo, Q.; Zhang, Z.; Song, Y.; Liu, S.; Gao, W.; Qiao, H.; Guo, L.; Wang, J. Investigation on interaction of DNA and several cationic surfactants with different head groups by spectroscopy, gel electrophoresis and viscosity technologies. Chemosphere, 2017, 168, 599-605.
[http://dx.doi.org/10.20964/2017.10.07]
(b)He, X.; Zhu, L. Direct electrochemistry of hemoglobin in cetylpyridinium bromide film: Redox thermodynamics and electrocatalysis to nitric oxide. Electrochem. Commun., 2006, 8(4), 615-620.
[http://dx.doi.org/10.1016/j.elecom.2006.02.005]
[http://dx.doi.org/10.1016/j.talanta.2011.02.013] [PMID: 21482290]
[http://dx.doi.org/10.1021/cm000869g]
[http://dx.doi.org/10.1016/j.jhazmat.2010.12.090] [PMID: 21237561]
(b)Zhao, X.; Shi, Y.; Wang, T.; Cai, Y.; Jiang, G. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J. Chromatogr. A, 2008, 1188(2), 140-147.
[http://dx.doi.org/10.1016/j.chroma.2008.02.069] [PMID: 18329033]
[http://dx.doi.org/10.1021/acs.jctc.5b00475] [PMID: 26574330]
[http://dx.doi.org/10.2174/2213346105666181001111019]
[http://dx.doi.org/10.1007/s12034-018-1562-x]
[http://dx.doi.org/10.5772/1769]
[http://dx.doi.org/10.1002/slct.201904837]
[http://dx.doi.org/10.1021/je900974u]
[http://dx.doi.org/10.18520/cs/v114/i12/2525-2529]
[http://dx.doi.org/10.1007/s12034-018-1705-0]
[http://dx.doi.org/10.1134/S1070428020100243]