Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

The Complete Chloroplast Genome Sequence of Cicer bijugum, Genome Organization, and Comparison with Related Species

Author(s): Melih Temel, Yasin Kaymaz, Duygu Ateş, Abdullah Kahraman and Muhammed Bahattin Tanyolaç*

Volume 23, Issue 1, 2022

Published on: 11 February, 2022

Page: [50 - 65] Pages: 16

DOI: 10.2174/1389202923666220211113708

Price: $65

conference banner
Abstract

Background: Chickpea is one of Turkey's most significant legumes, and because of its high nutritional value, it is frequently preferred in human nourishment.Chloroplasts, which have their own genetic material, are organelles responsible for photosynthesis in plant cells and their genome contains non-trivial information about the molecular features and evolutionary process of plants.

Objective: Current study aimed at revealing complete chloroplast genome sequence of one of the wild type Cicer species, Cicer bijugum, and comparing its genome with cultivated Cicer species, Cicer arietinum, by using bioinformatics analysis tools. Except for Cicer arietinum, there has been no study on the chloroplast genome sequence of Cicer species.Therefore, we targeted to reveal the complete chloroplast genome sequence of wild type Cicer species, Cicer bijugum, and compare the chloroplast genome of Cicer bijugum with the cultivated one Cicer arietinum.

Methods: In this study, we sequenced the whole chloroplast genome of Cicer bijugum, one of the wild types of chickpea species, with the help Next Generation Sequencing platform and compared it with the chloroplast genome of the cultivated chickpea species, Cicer arietinum, by using online bioinformatics analysis tools.

Results: We determined the size of the chloroplast genome of C. bijugum as 124,804 bp and found that C. bijugum did not contain an inverted repeat region in its chloroplast genome. Comparative analysis of the C. bijugum chloroplast genome uncovered thirteen hotspot regions (psbA, matK, rpoB, rpoC1, rpoC2, psbI, psbK, accD, rps19, ycf2, ycf1, rps15, and ndhF) and seven of them (matK, accD, rps19, ycf1, ycf2, rps15 and ndhF) could potentially be used as strong molecular markers for species identification. It has been determined that C. bijugum was phylogenetically closer to cultivated chickpea as compared to the other species.

Conclusion: It is aimed that the data obtained from this study, which is the first study in which whole chloroplast genomes of wild chickpea species were sequenced, will guide researchers in future molecular, evolutionary, and genetic engineering studies with chickpea species.

Keywords: Wild type chickpea, Cicer bijugum, chloroplast genome, genome organization, comparative genome analysis, bioinformatics.

Graphical Abstract

[1]
Lei, X.; Zhou, Q.; Li, W.; Qin, G.; Shen, X.; Zhang, N. Stilbenoids from leguminosae and their bioactivities. Med. Res., 2019, 3, 200004.
[http://dx.doi.org/10.21127/yaoyimr20200004]
[2]
Abbasi, B.A.; Iqbal, J.; Mahmood, T. Assessment of phylogenetics relationship among the selected species of family leguminosae based on chloroplast rps14 gene. Pak. J. Bot., 2021, 53, 1307-1313.
[http://dx.doi.org/10.30848/PJB2021-4(22)]
[3]
Obistioiu, D.; Cocan, I.; Tîrziu, E.; Herman, V.; Negrea, M.; Cucerzan, A.; Neacsu, A.G.; Cozma, A.L.; Nichita, I.; Hulea, A.; Radulov, I.; Alexa, E. Phytochemical profile and microbiological activity of some plants belonging to the fabaceae family. Antibiotics (Basel), 2021, 10(6), 662.
[http://dx.doi.org/10.3390/antibiotics10060662] [PMID: 34205938]
[4]
Oyebanji, O.O.; Salako, G.; Nneji, L.M.; Oladipo, S.O.; Bolarinwa, K.A.; Chukwuma, E.C. Impact of climate change on the spatial distribution of endemic legume species of the Guineo-Congolian forest, Africa. Ecol. Indic., 2021, 122, 107282.
[http://dx.doi.org/10.1016/j.ecolind.2020.107282]
[5]
Alloosh, M.; Hamwieh, A.; Ahmed, S.; Alkai, B. Genetic diversity of Fusarium oxysporum f. sp. Ciceris isolates affecting chickpea in Syria. Crop Prot., 2019, 124
[http://dx.doi.org/10.1016/j.cropro.2019.104863]
[6]
Bayraktar, H.; Dolar, F.S.; Maden, S. Use of RAPD and ISSR markers in detection of genetic variation and population structure among Fusarium oxysporum f. sp. Ciceris isolates on chickpea in Turkey. J. Phytopathol., 2008, 156, 146-154.
[http://dx.doi.org/10.1111/j.1439-0434.2007.01319.x]
[7]
Shavanov, M.V. The role of food crops within the Poaceae and Fabaceae families as nutritional plants. IOP Conf. Ser. Earth Environ. Sci., 2021, 624, 012111.
[http://dx.doi.org/10.1088/1755-1315/624/1/012111]
[8]
Saeed, A.; Darvishzadeh, R. Association analysis of biotic and abiotic stresses resistance in chickpea (Cicer spp.) using AFLP markers. Biotechnol. Biotechnol. Equip., 2017, 31, 698-708.
[http://dx.doi.org/10.1080/13102818.2017.1333455]
[9]
Lande, N.V.; Subba, P.; Barua, P.; Gayen, D.; Keshava Prasad, T.S.; Chakraborty, S.; Chakraborty, N. Dissecting the chloroplast proteome of chickpea (Cicer arietinum L.) provides new insights into classical and non-classical functions. J. Proteomics, 2017, 165, 11-20.
[http://dx.doi.org/10.1016/j.jprot.2017.06.005] [PMID: 28624520]
[10]
Zhang, R.; Wang, Y.H.; Jin, J.J.; Stull, G.W.; Bruneau, A.; Cardoso, D.; De Queiroz, L.P.; Moore, M.J.; Zhang, S.D.; Chen, S.Y.; Wang, J.; Li, D.Z.; Yi, T.S. Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of leguminosae. Syst. Biol., 2020, 69(4), 613-622.
[http://dx.doi.org/10.1093/sysbio/syaa013] [PMID: 32065640]
[11]
Laskar, R.A.; Khan, S.; Khursheed, S.; Raina, A.; Amin, R. Quantitative analysis of induced phenotypic diversity in chickpea using physical and chemical mutagenesis. J. Agron., 2015, 14, 102-111.
[http://dx.doi.org/10.3923/ja.2015.102.111]
[12]
Andeden, E.E.; Baloch, F.S.; Derya, M.; Kilian, B.; Özkan, H. iPBS-Retrotransposons-based genetic diversity and relationship among wild annual Cicer species. J. Plant Biochem. Biotechnol., 2013, 22, 453-466.
[http://dx.doi.org/10.1007/s13562-012-0175-5]
[13]
Gupta, S.; Nawaz, K.; Parween, S.; Roy, R.; Sahu, K.; Kumar Pole, A.; Khandal, H.; Srivastava, R.; Kumar Parida, S.; Chattopadhyay, D. Draft genome sequence of Cicer reticulatum L., the wild progenitor of chickpea provides a resource for agronomic trait improvement. DNA Res., 2017, 24(1), 1-10.
[http://dx.doi.org/10.1093/dnares/dsw042] [PMID: 27567261]
[14]
Hejazi, S.M.H. How to count chromosomes in three Cicer species? Asian J. Emerg. Res., 2020, 2(2), 68-69.
[http://dx.doi.org/10.21124/AJERPK.2020.68.69]
[15]
Kandemir, F.A.; Demir, A. Endangered species in Turkey: A special reivew of endangered Fabaceae species with IUCN red list data. Turkish J. Biodivers., 2021, 4(1), 53-65.
[16]
Rathore, M.; Prakash, H.G.; Bala, S. Evaluation of the nutritional quality and health benefits of chickpea (Cicer arietinum L.) by using new technology in agriculture (Near Infra-red spectroscopy-2500). Asian J. Dairy Food Res., 2021, 40, 123-126.
[http://dx.doi.org/10.18805/ajdfr.DR-1582]
[17]
Mallikarjuna, N.; Jadhav, D.; Nagamani, V.; Amudhavalli, C.; Hoisington, D.A. Progress in interspecific hybridization between Cicer arietinum and wild species C. bijugum. J. SAT Agric. Res., 2007, 5(1), 1-2.
[18]
Jin, S.; Daniell, H. The engineered chloroplast genome just got smarter. Trends Plant Sci., 2015, 20(10), 622-640.
[http://dx.doi.org/10.1016/j.tplants.2015.07.004] [PMID: 26440432]
[19]
Zhang, Y.; Du, L.; Liu, A.; Chen, J.; Wu, L.; Hu, W.; Zhang, W.; Kim, K.; Lee, S.C.; Yang, T.J.; Wang, Y. The complete chloroplast genome sequences of five Epimedium species: Lights into phylogenetic and taxonomic analyses. Front. Plant Sci., 2016, 7, 306.
[http://dx.doi.org/10.3389/fpls.2016.00306] [PMID: 27014326]
[20]
Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol., 2016, 17(1), 134.
[http://dx.doi.org/10.1186/s13059-016-1004-2] [PMID: 27339192]
[21]
Kersten, B.; Faivre Rampant, P.; Mader, M.; Le Paslier, M.C.; Bounon, R.; Berard, A.; Vettori, C.; Schroeder, H.; Leplé, J.C.; Fladung, M. Genome sequences of Populus tremula chloroplast and mitochondrion: Implications for holistic poplar breeding. PLoS One, 2016, 11(1), e0147209.
[http://dx.doi.org/10.1371/journal.pone.0147209] [PMID: 26800039]
[22]
Liu, L.; Wang, Y.; He, P.; Li, P.; Lee, J.; Soltis, D.E.; Fu, C. Chloroplast genome analyses and genomic resource development for epilithic sister genera Oresitrophe and Mukdenia (Saxifragaceae), using genome skimming data. BMC Genomics, 2018, 19(1), 235.
[http://dx.doi.org/10.1186/s12864-018-4633-x] [PMID: 29618324]
[23]
Du, F.K.; Lang, T.; Lu, S.; Wang, Y.; Li, J.; Yin, K. An improved method for chloroplast genome sequencing in non-model forest tree species. Tree Genet. Genomes, 2015, 11, 114.
[http://dx.doi.org/10.1007/s11295-015-0942-2]
[24]
Somaratne, Y.; Guan, D.L.; Wang, W.Q.; Zhao, L.; Xu, S.Q. Complete chloroplast genome sequence of Xanthium sibiricum provides useful DNA barcodes for future species identification and phylogeny. Plant Syst. Evol., 2019, 305, 949-960.
[http://dx.doi.org/10.1007/s00606-019-01614-1]
[25]
Cho, K.S.; Yun, B.K.; Yoon, Y.H.; Hong, S.Y.; Mekapogu, M.; Kim, K.H.; Yang, T.J. Complete chloroplast genome sequence of tartary buckwheat (Fagopyrum tataricum) and comparative analysis with common buckwheat (F. esculentum). PLoS One, 2015, 10(5), e0125332.
[http://dx.doi.org/10.1371/journal.pone.0125332] [PMID: 25966355]
[26]
Shao, L.; Ning, H. The complete chloroplast genome of Cymbidium serratum (Orchidaceae): A rare and endangered species endemic to Southwest China. Mitochondrial DNA B Resour., 2020, 5(3), 2429-2431.
[http://dx.doi.org/10.1080/23802359.2020.1775514] [PMID: 33457815]
[27]
Li, H.; Ma, D.; Li, J.; Wei, M.; Zheng, H.; Zhu, X. Illumina sequencing of complete chloroplast genome of Avicennia marina, a pioneer mangrove species. Mitochondrial DNA B Resour., 2020, 5(3), 2131-2132.
[http://dx.doi.org/10.1080/23802359.2020.1768927] [PMID: 33366945]
[28]
Tan, W.; Gao, H.; Zhang, H.; Yu, X.; Tian, X.; Jiang, W. The complete chloroplast genome of Chinese medicine (Psoralea corylifolia): Molecular structures, barcoding and phylogenetic analysis. Plant Gene, 2020, 21, 100216.
[http://dx.doi.org/10.1016/j.plgene.2019.100216]
[29]
Wang, W.; Yang, T.; Wang, H.L.; Li, Z.J.; Ni, J.W.; Su, S.; Xu, X.Q. Comparative and phylogenetic analyses of the complete chloroplast genomes of six almond species (Prunus spp. L.). Sci. Rep., 2020, 10(1), 10137.
[http://dx.doi.org/10.1038/s41598-020-67264-3] [PMID: 32576920]
[30]
Weng, M.L.; Blazier, J.C.; Govindu, M.; Jansen, R.K. Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol. Biol. Evol., 2014, 31(3), 645-659.
[http://dx.doi.org/10.1093/molbev/mst257] [PMID: 24336877]
[31]
Liu, Q.; Li, X.; Li, M.; Xu, W.; Schwarzacher, T.; Heslop-Harrison, J.S. Comparative chloroplast genome analyses of Avena: Insights into evolutionary dynamics and phylogeny. BMC Plant Biol., 2020, 20(1), 406.
[http://dx.doi.org/10.1186/s12870-020-02621-y] [PMID: 32878602]
[32]
Wang, A.H.; Deng, S.W.; Duan, L.; Chen, H.F. The complete chloroplast genome of desert spiny semi-shrub Alhagi sparsifolia (Fabaceae) from Central Asia. Mitochondrial DNA B Resour., 2020, 5(3), 3098-3099.
[http://dx.doi.org/10.1080/23802359.2020.1797558] [PMID: 33458072]
[33]
Jansen, R.K.; Wojciechowski, M.F.; Sanniyasi, E.; Lee, S.B.; Daniell, H. Complete plastid genome sequence of the chickpea (Cicer arietinum) and the phylogenetic distribution of rps12 and clpP intron losses among legumes (Leguminosae). Mol. Phylogenet. Evol., 2008, 48(3), 1204-1217.
[http://dx.doi.org/10.1016/j.ympev.2008.06.013] [PMID: 18638561]
[34]
Nock, C.J.; Hardner, C.M.; Montenegro, J.D.; Ahmad Termizi, A.A.; Hayashi, S.; Playford, J.; Edwards, D.; Batley, J. Wild origins of macadamia domestication identified through intraspecific chloroplast genome sequencing. Front. Plant Sci., 2019, 10, 334.
[http://dx.doi.org/10.3389/fpls.2019.00334] [PMID: 30949191]
[35]
Giani, A.M.; Gallo, G.R.; Gianfranceschi, L.; Formenti, G. Long walk to genomics: History and current approaches to genome sequencing and assembly. Comput. Struct. Biotechnol. J., 2019, 18, 9-19.
[http://dx.doi.org/10.1016/j.csbj.2019.11.002] [PMID: 31890139]
[36]
Tan, M.P.; Wong, L.L.; Razali, S.A.; Afiqah-Aleng, N.; Mohd Nor, S.A.; Sung, Y.Y.; Van de Peer, Y.; Sorgeloos, P.; Danish- Daniel, M. Applications of next-generation sequencing technologies and computational tools in molecular evolution and aquatic animals conservation studies: A short review. Evol. Bioinform. Online, 2019, 15, 1176934319892284.
[http://dx.doi.org/10.1177/1176934319892284] [PMID: 31839703]
[37]
Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K.; Ohto, C.; Torazawa, K.; Meng, B.Y.; Sugita, M.; Deno, H.; Kamogashira, T.; Yamada, K.; Kusuda, J.; Takaiwa, F.; Kato, A.; Tohdoh, N.; Shimada, H.; Sugiura, M. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J., 1986, 5(9), 2043-2049.
[http://dx.doi.org/10.1002/j.1460-2075.1986.tb04464.x] [PMID: 16453699]
[38]
Shi, C.; Hu, N.; Huang, H.; Gao, J.; Zhao, Y.J.; Gao, L.Z. An improved chloroplast DNA extraction procedure for whole plastid genome sequencing. PLoS One, 2012, 7(2), e31468.
[http://dx.doi.org/10.1371/journal.pone.0031468] [PMID: 22384027]
[39]
Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res., 2019, 47(W1), W59-W64.
[http://dx.doi.org/10.1093/nar/gkz238] [PMID: 30949694]
[40]
Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res., 2004, 32(Web Server issue), W273-W279.
[http://dx.doi.org/10.1093/nar/gkh458] [PMID: 15215394]
[41]
Darling, A.C.E.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res., 2004, 14(7), 1394-1403.
[http://dx.doi.org/10.1101/gr.2289704] [PMID: 15231754]
[42]
Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 2018, 35(6), 1547-1549.
[http://dx.doi.org/10.1093/molbev/msy096] [PMID: 29722887]
[43]
Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res., 2001, 29(22), 4633-4642.
[http://dx.doi.org/10.1093/nar/29.22.4633] [PMID: 11713313]
[44]
Benson, G. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res., 1999, 27(2), 573-580.
[http://dx.doi.org/10.1093/nar/27.2.573] [PMID: 9862982]
[45]
Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics, 2017, 33(16), 2583-2585.
[http://dx.doi.org/10.1093/bioinformatics/btx198] [PMID: 28398459]
[46]
Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol., 2013, 30(4), 772-780.
[http://dx.doi.org/10.1093/molbev/mst010] [PMID: 23329690]
[47]
Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol., 2017, 34(12), 3299-3302.
[http://dx.doi.org/10.1093/molbev/msx248] [PMID: 29029172]
[48]
Kaila, T.; Chaduvla, P.K.; Rawal, H.C.; Saxena, S.; Tyagi, A.; Mithra, S.V.A.; Solanke, A.U.; Kalia, P.; Sharma, T.R.; Singh, N.K.; Gaikwad, K. Chloroplast genome sequence of clusterbean (Cyamopsis tetragonoloba L.): Genome structure and comparative analysis. Genes (Basel), 2017, 8(9), E212.
[http://dx.doi.org/10.3390/genes8090212] [PMID: 28925932]
[49]
Wang, Y.H.; Qu, X.J.; Chen, S.Y.; Li, D.Z.; Yi, T.S. Plastomes of Mimosoideae: Structural and size variation, sequence divergence, and phylogenetic implication. Tree Genet. Genomes, 2017, 13, 41.
[http://dx.doi.org/10.1007/s11295-017-1124-1]
[50]
Talat, F.; Wang, K. Chloroplast genome study, new tool in plant biotechnology; Gossypium Spp. As a model crop. J. Curr. Res. Sci., 2014, 2, 838.
[51]
Melodelima, C.; Lobréaux, S. Complete Arabis alpina chloroplast genome sequence and insight into its polymorphism. Meta Gene, 2013, 1, 65-75.
[http://dx.doi.org/10.1016/j.mgene.2013.10.004] [PMID: 25606376]
[52]
Wojciechowski, M. Molecular phylogeny of the “temperate herbaceous tribes” of papilionoid legumes: A supertree approach. Adv. Legum, 2000, 277-298.
[53]
Sveinsson, S.; Cronk, Q. Conserved gene clusters in the scrambled plastomes of IRLC legumes (Fabaceae: Trifolieae and Fabeae). BioRxiv, 2016.
[http://dx.doi.org/10.1101/040188]
[54]
Xia, M.; Liao, R.; Zhou, J.; Lin, H.; Li, J.; Li, P. Phylogenomics and biogeography of Wisteria: Implications on plastome evolution among Inverted Repeat-Lacking Clade (IRLC) legumes. J. Syst. Evol., 2021, 2021, 12733.
[http://dx.doi.org/10.1111/jse.12733]
[55]
Kim, N.R.; Kim, K.; Lee, S.C.; Lee, J.H.; Cho, S.H.; Yu, Y.; Kim, Y.D.; Yang, T.J. The complete chloroplast genomes of two Wisteria species, W. floribunda and W. sinensis (Fabaceae). Mitochondrial DNA A. DNA Mapp. Seq. Anal., 2016, 27(6), 4353-4354.
[http://dx.doi.org/10.3109/19401736.2015.1089497] [PMID: 26465833]
[56]
Tao, X.; Ma, L.; Zhang, Z.; Liu, W.; Liu, Z. Characterization of the complete chloroplast genome of alfalfa (Medicago sativa) (Leguminosae). Gene Rep., 2017, 6, 67-73.
[http://dx.doi.org/10.1016/j.genrep.2016.12.006]
[57]
Huang, H.; Shi, C.; Liu, Y.; Mao, S.Y.; Gao, L.Z. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: Genome structure and phylogenetic relationships. BMC Evol. Biol., 2014, 14, 151.
[http://dx.doi.org/10.1186/1471-2148-14-151] [PMID: 25001059]
[58]
Li, X.; Tan, W.; Sun, J.; Du, J.; Zheng, C.; Tian, X.; Zheng, M.; Xiang, B.; Wang, Y. Comparison of four complete chloroplast genomes of medicinal and ornamental meconopsis species: Genome organization and species discrimination. Sci. Rep., 2019, 9(1), 10567.
[http://dx.doi.org/10.1038/s41598-019-47008-8] [PMID: 31332227]
[59]
Dong, W.; Xu, C.; Li, C.; Sun, J.; Zuo, Y.; Shi, S.; Cheng, T.; Guo, J.; Zhou, S. YCF1, the most promising plastid DNA barcode of land plants. Sci. Rep., 2015, 5, 8348.
[http://dx.doi.org/10.1038/srep08348] [PMID: 25672218]
[60]
Niu, Z.; Pan, J.; Zhu, S.; Li, L.; Xue, Q.; Liu, W.; Ding, X. Comparative analysis of the complete plastomes of Apostasia wallichii and Neuwiedia singapureana (Apostasioideae) reveals different evolutionary dynamics of IR/SSC boundary among photosynthetic orchi. Front. Plant Sci., 2017, 8, 1713.
[http://dx.doi.org/10.3389/fpls.2017.01713] [PMID: 29046685]
[61]
Jung, J.; Kim, C.; Kim, J.H. Insights into phylogenetic relationships and genome evolution of subfamily Commelinoideae (Commelinaceae Mirb.) inferred from complete chloroplast genomes. BMC Genomics, 2021, 22(1), 231.
[http://dx.doi.org/10.1186/s12864-021-07541-1] [PMID: 33794772]
[62]
Wen, F.; Wu, X.; Li, T.; Jia, M.; Liu, X.; Liao, L. The complete chloroplast genome of Stauntonia chinensis and compared analysis revealed adaptive evolution of subfamily Lardizabaloideae species in China. BMC Genomics, 2021, 22(1), 161.
[http://dx.doi.org/10.1186/s12864-021-07484-7] [PMID: 33676415]
[63]
Souza, U.J.B.; Nunes, R.; Targueta, C.P.; Diniz-Filho, J.A.F.; Telles, M.P.C. The complete chloroplast genome of Stryphnodendron adstringens (Leguminosae - Caesalpinioideae): Comparative analysis with related Mimosoid species. Sci. Rep., 2019, 9(1), 14206.
[http://dx.doi.org/10.1038/s41598-019-50620-3] [PMID: 31578450]
[64]
Munyao, J.N.; Dong, X.; Yang, J.X.; Mbandi, E.M.; Wanga, V.O.; Oulo, M.A.; Saina, J.K.; Musili, P.M.; Hu, G.W. Complete chloroplast genomes of Chlorophytum comosum and Chlorophytum gallabatense: Genome structures, comparative and phylogenetic analysis. Plants, 2020, 9(3), E296.
[http://dx.doi.org/10.3390/plants9030296] [PMID: 32121524]
[65]
Alzahrani, D.A.; Yaradua, S.S.; Albokhari, E.J.; Abba, A.; Albokhari, E.J.; Abba, A. Complete chloroplast genome sequence of Barleria prionitis, comparative chloroplast genomics and phylogenetic relationships among Acanthoideae. BMC Genomics, 2020, 21(1), 393.
[http://dx.doi.org/10.1186/s12864-020-06798-2] [PMID: 32532210]
[66]
Yang, X.; Zhou, T.; Su, X.; Wang, G.; Zhang, X.; Guo, Q. Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. J. For. Res., 2021, 32, 765-778.
[http://dx.doi.org/10.1007/s11676-019-01088-4]
[67]
Li, Y.; Xu, W.; Zou, W.; Jiang, D.; Liu, X. Complete chloroplast genome sequences of two endangered Phoebe (Lauraceae) species. Bot. Stud. (Taipei, Taiwan), 2017, 58(1), 37.
[http://dx.doi.org/10.1186/s40529-017-0192-8] [PMID: 28905330]
[68]
Li, B.; Lin, F.; Huang, P.; Guo, W.; Zheng, Y. Complete chloroplast genome sequence of decaisnea insignis: Genome organization, genomic resources and comparative analysis. Sci. Rep., 2017, 7(1), 10073.
[http://dx.doi.org/10.1038/s41598-017-10409-8] [PMID: 28855603]
[69]
Li, Y.; Dong, Y.; Liu, Y.; Yu, X.; Yang, M.; Huang, Y. Comparative analyses of Euonymus chloroplast genomes: Genetic structure, screening for loci with suitable polymorphism, positive selection genes, and phylogenetic relationships within celastrineae. Front. Plant Sci., 2021, 11, 593984.
[http://dx.doi.org/10.3389/fpls.2020.593984] [PMID: 33643327]
[70]
Liu, W.; Kong, H.; Zhou, J.; Fritsch, P.W.; Hao, G.; Gong, W. Complete chloroplast genome of Cercis chuniana (Fabaceae) with structural and genetic comparison to six species in Caesalpinioideae. Int. J. Mol. Sci., 2018, 19(5), E1286.
[http://dx.doi.org/10.3390/ijms19051286] [PMID: 29693617]
[71]
Antunes, A.M.; Soares, T.N.; Targueta, C.P.; Novaes, E.; Coelho, A.S.G.; Telles, M.P de C. The chloroplast genome sequence of Dipteryx alata Vog. (Fabaceae: Papilionoideae): Genomic features and comparative analysis with other legume genomes. Rev. Bras. Bot. Braz. J. Bot., 2020, 43, 271-282.
[http://dx.doi.org/10.1007/s40415-020-00599-3]
[72]
Wang, Y.; Wang, S.; Liu, Y.; Yuan, Q.; Sun, J.; Guo, L. Chloroplast genome variation and phylogenetic relationships of Atractylodes species. BMC Genomics, 2021, 22(1), 103.
[http://dx.doi.org/10.1186/s12864-021-07394-8] [PMID: 33541261]
[73]
Ding, S.; Dong, X.; Yang, J.; Guo, C.; Cao, B.; Guo, Y. Complete chloroplast genome of Clethra fargesii franch., an original sympetalous plant from central china: Comparative analysis, adaptive evolution, and phylogenetic relationships. Forests, 2021, 12(4), 441.
[http://dx.doi.org/10.3390/f12040441]
[74]
Schwarz, E.N.; Ruhlman, T.A.; Weng, M.L.; Khiyami, M.A.; Sabir, J.S.M.; Hajarah, N.H.; Alharbi, N.S.; Rabah, S.O.; Jansen, R.K. Plastome-wide nucleotide substitution rates reveal accelerated rates in papilionoideae and correlations with genome features across legume subfamilies. J. Mol. Evol., 2017, 84(4), 187-203.
[http://dx.doi.org/10.1007/s00239-017-9792-x] [PMID: 28397003]
[75]
Martin, G.E.; Rousseau-Gueutin, M.; Cordonnier, S.; Lima, O.; Michon-Coudouel, S.; Naquin, D.; de Carvalho, J.F.; Aïnouche, M.; Salmon, A.; Aïnouche, A. The first complete chloroplast genome of the Genistoid legume Lupinus luteus: Evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Ann. Bot. (Lond.), 2014, 113(7), 1197-1210.
[http://dx.doi.org/10.1093/aob/mcu050] [PMID: 24769537]
[76]
Tangphatsornruang, S.; Sangsrakru, D.; Chanprasert, J.; Uthaipaisanwong, P.; Yoocha, T.; Jomchai, N.; Tragoonrung, S. The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: Structural organization and phylogenetic relationships. DNA Res., 2010, 17(1), 11-22.
[http://dx.doi.org/10.1093/dnares/dsp025] [PMID: 20007682]
[77]
Xiong, Y.; Xiong, Y.; He, J.; Yu, Q.; Zhao, J.; Lei, X.; Dong, Z.; Yang, J.; Peng, Y.; Zhang, X.; Ma, X. The complete chloroplast genome of two important annual clover species, Trifolium alexandrinum and T. resupinatum: Genome structure, comparative analyses and phylogenetic relationships with relatives in leguminosae. Plants, 2020, 9(4), 1-19.
[http://dx.doi.org/10.3390/plants9040478] [PMID: 32283660]
[78]
Yin, D.; Wang, Y.; Zhang, X.; Ma, X.; He, X.; Zhang, J. Development of chloroplast genome resources for peanut (Arachis hypogaea L.) and other species of Arachis. Sci. Rep., 2017, 7(1), 11649.
[http://dx.doi.org/10.1038/s41598-017-12026-x] [PMID: 28912544]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy