Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Novel MicroRNAs and their Functional Targets from Phytophthora infestans and Phytophthora cinnamomi

Author(s): Binta Varghese, Ravisankar Valsalan and Deepu Mathew*

Volume 23, Issue 1, 2022

Published on: 13 January, 2022

Page: [41 - 49] Pages: 9

DOI: 10.2174/1389202923666211223122305

Price: $65

Abstract

Background: Even though miRNAs play vital roles in developmental biology by regulating the translation of mRNAs, they are poorly studied in oomycetes, especially in the plant pathogen Phytophthora.

Objective: The study aimed to predict and identify the putative miRNAs and their targets in Phytophthora infestans and Phytophthora cinnamomi.

Methods: The homology-based comparative method was used to identify the unique miRNA sequences in P. infestans and P. cinnamomi with 148,689 EST and TSA sequences of these species. Secondary structure prediction of sRNAs for the 76 resultant sequences has been performed with the MFOLD tool, and their targets were predicted using psRNATarget.

Results: Novel miRNAs, miR-8210 and miR-4968, were predicted from P. infestans and P. cinnamomi, respectively, along with their structural features. The newly identified miRNAs were identified to play important roles in gene regulation, with few of their target genes predicted as transcription factors, tumor suppressor genes, stress-responsive genes, DNA repair genes, etc.

Conclusion: The miRNAs and their targets identified have opened new interference and editing targets for the development of Phytophthora resistant crop varieties.

Keywords: Data mining, fungus, genome annotation, miRNA, oomycete, siRNA, target prediction.

Graphical Abstract

[1]
Fry, W. Phytophthora infestans: The plant (and R gene) destroyer. Mol. Plant Pathol., 2008, 9(3), 385-402.
[http://dx.doi.org/10.1111/j.1364-3703.2007.00465.x] [PMID: 18705878]
[2]
Mathew, D.; Anju, P.S.; Tom, A.; Johnson, N.; George, M.L.; Davis, S.P.; Ravisankar, V.; Asha, K.N. Genome-wide microsatellites and species specific markers in genus Phytophthora revealed through whole genome analysis. 3 Biotech., 2020, 10, 442.
[http://dx.doi.org/10.1007/s13205-020-02430-y]
[3]
Moore, N.; Barrett, S.; Bowen, B.; Shearer, B.; Hardy, G. The role of fire on Phytophthora dieback caused by the root pathogen Phytophthora cinnamomi in the Stirling Range National Park, Western Australia. In: Proc. 11th International Mediterranean Ecosystems (MEDECOS) Conference, 2007 Sep 2-5 Perth, Western Australia, pp. 165-166.
[4]
Scott, P.; Bader, M.K.; Burgess, T.; Hardy, G.; Williams, N. Global biogeography and invasion risk of the plant pathogen genus Phytophthora. Environ. Sci. Policy, 2019, 101, 175-182.
[http://dx.doi.org/10.1016/j.envsci.2019.08.020]
[5]
Axtell, M.J. Classification and comparison of small RNAs from plants. Annu. Rev. Plant Biol., 2013, 64, 137-159.
[http://dx.doi.org/10.1146/annurev-arplant-050312-120043] [PMID: 23330790]
[6]
Gao, D.; Qiu, L.; Hou, Z.; Zhang, Q.; Wu, J.; Gao, Q.; Song, L. Computational identification of microRNAs from the expressed sequence tags of toxic dinoflagellate Alexandrium tamarense. Evol. Bioinf., 2013, 9, EBO-S12899.
[http://dx.doi.org/10.4137/EBO.S12899]
[7]
Aditi, T.; Suman, S.; Sundaresha, S.; Nidhi, S.; Shukla, P.K.; Debasis, P.; Sanjeev, S.; Singh, B.P. Artificial microRNA mediated gene silencing of Phytophthora infestans single effector Avr3a gene imparts moderate type of late blight resistance in potato. Plant Pathol. J., 2015, 14(1), 1-12.
[http://dx.doi.org/10.3923/ppj.2015.1.12] [PMID: 25774105]
[8]
Huang, Y.; Zou, Q.; Wang, S.P.; Tang, S.M.; Zhang, G.Z.; Shen, X.J. The discovery approaches and detection methods of microRNAs. Mol. Biol. Rep., 2011, 38(6), 4125-4135.
[http://dx.doi.org/10.1007/s11033-010-0532-1] [PMID: 21107708]
[9]
Friedländer, M.R.; Chen, W.; Adamidi, C.; Maaskola, J.; Einspanier, R.; Knespel, S.; Rajewsky, N. Discovering microRNAs from deep sequencing data using miRDeep. Nat. Biotechnol., 2008, 26(4), 407-415.
[http://dx.doi.org/10.1038/nbt1394] [PMID: 18392026]
[10]
Akter, A.; Islam, M.M.; Mondal, S.I.; Mahmud, Z.; Jewel, N.A.; Ferdous, S.; Amin, M.R.; Rahman, M.M. Computational identification of miRNA and targets from expressed sequence tags of coffee (Coffea arabica). Saudi J. Biol. Sci., 2014, 21(1), 3-12.
[http://dx.doi.org/10.1016/j.sjbs.2013.04.007] [PMID: 24596494]
[11]
Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform., 2009, 10(1), 421.
[http://dx.doi.org/10.1186/1471-2105-10-421] [PMID: 20003500]
[12]
Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics, 2010, 26(5), 680-682.
[http://dx.doi.org/10.1093/bioinformatics/btq003] [PMID: 20053844]
[13]
Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 2003, 31(13), 3406-3415.
[http://dx.doi.org/10.1093/nar/gkg595] [PMID: 12824337]
[14]
Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol., 1990, 215(3), 403-410.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[15]
Zhang, B.H.; Pan, X.P.; Cox, S.B.; Cobb, G.P.; Anderson, T.A. Evidence that miRNAs are different from other RNAs. Cell. Mol. Life Sci., 2006, 63(2), 246-254.
[http://dx.doi.org/10.1007/s00018-005-5467-7] [PMID: 16395542]
[16]
Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res., 2018, 46(W1), W49-W54.
[http://dx.doi.org/10.1093/nar/gky316] [PMID: 29718424]
[17]
Fahlgren, N.; Bollmann, S.R.; Kasschau, K.D.; Cuperus, J.T.; Press, C.M.; Sullivan, C.M.; Chapman, E.J.; Hoyer, J.S.; Gilbert, K.B.; Grünwald, N.J.; Carrington, J.C. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs. PLoS One, 2013, 8(10), e77181.
[http://dx.doi.org/10.1371/journal.pone.0077181] [PMID: 24204767]
[18]
Wang, M.; Wang, Q.; Wang, B. Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L.). PLoS One, 2012, 7(4), e33696.
[http://dx.doi.org/10.1371/journal.pone.0033696] [PMID: 22493671]
[19]
Zhan, Q-M.; Wang, L-H.; Song, Y-M.; Ou, Y-W.; Jiang, J.; Fan, J.; Wang, J-B.; Shen, J. Esophageal carcinoma. In: Recent Advances in Cancer Research and Therapy, 1st ed; Liu, X-Y.; Pestka, S.; Shi, Y.F., Eds.; Elsevier: London, 2012; pp. 493-534.
[http://dx.doi.org/10.1016/B978-0-12-397833-2.00018-2]
[20]
Ling, V.; Perera, I.; Zielinski, R.E. Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiol., 1991, 96(4), 1196-1202.
[http://dx.doi.org/10.1104/pp.96.4.1196] [PMID: 16668320]
[21]
Ren, H.; Gray, W.M. SAUR proteins as effectors of hormonal and environmental signals in plant growth. Mol. Plant, 2015, 8(8), 1153-1164.
[http://dx.doi.org/10.1016/j.molp.2015.05.003] [PMID: 25983207]
[22]
Takai, Y.; Sasaki, T.; Matozaki, T. Small GTP-binding proteins. Physiol. Rev., 2001, 81(1), 153-208.
[http://dx.doi.org/10.1152/physrev.2001.81.1.153] [PMID: 11152757]
[23]
Belinsky, M.G.; Chen, Z.S.; Shchaveleva, I.; Zeng, H.; Kruh, G.D. Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res., 2002, 62(21), 6172-6177.
[PMID: 12414644]
[24]
Sodani, K.; Patel, A.; Kathawala, R.J.; Chen, Z.S. Multidrug resistance associated proteins in multidrug resistance. Chin. J. Cancer, 2012, 31(2), 58-72.
[http://dx.doi.org/10.5732/cjc.011.10329] [PMID: 22098952]
[25]
Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; Asplund, A.; Sjöstedt, E.; Lundberg, E.; Szigyarto, C.A.; Skogs, M.; Takanen, J.O.; Berling, H.; Tegel, H.; Mulder, J.; Nilsson, P.; Schwenk, J.M.; Lindskog, C.; Danielsson, F.; Mardinoglu, A.; Sivertsson, A.; von Feilitzen, K.; Forsberg, M.; Zwahlen, M.; Olsson, I.; Navani, S.; Huss, M.; Nielsen, J.; Ponten, F.; Uhlén, M. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteomics, 2014, 13(2), 397-406.
[http://dx.doi.org/10.1074/mcp.M113.035600] [PMID: 24309898]
[26]
Vellosillo, T.; Martínez, M.; López, M.A.; Vicente, J.; Cascón, T.; Dolan, L.; Hamberg, M.; Castresana, C. Oxylipins produced by the 9-lipoxygenase pathway in Arabidopsis regulate lateral root development and defense responses through a specific signaling cascade. Plant Cell, 2007, 19(3), 831-846.
[http://dx.doi.org/10.1105/tpc.106.046052] [PMID: 17369372]
[27]
Fromme, J.C.; Banerjee, A.; Verdine, G.L. DNA glycosylase recognition and catalysis. Curr. Opin. Struct. Biol., 2004, 14(1), 43-49.
[http://dx.doi.org/10.1016/j.sbi.2004.01.003] [PMID: 15102448]
[28]
Chen, J.; Silver, D.P.; Walpita, D.; Cantor, S.B.; Gazdar, A.F.; Tomlinson, G.; Couch, F.J.; Weber, B.L.; Ashley, T.; Livingston, D.M.; Scully, R. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells. Mol. Cell, 1998, 2(3), 317-328.
[http://dx.doi.org/10.1016/S1097-2765(00)80276-2] [PMID: 9774970]
[29]
Moneo-Sánchez, M.; Izquierdo, L.; Martín, I.; Hernández-Nistal, J.; Albornos, L.; Dopico, B.; Labrador, E. Knockout mutants of Arabidopsis thaliana β-galactosidase. Modifications in the cell wall saccharides and enzymatic activities. Biol. Plant., 2018, 62(1), 80-88.
[http://dx.doi.org/10.1007/s10535-017-0739-2]
[30]
Phukan, U.J.; Jeena, G.S.; Shukla, R.K. WRKY transcription factors: Molecular regulation and stress responses in plants. Front. Plant Sci., 2016, 7, 760.
[http://dx.doi.org/10.3389/fpls.2016.00760] [PMID: 27375634]
[31]
Jakoby, M.; Weisshaar, B.; Dröge-Laser, W.; Vicente-Carbajosa, J.; Tiedemann, J.; Kroj, T.; Parcy, F. bZIP transcription factors in Arabidopsis. Trends Plant Sci., 2002, 7(3), 106-111.
[http://dx.doi.org/10.1016/S1360-1385(01)02223-3] [PMID: 11906833]
[32]
Lehti-Shiu, M.D.; Shiu, S.H. Diversity, classification and function of the plant protein kinase superfamily. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2012, 367(1602), 2619-2639.
[http://dx.doi.org/10.1098/rstb.2012.0003] [PMID: 22889912]
[33]
Pedersen, B.P.; Buch-Pedersen, M.J.; Morth, J.P.; Palmgren, M.G.; Nissen, P. Crystal structure of the plasma membrane proton pump. Nature, 2007, 450(7172), 1111-1114.
[http://dx.doi.org/10.1038/nature06417] [PMID: 18075595]
[34]
Axelsen, K.B.; Palmgren, M.G. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol., 1998, 46(1), 84-101.
[http://dx.doi.org/10.1007/PL00006286] [PMID: 9419228]
[35]
Sharma, M.; Pandey, A.; Pandey, G.K. Role of plant U-BOX (PUB) protein in stress and development. Plant Stress, 2013, 7(S1), 1-9.
[36]
Sun, J.; Jiang, H.; Xu, Y.; Li, H.; Wu, X.; Xie, Q.; Li, C. The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol., 2007, 48(8), 1148-1158.
[http://dx.doi.org/10.1093/pcp/pcm088] [PMID: 17609218]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy