Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Comparing Perfusion Data of CE-MRI, SWI, and CTA with MR Perfusion in Stroke

Author(s): Ezra Çetinkaya, Ayşe Aralaşmak*, Gurol Goksungur, Mehmet Onur Kaya, Huseyin Toprak, Mehmet Kolukısa, Talip Asıl, Serpil Kurtcan and Hüseyin Özdemir

Volume 19, Issue 2, 2023

Published on: 31 March, 2022

Article ID: e110222201041 Pages: 6

DOI: 10.2174/1573405618666220211092836

Price: $65

Abstract

Background: To evaluate the perfusion status of patients with acute stroke, different imaging tools are used depending on the condition. CT-CT Angiography and MRI are indispensable imaging tools to diagnose and manage stroke patients. Susceptibility-weighted imaging (SWI) also has been used lately to evaluate vascular structures and consequences of stroke in the brain. We aimed to compare CE-MRI, SWI, and CTA with DSC-MRP in terms of perfusion.

Methods: Stroke cases of CE-MRI, SWI, CTA and DSC-MRP of 44 patients were included. Collateralization was assessed on CTA; leptomeningeal-pial collateralization (LPC) and parenchymal enhancement (PE) on CE-MRI; prominent vessel sign (PVS) and hemorrhagic transformation on SWI. Results were compared with MRP maps and the ratio of penumbra/infarct core.

Results: LPC was correlated with increased CBV (p<0,001), decreased CBF (p=0,026), and prolonged MTT and TTP (p=0,001 and p=0,003). LPC was observed more often in cases with infarct zones with penumbra compared to those without penumbra (p=0,024). PE was positively correlated with prolonged MTT and TTP (p=0,015 and p=0,031). Moreover, there was a positive relationship between PE and increased penumbra ratio over the infarct core (p=0,037). Ipsilateral PVS was associated with increased CBV (p=0,004) and decreased CBF (p=0,002). No relationship was found between collateralization grading on CTA and perfusion metrics or penumbra ratio.

Conclusion: In conclusion; ipsilateral PVS can be a measure of CBV and CBF. LPC on CE-MRI can be a sign of an increase in CBV. PE can show larger penumbra. CE-MRI with SWI can be used to evaluate perfusion status.

Keywords: Stroke, MR, perfusion, SWI, leptomeningeal-pial collateralization, parenchymal enhancement.

[1]
Krishnamurthi RV, Feigin VL, Forouzanfar MH, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. Lancet Glob Health 2013; 1(5): e259-81.
[http://dx.doi.org/10.1016/S2214-109X(13)70089-5] [PMID: 25104492]
[2]
Copen WA, Schaefer PW, Wu O. MR perfusion imaging in acute ischemic stroke. Neuroimaging Clin 2011; 21(2): 259-83.
[http://dx.doi.org/10.1016/j.nic.2011.02.007] [PMID: 21640299]
[3]
Fujioka M, Okuchi K, Iwamura A, Taoka T, Siesjö BK. A mismatch between the abnormalities in diffusion- and susceptibility-weighted magnetic resonance imaging may represent an acute ischemic penumbra with misery perfusion. J Stroke Cerebrovasc Dis 2013; 22(8): 1428-31.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2012.12.009] [PMID: 23410687]
[4]
Payabvash S, Benson JC, Taleb S, et al. Prominent cortical and medullary veins on susceptibility-weighted images of acute ischaemic stroke. Br J Radiol 2016; 89(1068): 20160714.
[http://dx.doi.org/10.1259/bjr.20160714] [PMID: 27805839]
[5]
Chen C-Y, Chen C-I, Tsai FY, Tsai P-H, Chan WP. Prominent vessel sign on susceptibility-weighted imaging in acute stroke: Prediction of infarct growth and clinical outcome. PLoS One 2015; 10(6): e0131118.
[http://dx.doi.org/10.1371/journal.pone.0131118] [PMID: 26110628]
[6]
Kesavadas C, Thomas B, Pendharakar H, Sylaja PN. Susceptibility weighted imaging: Does it give information similar to perfusion weighted imaging in acute stroke? J Neurol 2011; 258(5): 932-4.
[http://dx.doi.org/10.1007/s00415-010-5843-6] [PMID: 21116823]
[7]
Kao H-W, Tsai FY, Hasso AN. Predicting stroke evolution: Comparison of susceptibility-weighted MR imaging with MR perfusion. Eur Radiol 2012; 22(7): 1397-403.
[http://dx.doi.org/10.1007/s00330-012-2387-4] [PMID: 22322311]
[8]
Polan RM, Poretti A, Huisman TA, Bosemani T. Susceptibility-weighted imaging in pediatric arterial ischemic stroke: A valuable alternative for the noninvasive evaluation of altered cerebral hemodynamics. J Neuroradiol 2015; 36(4): 783-8.
[http://dx.doi.org/10.3174/ajnr.A4187] [PMID: 25477354]
[9]
Lou M, Chen Z, Wan J, et al. Susceptibility-diffusion mismatch predicts thrombolytic outcomes: A retrospective cohort study. J Neuroradiol 2014; 35(11): 2061-7.
[http://dx.doi.org/10.3174/ajnr.A4017] [PMID: 25012670]
[10]
Verclytte S, Fisch O, Colas L, Vanaerde O, Toledano M, Budzik J-F. ASL and susceptibility-weighted imaging contribution to the management of acute ischaemic stroke. Insights Imaging 2017; 8(1): 91-100.
[http://dx.doi.org/10.1007/s13244-016-0529-y] [PMID: 27822669]
[11]
Zhang X, Zhang S, Chen Q, Ding W, Campbell BCV, Lou M. Ipsilateral prominent thalamostriate vein on susceptibility-weighted imaging predicts poor outcome after intravenous thrombolysis in acute ischemic stroke. J Neuroradiol 2017; 38(5): 875-81.
[http://dx.doi.org/10.3174/ajnr.A5135] [PMID: 28302608]
[12]
Yu X, Yuan L, Jackson A, et al. Prominence of medullary veins on susceptibility-weighted images provides prognostic information in patients with subacute stroke. J Neuroradiol 2016; 37(3): 423-9.
[http://dx.doi.org/10.3174/ajnr.A4541] [PMID: 26514606]
[13]
Allen LM, Hasso AN, Handwerker J, Farid H. Sequence-specific MR imaging findings that are useful in dating ischemic stroke. Radiographics 2012; 32(5): 1285-97.
[http://dx.doi.org/10.1148/rg.325115760] [PMID: 22977018]
[14]
Krieger DA, Dehkharghani S. Magnetic resonance imaging in ischemic stroke and cerebral venous thrombosis. Top Magn Reson Imaging 2015; 24(6): 331-52.
[http://dx.doi.org/10.1097/RMR.0000000000000067] [PMID: 26636639]
[15]
Vo KD, Santiago F, Lin W, Hsu CY, Lee Y, Lee J-M. MR imaging enhancement patterns as predictors of hemorrhagic transformation in acute ischemic stroke. AJNR Am J Neuroradiol 2003; 24(4): 674-9.
[PMID: 12695202]
[16]
Hjort N, Wu O, Ashkanian M, et al. MRI detection of early blood-brain barrier disruption: Parenchymal enhancement predicts focal hemorrhagic transformation after thrombolysis. Stroke 2008; 39(3): 1025-8.
[http://dx.doi.org/10.1161/STROKEAHA.107.497719] [PMID: 18258832]
[17]
Kim BJ, Kang HG, Kim H-J, et al. Magnetic resonance imaging in acute ischemic stroke treatment. J Stroke 2014; 16(3): 131-45.
[http://dx.doi.org/10.5853/jos.2014.16.3.131] [PMID: 25328872]
[18]
Na DG, Sohn C-H, Kim EY. Imaging-based management of acute ischemic stroke patients: Current neuroradiological perspectives. Korean J Radiol 2015; 16(2): 372-90.
[http://dx.doi.org/10.3348/kjr.2015.16.2.372] [PMID: 25741200]
[19]
Kaya D, Dinçer A, Yildiz ME, Cizmeli MO, Erzen C. Acute ischemic infarction defined by a region of multiple hypointense vessels on gradient-echo T2* MR imaging at 3T. J Neuroradiol 2009; 30(6): 1227-32.
[http://dx.doi.org/10.3174/ajnr.A1537] [PMID: 19346312]
[20]
Kesavadas C, Santhosh K, Thomas B. Susceptibility weighted imaging in cerebral hypoperfusion-can we predict increased oxygen extraction fraction? Neuroradiology 2010; 52(11): 1047-54.
[http://dx.doi.org/10.1007/s00234-010-0733-2] [PMID: 20567811]
[21]
Markus HS. Cerebral perfusion and stroke. J Neurol Neurosurg Psychiatry 2004; 75(3): 353-61.
[http://dx.doi.org/10.1136/jnnp.2003.025825] [PMID: 14966145]
[22]
Lui YW, Tang ER, Allmendinger AM, Spektor V. Evaluation of CT perfusion in the setting of cerebral ischemia: Patterns and pitfalls. J Neuroradiol 2010; 31(9): 1552-63.
[http://dx.doi.org/10.3174/ajnr.A2026] [PMID: 20190208]
[23]
Chen Y-F, Tang S-C, Wu W-C, Kao H-L, Kuo Y-S, Yang S-C. Alterations of cerebral perfusion in asymptomatic internal carotid artery steno-occlusive disease. Sci Rep 2017; 7(1): 1841.
[http://dx.doi.org/10.1038/s41598-017-02094-4] [PMID: 28500300]
[24]
Hong D, Seo HS, Lee YH, Kim KJ, Suh SI, Jung J-M. Leptomeningeal enhancement on magnetic resonance imaging as a predictor of hemodynamic insufficiency. J Comput Assist Tomogr 2015; 39(3): 307-12.
[http://dx.doi.org/10.1097/RCT.0000000000000213] [PMID: 25695866]
[25]
Pantano P, Toni D, Caramia F, et al. Relationship between vascular enhancement, cerebral hemodynamics, and MR angiography in cases of acute stroke. AJNR Am J Neuroradiol 2001; 22(2): 255-60.
[PMID: 11156765]
[26]
Wilkinson ID, Griffiths PD, Hoggard N, Cleveland TJ, Gaines PA, Venables GS. Unilateral leptomeningeal enhancement after carotid stent insertion detected by magnetic resonance imaging. Stroke 2000; 31(4): 848-51.
[http://dx.doi.org/10.1161/01.STR.31.4.848] [PMID: 10753986]
[27]
Seker F, Potreck A, Möhlenbruch M, Bendszus M, Pham M. Comparison of four different collateral scores in acute ischemic stroke by CT angiography. J Neurointerv Surg 2016; 8(11): 1116-8.
[http://dx.doi.org/10.1136/neurintsurg-2015-012101] [PMID: 26658280]
[28]
Menon BK, d’Esterre CD, Qazi EM, et al. Multiphase CT angiography: A new tool for the imaging triage of patients with acute ischemic stroke. Radiology 2015; 275(2): 510-20.
[http://dx.doi.org/10.1148/radiol.15142256] [PMID: 25633505]
[29]
Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S. Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 2004; 56(4): 468-77.
[http://dx.doi.org/10.1002/ana.20199] [PMID: 15389899]
[30]
Knight RA, Barker PB, Fagan SC, Li Y, Jacobs MA, Welch KM. Prediction of impending hemorrhagic transformation in ischemic stroke using magnetic resonance imaging in rats. Stroke 1998; 29(1): 144-51.
[http://dx.doi.org/10.1161/01.STR.29.1.144] [PMID: 9445344]
[31]
Kim EY, Na DG, Kim SS, Lee KH, Ryoo JW, Kim HK. Prediction of hemorrhagic transformation in acute ischemic stroke: role of diffusion-weighted imaging and early parenchymal enhancement. AJNR Am J Neuroradiol 2005; 26(5): 1050-5.
[PMID: 15891158]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy