Review Article

肿瘤治疗中溴结构域和外末端结构域蛋白的靶向研究进展

卷 29, 期 25, 2022

发表于: 28 March, 2022

页: [4391 - 4409] 页: 19

弟呕挨: 10.2174/0929867329666220211091806

价格: $65

摘要

溴化结构域和末端外结构域(BET)蛋白是一个被广泛研究的与多种疾病相关的蛋白家族,包括恶性肿瘤和慢性炎症。目前,许多pan BET抑制剂已经在多个体内临床前模型中显示出了强大的疗效,并进入临床试验,但由于不良事件而在很大程度上停滞不前。因此,迫切需要开发新的靶向BET的选择性抑制剂和蛋白水解靶向嵌合体 (Proteolysis Targeting Chimeras, PROTACs)。本文综述了BET蛋白的结构和近年来BET抑制剂的研究进展,重点介绍了BRD4选择性抑制剂和PROTAC降解物。

关键词: 癌症,BET, BRD4,抑制剂,PROTAC,药物设计。

[1]
Filippakopoulos, P.; Picaud, S.; Mangos, M.; Keates, T.; Lambert, J.P.; Barsyte-Lovejoy, D.; Felletar, I.; Volkmer, R.; Müller, S.; Pawson, T.; Gingras, A.C.; Arrowsmith, C.H.; Knapp, S. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell, 2012, 149(1), 214-231.
[http://dx.doi.org/10.1016/j.cell.2012.02.013] [PMID: 22464331]
[2]
Pervaiz, M.; Mishra, P.; Günther, S. Bromodomain drug discovery - The past, the present, and the future. Chem. Rec., 2018, 18(12), 1808-1817.
[http://dx.doi.org/10.1002/tcr.201800074] [PMID: 30289209]
[3]
Belkina, A.C.; Denis, G.V. BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer, 2012, 12(7), 465-477.
[http://dx.doi.org/10.1038/nrc3256] [PMID: 22722403]
[4]
Zhang, Z.; Ma, P.; Jing, Y.; Yan, Y.; Cai, M.C.; Zhang, M.; Zhang, S.; Peng, H.; Ji, Z.L.; Di, W.; Gu, Z.; Gao, W.Q.; Zhuang, G. BET bromodomain inhibition as a therapeutic strategy in ovarian cancer by downregulating FoxM1. Theranostics, 2016, 6(2), 219-230.
[http://dx.doi.org/10.7150/thno.13178] [PMID: 26877780]
[5]
Tsume, M.; Kimura-Yoshida, C.; Mochida, K.; Shibukawa, Y.; Amazaki, S.; Wada, Y.; Hiramatsu, R.; Shimokawa, K.; Matsuo, I. Brd2 is required for cell cycle exit and neuronal differentiation through the E2F1 pathway in mouse neuroepithelial cells. Biochem. Biophys. Res. Commun., 2012, 425(4), 762-768.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.149] [PMID: 22885183]
[6]
Gursoy-Yuzugullu, O.; Carman, C.; Price, B.D. Spatially restricted loading of BRD2 at DNA double-strand breaks protects H4 acetylation domains and promotes DNA repair. Sci. Rep., 2017, 7(1), 12921.
[http://dx.doi.org/10.1038/s41598-017-13036-5] [PMID: 29018219]
[7]
Lamonica, J.M.; Deng, W.; Kadauke, S.; Campbell, A.E.; Gamsjaeger, R.; Wang, H.; Cheng, Y.; Billin, A.N.; Hardison, R.C.; Mackay, J.P.; Blobel, G.A. Bromodomain protein Brd3 associates with acetylated GATA1 to promote its chromatin occupancy at erythroid target genes. Proc. Natl. Acad. Sci. USA, 2011, 108(22), E159-E168.
[http://dx.doi.org/10.1073/pnas.1102140108] [PMID: 21536911]
[8]
Gaucher, J.; Boussouar, F.; Montellier, E.; Curtet, S.; Buchou, T.; Bertrand, S.; Hery, P.; Jounier, S.; Depaux, A.; Vitte, A.L.; Guardiola, P.; Pernet, K.; Debernardi, A.; Lopez, F.; Holota, H.; Imbert, J.; Wolgemuth, D.J.; Gérard, M.; Rousseaux, S.; Khochbin, S. Bromodomain-dependent stage-specific male genome programming by Brdt. EMBO J., 2012, 31(19), 3809-3820.
[http://dx.doi.org/10.1038/emboj.2012.233] [PMID: 22922464]
[9]
Stonestrom, A.J.; Hsu, S.C.; Werner, M.T.; Blobel, G.A. Erythropoiesis provides a BRD’s eye view of BET protein function. Drug Discov. Today. Technol., 2016, 19, 23-28.
[http://dx.doi.org/10.1016/j.ddtec.2016.05.004] [PMID: 27769353]
[10]
Stathis, A.; Bertoni, F. BET proteins as targets for anticancer treatment. Cancer Discov., 2018, 8(1), 24-36.
[http://dx.doi.org/10.1158/2159-8290.CD-17-0605] [PMID: 29263030]
[11]
Duan, Q.; McMahon, S.; Anand, P.; Shah, H.; Thomas, S.; Salunga, H.T.; Huang, Y.; Zhang, R.; Sahadevan, A.; Lemieux, M.E.; Brown, J.D.; Srivastava, D.; Bradner, J.E.; McKinsey, T.A.; Haldar, S.M. BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Sci. Transl. Med., 2017, 9(390), eaah5084.
[http://dx.doi.org/10.1126/scitranslmed.aah5084] [PMID: 28515341]
[12]
Lovén, J.; Hoke, H.A.; Lin, C.Y.; Lau, A.; Orlando, D.A.; Vakoc, C.R.; Bradner, J.E.; Lee, T.I.; Young, R.A. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell, 2013, 153(2), 320-334.
[http://dx.doi.org/10.1016/j.cell.2013.03.036] [PMID: 23582323]
[13]
Bradner, J.E.; Hnisz, D.; Young, R.A. Transcriptional addiction in cancer. Cell, 2017, 168(4), 629-643.
[http://dx.doi.org/10.1016/j.cell.2016.12.013] [PMID: 28187285]
[14]
Marazzi, I.; Greenbaum, B.D.; Low, D.H.P.; Guccione, E. Chromatin dependencies in cancer and inflammation. Nat. Rev. Mol. Cell Biol., 2018, 19(4), 245-261.
[http://dx.doi.org/10.1038/nrm.2017.113] [PMID: 29184195]
[15]
Wang, J.; Quan, Y.; Lv, J.; Gong, S.; Dong, D. BRD4 promotes glioma cell stemness via enhancing miR-142-5p-mediated activation of Wnt/β-catenin signaling. Environ. Toxicol., 2020, 35(3), 368-376.
[http://dx.doi.org/10.1002/tox.22873] [PMID: 31724259]
[16]
Fish, P.V.; Filippakopoulos, P.; Bish, G.; Brennan, P.E.; Bunnage, M.E.; Cook, A.S.; Federov, O.; Gerstenberger, B.S.; Jones, H.; Knapp, S.; Marsden, B.; Nocka, K.; Owen, D.R.; Philpott, M.; Picaud, S.; Primiano, M.J.; Ralph, M.J.; Sciammetta, N.; Trzupek, J.D. Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit. J. Med. Chem., 2012, 55(22), 9831-9837.
[http://dx.doi.org/10.1021/jm3010515] [PMID: 23095041]
[17]
Sheppard, G.S.; Wang, L.; Fidanze, S.D.; Hasvold, L.A.; Liu, D.; Pratt, J.K.; Park, C.H.; Longenecker, K.; Qiu, W.; Torrent, M.; Kovar, P.J.; Bui, M.; Faivre, E.; Huang, X.; Lin, X.; Wilcox, D.; Zhang, L.; Shen, Y.; Albert, D.H.; Magoc, T.J.; Rajaraman, G.; Kati, W.M.; McDaniel, K.F. Discovery of N-Ethyl-4-[2-(4-fluoro-2,6-dimethyl-phenoxy)- 5-(1-hydroxy-1-methyl-ethyl)phenyl]-6-methyl-7-oxo-1H-pyrrolo[2,3-c]pyridine-2-carboxamide (ABBV-744), a BET Bromodomain Inhibitor with Selectivity for the Second Bromodomain. J. Med. Chem.,
[http://dx.doi.org/10.1021/acs.jmedchem.0c00628] [PMID: 32324999]
[18]
Bradbury, R.H.; Callis, R.; Carr, G.R.; Chen, H.; Clark, E.; Feron, L.; Glossop, S.; Graham, M.A.; Hattersley, M.; Jones, C.; Lamont, S.G.; Ouvry, G.; Patel, A.; Patel, J.; Rabow, A.A.; Roberts, C.A.; Stokes, S.; Stratton, N.; Walker, G.E.; Ward, L.; Whalley, D.; Whittaker, D.; Wrigley, G.; Waring, M.J. Optimization of a series of bivalent triazolopyridazine based bromodomain and extraterminal inhibitors: The discovery of (3R)-4-[2-[4-[1-(3-Methoxy-[1,2,4]triazolo[4,3-b]pyridazin-6-yl)-4-piperidyl]phenoxy] ethyl]-1,3-dimethyl-piperazin-2-one (AZD5153). J. Med. Chem., 2016, 59(17), 7801-7817.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00070] [PMID: 27528113]
[19]
Liu, Z.; Wang, P.; Chen, H.; Wold, E.A.; Tian, B.; Brasier, A.R.; Zhou, J. Drug discovery targeting bromodomain-containing protein 4. J. Med. Chem., 2017, 60(11), 4533-4558.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01761] [PMID: 28195723]
[20]
Tang, P.; Zhang, J.; Liu, J.; Chiang, C.M.; Ouyang, L. Targeting bromodomain and extraterminal proteins for drug discovery: from current progress to technological development. J. Med. Chem., 2021, 64(5), 2419-2435.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01487] [PMID: 33616410]
[21]
Moreno, V.; Sepulveda, J.M.; Vieito, M.; Hernández-Guerrero, T.; Doger, B.; Saavedra, O.; Ferrero, O.; Sarmiento, R.; Arias, M.; De Alvaro, J.; Di Martino, J.; Zuraek, M.; Sanchez-Pérez, T.; Aronchik, I.; Filvaroff, E.H.; Lamba, M.; Hanna, B.; Nikolova, Z.; Braña, I. Phase I study of CC-90010, a reversible, oral BET inhibitor in patients with advanced solid tumors and relapsed/refractory non-Hodgkin’s lymphoma. Ann. Oncol., 2020, 31(6), 780-788.
[http://dx.doi.org/10.1016/j.annonc.2020.03.294] [PMID: 32240793]
[22]
Mascarenhas, J.; Kremyanskaya, M.; Hoffman, R.; Bose, P.; Talpaz, M.; Harrison, C.N.; Gupta, V.; Leber, B.; Sirhan, S.; Kabir, S.; Senderowicz, A.; Shao, J.; Mertz, J.; Trojer, P.; Verstovsek, S. MANIFEST, a phase 2 study of CPI-0610, a bromodomain and extraterminal domain inhibitor (BETi), as monotherapy or “add-on” to ruxolitinib, in patients with refractory or intolerant advanced myelofibrosis. Blood, 2019, 134(Suppl. 1), 670-670.
[http://dx.doi.org/10.1182/blood-2019-127119]
[23]
Patel, M.R.; Garcia-Manero, G.; Paquette, R.; Dinner, S.; Donnellan, W.B.; Grunwald, M.R.; Ribadeneira, M.D.; Schroeder, P.; Brevard, J.; Wilson, L.; Sweeney, J.; Kelly, P.; Lancet, J.E. Phase 1 dose escalation and expansion study to determine safety, tolerability, pharmacokinetics, and pharmacodynamics of the BET inhibitor FT-1101 as a single agent in patients with relapsed or refractory hematologic malignancies. Blood, 2019, 134(Suppl. 1), 3907-3907.
[http://dx.doi.org/10.1182/blood-2019-124741]
[24]
Bates, J.; Kusam, S.; Tannheimer, S.; Chan, J.; Li, Y.; Breckenridge, D.; Tumas, D. The combination of a BET Inhibitor (GS-5829) and a BTK Inhibitor (GS-4059) Potentiates DLBCL cell line cell death and reduces expression of MYC, IL-10, and IL-6 in vitro. Blood, 2016, 128(22), 5116.
[http://dx.doi.org/10.1182/blood.V128.22.5116.5116]
[25]
Zhang, D.; Leal, A.S.; Carapellucci, S.; Zydeck, K.; Sporn, M.B.; Liby, K.T. Chemoprevention of preclinical breast and lung cancer with the bromodomain inhibitor I-BET 762. Cancer Prev. Res. (Phila.), 2018, 11(3), 143-156.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0264] [PMID: 29246957]
[26]
Forero-Torres, A.; Rosen, S.; Smith, D.C.; Lesser, G.; Peguero, J.; Gupta, S.; Watts, J.M.; Noel, M.; Kurzrock, R.; Park, H.; LoRusso, P.; Coombs, C.C.; Zheng, F.; Switzky, J.; Yeleswaram, S.; Falchook, G. Preliminary results from an ongoing phase 1/2 study of INCB057643, a Bromodomain and Extraterminal (BET) Protein Inhibitor, in Patients (pts) with advanced malignancies. Blood, 2017, 130(Suppl. 1), 4048-4048.
[http://dx.doi.org/10.1182/blood.V130.Suppl_1.4048.4048]
[27]
Ameratunga, M.; Braña, I.; Bono, P.; Postel-Vinay, S.; Plummer, R.; Aspegren, J.; Korjamo, T.; Snapir, A.; de Bono, J.S. First-in-human Phase 1 open label study of the BET inhibitor ODM-207 in patients with selected solid tumours. Br. J. Cancer, 2020, 123(12), 1730-1736.
[http://dx.doi.org/10.1038/s41416-020-01077-z] [PMID: 32989226]
[28]
Berthon, C.; Raffoux, E.; Thomas, X.; Vey, N.; Gomez-Roca, C.; Yee, K.; Taussig, D.C.; Rezai, K.; Roumier, C.; Herait, P.; Kahatt, C.; Quesnel, B.; Michallet, M.; Recher, C.; Lokiec, F.; Preudhomme, C.; Dombret, H. Bromodomain inhibitor OTX015 in patients with acute leukaemia: a dose-escalation, phase 1 study. Lancet Haematol., 2016, 3(4), e186-e195.
[http://dx.doi.org/10.1016/S2352-3026(15)00247-1] [PMID: 27063977]
[29]
Shapiro, G.I.; Dowlati, A.; LoRusso, P.M.; Eder, J.P.; Anderson, A.; Do, K.T.; Kagey, M.H.; Sirard, C.; Bradner, J.E.; Landau, S.B. Abstract A49: Clinically efficacy of the BET bromodomain inhibitor TEN-010 in an open-label substudy with patients with documented NUT-midline carcinoma (NMC). Mol. Cancer Ther., 2015, 14(12)(Suppl. 2), A49.
[http://dx.doi.org/10.1158/1535-7163.TARG-15-A49]
[30]
Aftimos, P.; Oliveira, M.; Punie, K.; Boni, V.; Robson, M. PS11-10: A Phase 1b/2 Study of the BET inhibitor ZEN003694 in combination with talazoparib for treatment of patients with TNBC without gBRCA1/2 mutations. Breast Cancer Virtual Symposium San Antonio, Texas, 2020, Dec. 8-11;.
[31]
Cochran, A.G.; Conery, A.R.; Sims, R.J., III Bromodomains: A new target class for drug development. Nat. Rev. Drug Discov., 2019, 18(8), 609-628.
[http://dx.doi.org/10.1038/s41573-019-0030-7] [PMID: 31273347]
[32]
Vangamudi, B.; Paul, T.A.; Shah, P.K.; Kost-Alimova, M.; Nottebaum, L.; Shi, X.; Zhan, Y.; Leo, E.; Mahadeshwar, H.S.; Protopopov, A.; Futreal, A.; Tieu, T.N.; Peoples, M.; Heffernan, T.P.; Marszalek, J.R.; Toniatti, C.; Petrocchi, A.; Verhelle, D.; Owen, D.R.; Draetta, G.; Jones, P.; Palmer, W.S.; Sharma, S.; Andersen, J.N. The SMARCA2/4 ATPase domain surpasses the bromodomain as a drug target in SWI/SNF-mutant cancers: Insights from cDNA rescue and PFI-3 inhibitor studies. Cancer Res., 2015, 75(18), 3865-3878.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3798] [PMID: 26139243]
[33]
Nakamura, Y.; Umehara, T.; Nakano, K.; Jang, M.K.; Shirouzu, M.; Morita, S.; Uda-Tochio, H.; Hamana, H.; Terada, T.; Adachi, N.; Matsumoto, T.; Tanaka, A.; Horikoshi, M.; Ozato, K.; Padmanabhan, B.; Yokoyama, S. Crystal structure of the human BRD2 bromodomain: Insights into dimerization and recognition of acetylated histone H4. J. Biol. Chem., 2007, 282(6), 4193-4201.
[http://dx.doi.org/10.1074/jbc.M605971200] [PMID: 17148447]
[34]
Shi, J.; Song, S.; Han, H.; Xu, H.; Huang, M.; Qian, C.; Zhang, X.; Ouyang, L.; Hong, Y.; Zhuang, W.; Li, B. Potent activity of the bromodomain inhibitor OTX015 in multiple myeloma. Mol. Pharm., 2018, 15(9), 4139-4147.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00554] [PMID: 30048594]
[35]
Wong, C.; Laddha, S.V.; Tang, L.; Vosburgh, E.; Levine, A.J.; Normant, E.; Sandy, P.; Harris, C.R.; Chan, C.S.; Xu, E.Y. The bromodomain and extra-terminal inhibitor CPI203 enhances the antiproliferative effects of rapamycin on human neuroendocrine tumors. Cell Death Dis., 2014, 5(10), e1450.
[http://dx.doi.org/10.1038/cddis.2014.396] [PMID: 25299775]
[36]
Watson, R.J.; Bamborough, P.; Barnett, H.; Chung, C.W.; Davis, R.; Gordon, L.; Grandi, P.; Petretich, M.; Phillipou, A.; Prinjha, R.K.; Rioja, I.; Soden, P.; Werner, T.; Demont, E.H. GSK789: a selective inhibitor of the first bromodomains (BD1) of the bromo and extra terminal domain (BET) proteins. J. Med. Chem., 2020, 63(17), 9045-9069.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00614] [PMID: 32691589]
[37]
Wellaway, C.R.; Bamborough, P.; Bernard, S.G.; Chung, C.W.; Craggs, P.D.; Cutler, L.; Demont, E.H.; Evans, J.P.; Gordon, L.; Karamshi, B.; Lewis, A.J.; Lindon, M.J.; Mitchell, D.J.; Rioja, I.; Soden, P.E.; Taylor, S.; Watson, R.J.; Willis, R.; Woolven, J.M.; Wyspiańska, B.S.; Kerr, W.J.; Prinjha, R.K. Structure-based design of a Bromodomain and Extraterminal Domain (BET) inhibitor selective for the N-Terminal bromodomains that retains an anti-inflammatory and antiproliferative phenotype. J. Med. Chem., 2020, 63(17), 9020-9044.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00566] [PMID: 32787145]
[38]
Cui, H.; Divakaran, A.; Pandey, A.K.; Johnson, J.A.; Zahid, H.; Hoell, Z.J.; Ellingson, M.O.; Shi, K.; Aihara, H.; Harki, D.A.; Pomerantz, W.C.K. Selective N-terminal BET bromodomain inhibitors by targeting non-conserved residues and structured water displacement*. Angew. Chem. Int. Ed. Engl., 2021, 60(3), 1220-1226.
[http://dx.doi.org/10.1002/anie.202008625] [PMID: 32975004]
[39]
Jiang, H.; Xing, J.; Wang, C.; Zhang, H.; Yue, L.; Wan, X.; Chen, W.; Ding, H.; Xie, Y.; Tao, H.; Chen, Z.; Jiang, H.; Chen, K.; Chen, S.; Zheng, M.; Zhang, Y.; Luo, C. Discovery of novel BET inhibitors by drug repurposing of nitroxoline and its analogues. Org. Biomol. Chem., 2017, 15(44), 9352-9361.
[http://dx.doi.org/10.1039/C7OB02369C] [PMID: 29087414]
[40]
Chen, W.; Zhang, H.; Chen, Z.; Jiang, H.; Liao, L.; Fan, S.; Xing, J.; Xie, Y.; Chen, S.; Ding, H.; Chen, K.; Jiang, H.; Luo, C.; Zheng, M.; Yao, Z.; Huang, Y.; Zhang, Y. Development and evaluation of a novel series of Nitroxoline-derived BET inhibitors with antitumor activity in renal cell carcinoma. Oncogenesis, 2018, 7(11), 83.
[http://dx.doi.org/10.1038/s41389-018-0093-z] [PMID: 30385738]
[41]
Bailey, D.; Jahagirdar, R.; Gordon, A.; Hafiane, A.; Campbell, S.; Chatur, S.; Wagner, G.S.; Hansen, H.C.; Chiacchia, F.S.; Johansson, J.; Krimbou, L.; Wong, N.C.; Genest, J. RVX-208: a small molecule that increases apolipoprotein A-I and high-density lipoprotein cholesterol in vitro and in vivo. J. Am. Coll. Cardiol., 2010, 55(23), 2580-2589.
[http://dx.doi.org/10.1016/j.jacc.2010.02.035] [PMID: 20513599]
[42]
McLure, K.G.; Gesner, E.M.; Tsujikawa, L.; Kharenko, O.A.; Attwell, S.; Campeau, E.; Wasiak, S.; Stein, A.; White, A.; Fontano, E.; Suto, R.K.; Wong, N.C.; Wagner, G.S.; Hansen, H.C.; Young, P.R. RVX-208, an inducer of ApoA-I in humans, is a BET bromodomain antagonist. PLoS One, 2013, 8(12), e83190.
[http://dx.doi.org/10.1371/journal.pone.0083190] [PMID: 24391744]
[43]
Faivre, E.J.; McDaniel, K.F.; Albert, D.H.; Mantena, S.R.; Plotnik, J.P.; Wilcox, D.; Zhang, L.; Bui, M.H.; Sheppard, G.S.; Wang, L.; Sehgal, V.; Lin, X.; Huang, X.; Lu, X.; Uziel, T.; Hessler, P.; Lam, L.T.; Bellin, R.J.; Mehta, G.; Fidanze, S.; Pratt, J.K.; Liu, D.; Hasvold, L.A.; Sun, C.; Panchal, S.C.; Nicolette, J.J.; Fossey, S.L.; Park, C.H.; Longenecker, K.; Bigelow, L.; Torrent, M.; Rosenberg, S.H.; Kati, W.M.; Shen, Y. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature, 2020, 578(7794), 306-310.
[http://dx.doi.org/10.1038/s41586-020-1930-8] [PMID: 31969702]
[44]
Chen, D.; Lu, T.; Yan, Z.; Lu, W.; Zhou, F.; Lyu, X.; Xu, B.; Jiang, H.; Chen, K.; Luo, C.; Zhao, Y. Discovery, structural insight, and bioactivities of BY27 as a selective inhibitor of the second bromodomains of BET proteins. Eur. J. Med. Chem., 2019, 182, 111633.
[http://dx.doi.org/10.1016/j.ejmech.2019.111633] [PMID: 31461688]
[45]
Law, R.P.; Atkinson, S.J.; Bamborough, P.; Chung, C.W.; Demont, E.H.; Gordon, L.J.; Lindon, M.; Prinjha, R.K.; Watson, A.J.B.; Hirst, D.J. Discovery of tetrahydroquinoxalines as Bromodomain and Extra-Terminal Domain (BET) inhibitors with selectivity for the second bromodomain. J. Med. Chem., 2018, 61(10), 4317-4334.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01666] [PMID: 29656650]
[46]
Preston, A.; Atkinson, S.; Bamborough, P.; Chung, C.W.; Craggs, P.D.; Gordon, L.; Grandi, P.; Gray, J.R.J.; Jones, E.J.; Lindon, M.; Michon, A.M.; Mitchell, D.J.; Prinjha, R.K.; Rianjongdee, F.; Rioja, I.; Seal, J.; Taylor, S.; Wall, I.; Watson, R.J.; Woolven, J.; Demont, E.H. Design and synthesis of a highly selective and in vivo-capable inhibitor of the second bromodomain of the bromodomain and extra terminal domain family of proteins. J. Med. Chem., 2020, 63(17), 9070-9092.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00605] [PMID: 32691591]
[47]
Seal, J.T.; Atkinson, S.J.; Aylott, H.; Bamborough, P.; Chung, C.W.; Copley, R.C.B.; Gordon, L.; Grandi, P.; Gray, J.R.J.; Harrison, L.A.; Hayhow, T.G.; Lindon, M.; Messenger, C.; Michon, A.M.; Mitchell, D.; Preston, A.; Prinjha, R.K.; Rioja, I.; Taylor, S.; Wall, I.D.; Watson, R.J.; Woolven, J.M.; Demont, E.H. The optimization of a novel, weak Bromo and Extra Terminal Domain (BET) bromodomain fragment ligand to a potent and selective second Bromodomain (BD2) inhibitor. J. Med. Chem., 2020, 63(17), 9093-9126.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00796] [PMID: 32702236]
[48]
Slavish, P.J.; Chi, L.; Yun, M.K.; Tsurkan, L.; Martinez, N.E.; Jonchere, B.; Chai, S.C.; Connelly, M.; Waddell, M.B.; Das, S.; Neale, G.; Li, Z.; Shadrick, W.R.; Olsen, R.R.; Freeman, K.W.; Low, J.A.; Price, J.E.; Young, B.M.; Bharatham, N.; Boyd, V.A.; Yang, J.; Lee, R.E.; Morfouace, M.; Roussel, M.F.; Chen, T.; Savic, D.; Guy, R.K.; White, S.W.; Shelat, A.A.; Potter, P.M. Bromodomain-selective BET inhibitors are potent antitumor agents against MYC-driven pediatric cancer. Cancer Res., 2020, 80(17), 3507-3518.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-3934] [PMID: 32651255]
[49]
Li, H.; Dong, J.; Cai, M.; Xu, Z.; Cheng, X-D.; Qin, J-J. Protein degradation technology: a strategic paradigm shift in drug discovery. J. Hematol. Oncol., 2021, 14(1), 138.
[http://dx.doi.org/10.1186/s13045-021-01146-7] [PMID: 34488823]
[50]
Zou, Y.; Ma, D.; Wang, Y. The PROTAC technology in drug development. Cell Biochem. Funct., 2019, 37(1), 21-30.
[http://dx.doi.org/10.1002/cbf.3369] [PMID: 30604499]
[51]
Dong, J.; Cheng, X.D.; Zhang, W.D.; Qin, J.J. Recent update on development of small-molecule STAT3 inhibitors for cancer therapy: From phosphorylation inhibition to protein degradation. J. Med. Chem., 2021, 64(13), 8884-8915.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00629] [PMID: 34170703]
[52]
Wang, P.; Zhou, J. Proteolysis Targeting Chimera (PROTAC): A paradigm-shifting approach in small molecule drug discovery. Curr. Top. Med. Chem., 2018, 18(16), 1354-1356.
[http://dx.doi.org/10.2174/1568026618666181010101922] [PMID: 30306871]
[53]
Tian, C.; Burgess, K. PROTAC compatibilities, degrading cell-surface receptors, and the sticky problem of finding a molecular glue. ChemMedChem, 2021, 16(2), 316-318.
[http://dx.doi.org/10.1002/cmdc.202000683] [PMID: 33112038]
[54]
Fischer, E.S.; Böhm, K.; Lydeard, J.R.; Yang, H.; Stadler, M.B.; Cavadini, S.; Nagel, J.; Serluca, F.; Acker, V.; Lingaraju, G.M.; Tichkule, R.B.; Schebesta, M.; Forrester, W.C.; Schirle, M.; Hassiepen, U.; Ottl, J.; Hild, M.; Beckwith, R.E.; Harper, J.W.; Jenkins, J.L.; Thomä, N.H. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature, 2014, 512(7512), 49-53.
[http://dx.doi.org/10.1038/nature13527] [PMID: 25043012]
[55]
Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.; Felletar, I.; Philpott, M.; Munro, S.; McKeown, M.R.; Wang, Y.; Christie, A.L.; West, N.; Cameron, M.J.; Schwartz, B.; Heightman, T.D.; La Thangue, N.; French, C.A.; Wiest, O.; Kung, A.L.; Knapp, S.; Bradner, J.E. Selective inhibition of BET bromodomains. Nature, 2010, 468(7327), 1067-1073.
[http://dx.doi.org/10.1038/nature09504] [PMID: 20871596]
[56]
Delmore, J.E.; Issa, G.C.; Lemieux, M.E.; Rahl, P.B.; Shi, J.; Jacobs, H.M.; Kastritis, E.; Gilpatrick, T.; Paranal, R.M.; Qi, J.; Chesi, M.; Schinzel, A.C.; McKeown, M.R.; Heffernan, T.P.; Vakoc, C.R.; Bergsagel, P.L.; Ghobrial, I.M.; Richardson, P.G.; Young, R.A.; Hahn, W.C.; Anderson, K.C.; Kung, A.L.; Bradner, J.E.; Mitsiades, C.S. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 2011, 146(6), 904-917.
[http://dx.doi.org/10.1016/j.cell.2011.08.017] [PMID: 21889194]
[57]
Winter, G.E.; Buckley, D.L.; Paulk, J.; Roberts, J.M.; Souza, A.; Dhe-Paganon, S.; Bradner, J.E. Drug development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 2015, 348(6241), 1376-1381.
[http://dx.doi.org/10.1126/science.aab1433] [PMID: 25999370]
[58]
Winter, G.E.; Mayer, A.; Buckley, D.L.; Erb, M.A.; Roderick, J.E.; Vittori, S.; Reyes, J.M.; di Iulio, J.; Souza, A.; Ott, C.J.; Roberts, J.M.; Zeid, R.; Scott, T.G.; Paulk, J.; Lachance, K.; Olson, C.M.; Dastjerdi, S.; Bauer, S.; Lin, C.Y.; Gray, N.S.; Kelliher, M.A.; Churchman, L.S.; Bradner, J.E. BET bromodomain proteins function as master transcription elongation factors independent of CDK9 recruitment. Mol. Cell, 2017, 67(1), 5-18.e19.
[http://dx.doi.org/10.1016/j.molcel.2017.06.004] [PMID: 28673542]
[59]
Lu, J.; Qian, Y.; Altieri, M.; Dong, H.; Wang, J.; Raina, K.; Hines, J.; Winkler, J.D.; Crew, A.P.; Coleman, K.; Crews, C.M. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol., 2015, 22(6), 755-763.
[http://dx.doi.org/10.1016/j.chembiol.2015.05.009] [PMID: 26051217]
[60]
He, L.; Chen, C.; Gao, G.; Xu, K.; Ma, Z. ARV-825-induced BRD4 protein degradation as a therapy for thyroid carcinoma. Aging (Albany NY), 2020, 12(5), 4547-4557.
[http://dx.doi.org/10.18632/aging.102910] [PMID: 32163373]
[61]
Piya, S.; Mu, H.; Bhattacharya, S.; Lorenzi, P.L.; Davis, R.E.; McQueen, T.; Ruvolo, V.; Baran, N.; Wang, Z.; Qian, Y.; Crews, C.M.; Konopleva, M.; Ishizawa, J.; You, M.J.; Kantarjian, H.; Andreeff, M.; Borthakur, G. BETP degradation simultaneously targets acute myelogenous leukemia stem cells and the microenvironment. J. Clin. Invest., 2019, 129(5), 1878-1894.
[http://dx.doi.org/10.1172/JCI120654] [PMID: 30829648]
[62]
Lu, Q.; Ding, X.; Huang, T.; Zhang, S.; Li, Y.; Xu, L.; Chen, G.; Ying, Y.; Wang, Y.; Feng, Z.; Wang, L.; Zou, X. BRD4 degrader ARV-825 produces long-lasting loss of BRD4 protein and exhibits potent efficacy against cholangiocarcinoma cells. Am. J. Transl. Res., 2019, 11(9), 5728-5739.
[PMID: 31632543]
[63]
Wakita, M.; Takahashi, A.; Sano, O.; Loo, T.M.; Imai, Y.; Narukawa, M.; Iwata, H.; Matsudaira, T.; Kawamoto, S.; Ohtani, N.; Yoshimori, T.; Hara, E. A BET family protein degrader provokes senolysis by targeting NHEJ and autophagy in senescent cells. Nat. Commun., 2020, 11(1), 1935.
[http://dx.doi.org/10.1038/s41467-020-15719-6] [PMID: 32321921]
[64]
Qin, C.; Hu, Y.; Zhou, B.; Fernandez-Salas, E.; Yang, C.Y.; Liu, L.; McEachern, D.; Przybranowski, S.; Wang, M.; Stuckey, J.; Meagher, J.; Bai, L.; Chen, Z.; Lin, M.; Yang, J.; Ziazadeh, D.N.; Xu, F.; Hu, J.; Xiang, W.; Huang, L.; Li, S.; Wen, B.; Sun, D.; Wang, S. Discovery of QCA570 as an exceptionally Potent and Efficacious Proteolysis Targeting Chimera (PROTAC) degrader of the Bromodomain and Extra-Terminal (BET) proteins capable of inducing complete and durable tumor regression. J. Med. Chem., 2018, 61(15), 6685-6704.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00506] [PMID: 30019901]
[65]
Bai, L.; Zhou, B.; Yang, C.Y.; Ji, J.; McEachern, D.; Przybranowski, S.; Jiang, H.; Hu, J.; Xu, F.; Zhao, Y.; Liu, L.; Fernandez-Salas, E.; Xu, J.; Dou, Y.; Wen, B.; Sun, D.; Meagher, J.; Stuckey, J.; Hayes, D.F.; Li, S.; Ellis, M.J.; Wang, S. Targeted degradation of BET proteins in triple-negative breast cancer. Cancer Res., 2017, 77(9), 2476-2487.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2622] [PMID: 28209615]
[66]
Shi, C.; Zhang, H.; Wang, P.; Wang, K.; Xu, D.; Wang, H.; Yin, L.; Zhang, S.; Zhang, Y. PROTAC induced-BET protein degradation exhibits potent anti-osteosarcoma activity by triggering apoptosis. Cell Death Dis., 2019, 10(11), 815.
[http://dx.doi.org/10.1038/s41419-019-2022-2] [PMID: 31653826]
[67]
Zhang, J.; Zhang, Q. VHL and hypoxia signaling: Beyond HIF in cancer. Biomedicines, 2018, 6(1), E35.
[http://dx.doi.org/10.3390/biomedicines6010035] [PMID: 29562667]
[68]
Toure, M.; Crews, C.M. Small-Molecule PROTACS: New approaches to protein degradation. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 1966-1973.
[http://dx.doi.org/10.1002/anie.201507978] [PMID: 26756721]
[69]
Zengerle, M.; Chan, K.H.; Ciulli, A. Selective small molecule induced degradation of the BET Bromodomain Protein BRD4. ACS Chem. Biol., 2015, 10(8), 1770-1777.
[http://dx.doi.org/10.1021/acschembio.5b00216] [PMID: 26035625]
[70]
Testa, A.; Hughes, S.J.; Lucas, X.; Wright, J.E.; Ciulli, A. Structure-based design of a macrocyclic PROTAC. Angew. Chem. Int. Ed. Engl., 2020, 59(4), 1727-1734.
[http://dx.doi.org/10.1002/anie.201914396] [PMID: 31746102]
[71]
Raina, K.; Lu, J.; Qian, Y.; Altieri, M.; Gordon, D.; Rossi, A.M.; Wang, J.; Chen, X.; Dong, H.; Siu, K.; Winkler, J.D.; Crew, A.P.; Crews, C.M.; Coleman, K.G. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci. USA, 2016, 113(26), 7124-7129.
[http://dx.doi.org/10.1073/pnas.1521738113] [PMID: 27274052]
[72]
He, S.; Gao, F.; Ma, J.; Ma, H.; Dong, G.; Sheng, C. Aptamer-PROTAC Conjugates (APCs) for tumor-specific targeting in breast cancer. Angew. Chem. Int. Ed. Engl., 2021, 60(43), 23299-23305.
[http://dx.doi.org/10.1002/anie.202107347] [PMID: 34240523]
[73]
Gadd, M.S.; Testa, A.; Lucas, X.; Chan, K.H.; Chen, W.; Lamont, D.J.; Zengerle, M.; Ciulli, A. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol., 2017, 13(5), 514-521.
[http://dx.doi.org/10.1038/nchembio.2329] [PMID: 28288108]
[74]
Chan, K.H.; Zengerle, M.; Testa, A.; Ciulli, A. Impact of target warhead and linkage vector on inducing protein degradation: Comparison of Bromodomain and Extra-Terminal (BET) Degraders Derived from Triazolodiazepine (JQ1) and Tetrahydroquinoline (I-BET726) BET inhibitor scaffolds. J. Med. Chem., 2018, 61(2), 504-513.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01912] [PMID: 28595007]
[75]
Li, W.; Elhassan, R.M.; Hou, X.; Fang, H. Recent advances in small molecule PROTACs for the treatment of cancer. Curr. Med. Chem., 2021, 28(24), 4893-4909.
[http://dx.doi.org/10.2174/0929867327666201117141611] [PMID: 33208057]
[76]
Xue, G.; Wang, K.; Zhou, D.; Zhong, H.; Pan, Z. Light-induced protein degradation with photocaged PROTACs. J. Am. Chem. Soc., 2019, 141(46), 18370-18374.
[http://dx.doi.org/10.1021/jacs.9b06422] [PMID: 31566962]
[77]
Liu, J.; Chen, H.; Ma, L.; He, Z.; Wang, D.; Liu, Y.; Lin, Q.; Zhang, T.; Gray, N.; Kaniskan, H.Ü.; Jin, J.; Wei, W. Light-induced control of protein destruction by opto-PROTAC. Sci. Adv., 2020, 6(8), eaay5154.
[http://dx.doi.org/10.1126/sciadv.aay5154] [PMID: 32128407]
[78]
Pfaff, P.; Samarasinghe, K.T.G.; Crews, C.M.; Carreira, E.M. Reversible spatiotemporal control of induced protein degradation by Bistable PhotoPROTACs. ACS Cent. Sci., 2019, 5(10), 1682-1690.
[http://dx.doi.org/10.1021/acscentsci.9b00713] [PMID: 31660436]
[79]
Maneiro, M.A.; Forte, N.; Shchepinova, M.M.; Kounde, C.S.; Chudasama, V.; Baker, J.R.; Tate, E.W. Antibody-PROTAC conjugates enable her2-dependent targeted protein degradation of BRD4. ACS Chem. Biol., 2020, 15(6), 1306-1312.
[http://dx.doi.org/10.1021/acschembio.0c00285] [PMID: 32338867]
[80]
Wan, X.; Sun, R.; Bao, Y.; Zhang, C.; Wu, Y.; Gong, Y. In vivo delivery of siRNAs targeting EGFR and BRD4 expression by peptide-modified redox responsive PEG-PEI nanoparticles for the treatment of triple-negative breast cancer. Mol. Pharm., 2021, 18(11), 3990-3998.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00282] [PMID: 34591491]
[81]
Zhang, C.; Yuan, W.; Wu, Y.; Wan, X.; Gong, Y. Co-delivery of EGFR and BRD4 siRNA by cell-penetrating peptides-modified redox-responsive complex in triple negative breast cancer cells. Life Sci., 2021, 266, 118886.
[http://dx.doi.org/10.1016/j.lfs.2020.118886] [PMID: 33310044]
[82]
Xing, E.; Surendranathan, N.; Kong, X.; Cyberski, N.; Garcia, J.D.; Cheng, X.; Sharma, A.; Li, P.K.; Larue, R.C. Development of murine leukemia virus integrase-derived peptides that bind Brd4 extra-terminal domain as candidates for suppression of acute myeloid leukemia. ACS Pharmacol. Transl. Sci., 2021, 4(5), 1628-1638.
[http://dx.doi.org/10.1021/acsptsci.1c00159] [PMID: 34661079]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy