Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Perspective

Can Graphene Act as a (Noble) Metal-free Catalyst?

Author(s): Uwe Burghaus*

Volume 12, Issue 1, 2022

Published on: 10 May, 2022

Page: [2 - 10] Pages: 9

DOI: 10.2174/1877946812666220210142044

[1]
Schreiner, P.R. Metal-free organocatalysis through explicit hydrogen bonding interactions. Chem. Soc. Rev., 2003, 32(5), 289-296.
[http://dx.doi.org/10.1039/b107298f] [PMID: 14518182]
[2]
Su, D.S.; Zhang, J.; Frank, B.; Thomas, A.; Wang, X.; Paraknowitsch, J.; Schlögl, R. Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem, 2010, 3(2), 169-180.
[http://dx.doi.org/10.1002/cssc.200900180] [PMID: 20127789]
[3]
Zhang, J.; Su, D.; Zhang, A.; Wang, D.; Schlögl, R.; Hébert, C. Nanocarbon as robust catalyst: mechanistic insight into carbon-mediated catalysis. Angew. Chem. Int. Ed., 2007, 46(38), 7319-7323.
[http://dx.doi.org/10.1002/anie.200702466] [PMID: 17722129]
[4]
Wang, Y.; Li, H.; Yao, J.; Wanga, X.; Antoniettia, M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C–H bond oxidation. Chem. Sci. (Camb.), 2011, 2, 446-450.
[http://dx.doi.org/10.1039/C0SC00475H]
[5]
Xiaoyan, S.; Rui, W.; Dangsheng, S. Research progress in metal-free carbon-based catalysts. Chin. J. Catal., 2013, 34, 508-523.
[http://dx.doi.org/10.1016/S1872-2067(11)60515-9]
[6]
Qi, W.; Su, D. Metal-free carbon catalysts for oxidative dehydrogenation reactions. ACS Catal., 2014, 4, 3212-3218.
[http://dx.doi.org/10.1021/cs500723v]
[7]
Long, Y.; Zhang, C.; Wang, X.; Gao, J.; Wang, W.; Liu, Y. Oxidation of SO2 to SO3 catalyzed by graphene oxide foams. J. Mater. Chem., 2011, 21, 13934.
[http://dx.doi.org/10.1039/c1jm12031j]
[8]
Mohammadi, O.; Golestanzadeh, M.; Abdouss, M. Recent advances in organic reactions catalyzed by graphene oxide and sulfonated graphene as heterogeneous nanocatalysts: A review. New J. Chem., 2017, 41, 11471-11497.
[http://dx.doi.org/10.1039/C7NJ02515G]
[9]
Thomas, J.M. Principles and practice of heterogeneous catalysis, 2nd ed; Wiley & Sons: New York, 2005.
[10]
Handbook of Heterogeneous Catalysis. Wiley‐VCH Verlag GmbH & Co. KGaA 2008.
[11]
Sun, H.; Wang, Y.; Liu, S.; Ge, L.; Wang, L.; Zhu, Z.; Wang, S. Facile synthesis of nitrogen doped reduced graphene ox-ide as a superior metal-free catalyst for oxidation. Chem. Commun. (Camb.), 2013, 49(85), 9914-9916.
[http://dx.doi.org/10.1039/c3cc43401j] [PMID: 23945634]
[12]
Sakaushi, K.; Fellinger, T.P.; Antonietti, M. Bifunctional metal-free catalysis of mesoporous noble carbons for oxygen reduction and evolution reactions. ChemSusChem, 2015, 8(7), 1156-1160.
[http://dx.doi.org/10.1002/cssc.201500102] [PMID: 25739370]
[13]
Zhang, M.; Dain, L. Carbon nanomaterials as metal-free catalysts in next generation fuel cells. Nano Energy, 2012, 1, 514-517.
[http://dx.doi.org/10.1016/j.nanoen.2012.02.008]
[14]
Dai, L.; Xue, Y.; Qu, L.; Choi, H.J.; Baek, J.B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev., 2015, 115(11), 4823-4892.
[http://dx.doi.org/10.1021/cr5003563] [PMID: 25938707]
[15]
Zhai, C.; Sun, M.; Zhua, M.; Song, S.; Jiang, S. A new method to synthesize sulfur-doped graphene as effective metal-free electrocatalyst for oxygen reduction reaction. Appl. Surf. Sci., 2017, 407, 503-508.
[http://dx.doi.org/10.1016/j.apsusc.2017.02.191]
[16]
Tang, Y.; Chen, W.; Shen, Z.; Chang, S.; Zhao, M.; Dai, X. Nitrogen coordinated silicon-doped graphene as a potential alternative metal-free catalyst for CO oxidation. Carbon, 2017, 111, 448-458.
[http://dx.doi.org/10.1016/j.carbon.2016.10.028]
[17]
Zhao, Q.; Mao, Q.; Zhou, Y.; Wei, J.; Liu, X.; Yang, J.; Luo, L.; Zhang, J.; Chen, H.; Chen, H.; Tang, L. Metal-free car-bon materials-catalyzed sulfate radical-based advanced oxidation processes: A review on heterogeneous catalysts and applications. Chemosphere, 2017, 189, 224-238.
[http://dx.doi.org/10.1016/j.chemosphere.2017.09.042] [PMID: 28942248]
[18]
Esrafili, M.D.; Saeidi, N.; Nematollahi, P. Si-doped graphene: A promising metal-free catalystfor oxidation of SO2. Chem. Phys. Lett., 2016, 649, 37-43.
[http://dx.doi.org/10.1016/j.cplett.2016.02.028]
[19]
Tang, Y.; Liu, Z.; Dai, X.; Yang, Z.; Chen, W.; Ma, D.; Lu, Z. Theoretical study on the Si-doped graphene as an efficient metal-free catalyst for CO oxidation. Appl. Surf. Sci., 2014, 308, 402-407.
[http://dx.doi.org/10.1016/j.apsusc.2014.04.189]
[20]
Sun, F.; Liu, J.; Chen, H.; Zhang, Z.; Qiao, W.; Long, D.; Ling, L. Nitrogen-rich mesoporous carbons: Highly efficient, regenerable metal-free catalysts for low-temperature oxidation of H2S. ACS Catal., 2013, 3, 862-870.
[http://dx.doi.org/10.1021/cs300791j]
[21]
Wu, S.; Yu, L.; Wen, G.; Xie, Z.; Lin, Y. Recent progress of carbon-based metal-free materials in thermal-driven cataly-sis. J. Ener. Chem., 2021, 58, 318-335.
[http://dx.doi.org/10.1016/j.jechem.2020.10.011]
[22]
Carraroa, G.; Celascoa, E.; Smerieri, M.; Savio, L.; Bracco, G.; Rocca, M.; Vattuone, L. Chemisorption of CO on N-doped graphene on Ni(111). Appl. Surf. Sci., 2018, 428, 775-780.
[http://dx.doi.org/10.1016/j.apsusc.2017.09.194]
[23]
Celasco, E.; Carraro, G.; Smerieri, M.; Savio, L.; Rocca, M.; Vattuone, L. Influence of growing conditions on the reac-tivity of Ni supported graphene towards CO. J. Chem. Phys., 2017, 146(10), 104704.
[http://dx.doi.org/10.1063/1.4978234] [PMID: 28298127]
[24]
Smerieri, M.; Celasco, E.; Carraro, G.; Lusuan, A.; Pal, J.; Bracco, G.; Rocca, M.; Savio, L.; Vattuone, L. Enhanced chemical reactivity of pristine graphene interacting strongly with a substrate: Chemisorbed carbon monoxide on Gra-phene/Nickel (111). ChemCatChem, 2015, 7, 2328-2331.
[http://dx.doi.org/10.1002/cctc.201500279]
[25]
Ambrosetti, A.; Silvestrelli, P.L. Communication: Enhanced chemical reactivity of graphene on a Ni(111) substrate. J. Chem. Phys., 2016, 144(11), 111101.
[http://dx.doi.org/10.1063/1.4944090] [PMID: 27004853]
[26]
Silvestrelli, A.A.; Luigi, P. Cooperative effects of N-doping and Ni(111) substrate for enhanced chemical reactivity of graphene: the case of CO and O2 adsorption. J. Phys. Chem. C, 2019, 123, 31050-31056.
[http://dx.doi.org/10.1021/acs.jpcc.9b08918]
[27]
Ambrosetti, A.; Silvestrelli, P.L. Toward tunable CO adsorption on defected graphene: The chemical role of Ni(111) and Cu(111) substrates. J. Phys. Chem. C, 2017, 121, 19828-19835.
[http://dx.doi.org/10.1021/acs.jpcc.7b06243]
[28]
Stach, T.; Johnson, M.C.; Stevens, S.; Burghaus, U. Adsorption and reaction kinetics of SO2 on Graphene: An ultra-high vacuum surface science study. JVST A, 2021, 39, 042201.
[29]
Burghaus, U. Gas-surface Interactions on two-dimensional crystals. Surf. Sci. Rep., 2019, 74, 141-177.
[http://dx.doi.org/10.1016/j.surfrep.2019.01.001]
[30]
Shih, C.J.; Strano, M.S.; Blankschtein, D. Wetting translucency of graphene. Nat. Mater., 2013, 12(10), 866-869.
[http://dx.doi.org/10.1038/nmat3760] [PMID: 24056845]
[31]
Jose, D.; Datta, A. Structures and chemical properties of silicene: Unlike graphene. Acc. Chem. Res., 2014, 47(2), 593-602.
[http://dx.doi.org/10.1021/ar400180e] [PMID: 24215179]
[32]
Li, C.; Yang, S.; Li, S.S.; Xia, J.B.; Li, J. Au-decorated silicene: Design of a high-activity catalyst toward CO oxidation. J. Phys. Chem. C, 2013, 117, 483.
[http://dx.doi.org/10.1021/jp310746m]
[33]
Feng, J.W.; Liu, Y.J.; Wang, H.X.; Zhao, J.X.; Cai, Q.H.; Wang, X.Z. Gas adsorption on silicene: A theoretical study. Comput. Mater. Sci., 2014, 87, 218.
[http://dx.doi.org/10.1016/j.commatsci.2014.02.025]
[34]
Komeily-Nia, Z.; Chen, J.Y.; Nasri-Nasrabadi, B.; Lei, W.W.; Yuan, B.; Zhang, J.; Qu, L.T.; Gupta, A.; Li, J.L. The key structural features governing the free radicals and catalytic activity of graphite/graphene oxide. Phys. Chem. Chem. Phys., 2020, 22(5), 3112-3121.
[http://dx.doi.org/10.1039/C9CP05488J] [PMID: 31967127]
[35]
Goettmann, F.; Fischer, A.; Antonietti, M.; Thomas, A. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew. Chem. Int. Ed., 2006, 45(27), 4467-4471.
[http://dx.doi.org/10.1002/anie.200600412] [PMID: 16770823]
[36]
Dreyer, D.R.; Jia, H.P.; Bielawski, C.W. Graphene oxide: A convenient carbocatalyst for facilitating oxidation and hy-dration reactions. Angew. Chem., 2010, 122, 6965-6968.
[http://dx.doi.org/10.1002/ange.201002160]
[37]
Wang, Y.; Shen, Y.; Zhou, Y.; Xue, Z.; Xi, Z.; Zhu, S. Heteroatom-doped graphene for efficient no decomposition by metal-free catalysis. ACS Appl. Mater. Interfaces, 2018, 10(42), 36202-36210.
[http://dx.doi.org/10.1021/acsami.8b09503] [PMID: 30259742]
[38]
Su, C.; Loh, K.P. Carbocatalysts: Graphene oxide and its derivatives. Acc. Chem. Res., 2013, 46(10), 2275-2285.
[http://dx.doi.org/10.1021/ar300118v] [PMID: 23270430]
[39]
He, G.; He, H. DFT studies on the heterogeneous oxidation of SO2 by oxygen functional groups on graphene. Phys. Chem. Chem. Phys., 2016, 18(46), 31691-31697.
[http://dx.doi.org/10.1039/C6CP06665H] [PMID: 27841414]
[40]
Gotterbarm, K.; Spath, F.; Bauer, U.; Steinruck, H.P.; Papp, C. Adsorption and reaction of SO2 on graphene-supported Pt nanoclusters. Top. Catal., 2015, 58, 573-579.
[http://dx.doi.org/10.1007/s11244-015-0407-8]
[41]
Rad, A.S.; Zareyee, D. Adsorption properties of SO2 and O3 molecules on Pt-decorated graphene: A theoretical study. Vacuum, 2016, 130, 113-118.
[http://dx.doi.org/10.1016/j.vacuum.2016.05.009]
[42]
Hsu, H-C.; Shown, I.; Wei, H-Y.; Chang, Y-C.; Du, H-Y.; Lin, Y-G.; Tseng, C-A.; Wang, C-H.; Chen, L-C.; Lin, Y.C.; Chen, K.H. Graphene oxide as a promising photocatalyst for CO2 to methanol conversion. Nanoscale, 2013, 5(1), 262-268.
[http://dx.doi.org/10.1039/C2NR31718D] [PMID: 23160369]
[43]
Wang, J.; Wang, P.; Wang, S.; Li, J. A metal-free catalyst: Sulfur-doped and sulfur nanoparticle-modified CMK-3 as an electrocatalyst for enhanced N2-fixation. New J. Chem., 2020, 44, 20935.
[http://dx.doi.org/10.1039/D0NJ04365F]
[44]
Narayanan, B.; Weeksa, S.L.; Jariwala, B.N.; Macco, B.; Weber, J.W.; Rathi, S.J.; Sanden, M.C.M.; Sutter, P.; Agarwal, S.; Ciobanu, C.V. Carbon monoxide-induced reduction and healing of graphene oxide. J. Vac. Sci. Technol. A, 2013, 31, 040601.
[http://dx.doi.org/10.1116/1.4803839]
[45]
Chakradhar, A.; Sivapragasam, N.; Nayakasinghe, M.T.; Burghaus, U. Support effects in the adsorption of water on CVD graphene: An ultra-high vacuum adsorption study. Chem. Commun. (Camb.), 2015, 51(57), 11463-11466.
[http://dx.doi.org/10.1039/C5CC03827H] [PMID: 26088276]
[46]
Aria, A.I.; Kidambi, P.R.; Weatherup, R.S.; Xiao, L.; Williams, J.A.; Hofmann, S. Time evolution of the wettability of supported graphene under ambient air exposure. J. Phys. Chem. C, 2016, 120, 2224.
[http://dx.doi.org/10.1021/acs.jpcc.5b10492]
[47]
Wehling, T.O.; Lichtenstein, A.I.; Katsnelson, M.I. First-principles studies of water adsorption on graphene: The role of the substrate. Appl. Phys. Lett., 2008, 93, 12342.
[http://dx.doi.org/10.1063/1.3033202]
[48]
Bermudez, V.M.; Robinson, J.T. Effects of molecular adsorption on the electronic structure of single-layer graphene. Langmuir, 2011, 27, 11026.
[http://dx.doi.org/10.1021/la201669j] [PMID: 21812417]
[49]
Elias, D.C.; Nair, R.R.; Mohiuddin, T.M.; Morozov, S.V.; Blake, P.; Halsall, M.P.; Ferrari, A.C.; Boukhvalov, D.W.; Katsnelson, M.I.; Geim, A.K.; Novoselov, K.S. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science, 2009, 323(5914), 610-613.
[http://dx.doi.org/10.1126/science.1167130] [PMID: 19179524]
[50]
Balog, R.; Jørgensen, B.; Wells, J.; Laegsgaard, E.; Hofmann, P.; Besenbacher, F.; Hornekaer, L. Atomic hydrogen ad-sorbate structures on graphene. J. Am. Chem. Soc., 2009, 131(25), 8744-8745.
[http://dx.doi.org/10.1021/ja902714h] [PMID: 19496562]
[51]
Stach, T.; Johnson, M.C.; Stevens, S. Adsorption and reaction kinetics of SO2 and H2S on graphene/ruthenium(0001). In: ACS Fall 2021 national meeting, Atlanta, GA; , 2021.
[52]
Tang, S.; Cao, Z. Adsorption of nitrogen oxides on graphene and graphene oxides: insights from density functional cal-culations. J. Chem. Phys., 2011, 134(4), 044710.
[http://dx.doi.org/10.1063/1.3541249] [PMID: 21280788]
[53]
Tang, S.; Cao, Z. Adsorption and dissociation of ammonia on graphene oxides: A first-principles study. J. Phys. Chem. C, 2012, 116, 8778-8791.
[http://dx.doi.org/10.1021/jp212218w]
[54]
Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as substitutes of noble metals for heterogeneous catalysis: Dream or reality. Chem. Rev., 2014, 114(20), 10292-10368.
[http://dx.doi.org/10.1021/cr500032a] [PMID: 25253387]
[55]
Liu, X-Y.; Zhang, J-M.; Xu, K-W.; Ji, V. Improving SO2 gas sensing properties of graphene by introducingdopant and defect: A first-principles study. Appl. Surf. Sci., 2014, 313, 405-410.
[http://dx.doi.org/10.1016/j.apsusc.2014.05.223]
[56]
Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S.Z. Two-step boron and nitrogen doping in graphene for enhanced syn-ergistic catalysis. Angew. Chem. Int. Ed. Engl., 2013, 52(11), 3110-3116.
[http://dx.doi.org/10.1002/anie.201209548] [PMID: 23341193]
[57]
Srivastava, S.; Kashyap, P.K.; Singh, V.; Senguttuvan, T.D.; Gupta, B.K. Nitrogen doped high quality CVD grown gra-phene as a fast responding NO2 gas sensor. New J. Chem., 2018, 42, 9550-9556.
[http://dx.doi.org/10.1039/C8NJ00885J]
[58]
Usachov, D.; Vilkov, O.; Grüneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V.K.; Preobrajenski, A.B.; Dudin, P.; Bari-nov, A.; Oehzelt, M.; Laubschat, C.; Vyalikh, D.V. Nitrogen-doped graphene: Efficient growth, structure, and electronic properties. Nano Lett., 2011, 11(12), 5401-5407.
[http://dx.doi.org/10.1021/nl2031037] [PMID: 22077830]
[59]
Wehling, T.O.; Novoselov, K.S.; Morozov, S.V.; Vdovin, E.E.; Katsnelson, M.I.; Geim, A.K.; Lichtenstein, A.I. Molecular doping of graphene. Nano Lett., 2008, 8(1), 173-177.
[http://dx.doi.org/10.1021/nl072364w] [PMID: 18085811]
[60]
Widjaja, H.; Oluwoye, I.; Altarawneh, M.; Hamra, A.A.B.; Lim, H.N.; Huang, N.M.; Yin, C.Y.; Jiang, Z.T. Phenol disso-ciation on pristine and defective graphene. Surf. Sci., 2017, 657, 10-14.
[http://dx.doi.org/10.1016/j.susc.2016.10.010]
[61]
Borisova, D.; Antonov, V.; Proykova, A. Hydrogen sulfide adsorption on a defective Graphene. Int. J. Quantum Chem., 2013, 113, 786-791.
[http://dx.doi.org/10.1002/qua.24077]
[62]
Sivapragasam, N.; Nayakasinghe, M.T.; Burghaus, U. Adsorption kinetics and dynamics of CO2 on Ru(0001) supported graphene oxide. J. Phys. Chem. C, 2016, 120, 28049-28056.
[http://dx.doi.org/10.1021/acs.jpcc.6b09573]
[63]
Chakradhar, A.; Sivapragasam, N.; Nayakasinghe, M.T.; Burghaus, U. Adsorption kinetics of Benzene on Graphene: an ultra-high vacuum study. J. Vac. Sci. Technol. A, 2016, 34, 021402.
[http://dx.doi.org/10.1116/1.4936337]
[64]
Sivapragasam, N.; Nayakasinghe, M.T.; Burghaus, U. Adsorption of n-butane on graphene/Ru(0001)-A molecular beam scattering study. J. Vac. Sci. Technol., 2016, 34, 041404.
[http://dx.doi.org/10.1116/1.4954811]
[65]
Chakradhar, A.; Burghaus, U. Adsorption of water on graphene/Ru(0001)-an experimental ultra-high vacuum study. Chem. Commun. (Camb.), 2014, 50(57), 7698-7701.
[http://dx.doi.org/10.1039/C4CC02762K] [PMID: 24902081]
[66]
Burghaus, U. Adsorption of water on two-dimensional crystals: Water/graphene and water/silicatene (short review). Inorganics (Basel), 2016, 4, 10.
[http://dx.doi.org/10.3390/inorganics4020010]
[67]
Chakradhar, A.; Trettel, K.M.; Burghaus, U. Benzene adsorption on Ru(0001) and graphene/Ru(0001)-How to synthe-size epitaxial graphene without STM or LEED? Chem. Phys. Lett., 2013, 590, 146-152.
[http://dx.doi.org/10.1016/j.cplett.2013.10.069]
[68]
Sivapragasam, N.; Nayakasinghe, M.T.; Chakradhar, A.; Burghaus, U. Effects of the support on the desorption kinetics of n-pentane from graphene: An ultra-high vacuum adsorption study. J. Vac. Sci. Technol. A, 2017, 35, 061404.
[http://dx.doi.org/10.1116/1.4989814]
[69]
Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A.V.; Yavari, F.; Shi, Y.; Ajayan, P.M.; Koratkar, N.A. Wetting transparency of graphene. Nat. Mater., 2012, 11(3), 217-222.
[http://dx.doi.org/10.1038/nmat3228] [PMID: 22266468]
[70]
Shih, C.J.; Wang, Q.H.; Lin, S.; Park, K.C.; Jin, Z.; Strano, M.S.; Blankschtein, D. Breakdown in the wetting transparen-cy of graphene. Phys. Rev. Lett., 2012, 109(17), 176101.
[http://dx.doi.org/10.1103/PhysRevLett.109.176101] [PMID: 23215205]
[71]
Raj, R.; Maroo, S.C.; Wang, E.N. Wettability of graphene. Nano Lett., 2013, 13(4), 1509-1515.
[http://dx.doi.org/10.1021/nl304647t] [PMID: 23458704]
[72]
Preobrajenski, A.B.; Ng, M.L.; Vinogradov, A.S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B Condens. Matter Mater. Phys., 2008, 78, 073401.
[http://dx.doi.org/10.1103/PhysRevB.78.073401]
[73]
Vinogradov, N.A.; Schulte, K.; Ng, M.L.; Mikkelsen, A.; Lundgren, E.; Mårtensson, N.; Preobrajenski, A.B. Impact of atomic oxygen on the structure of graphene formed on Ir(111) and Pt(111). J. Phys. Chem. C, 2011, 115, 9568.
[http://dx.doi.org/10.1021/jp111962k]
[74]
Groves, M.N.; Chan, A.S.W.; Malardier-Jugroot, C.; Jugroot, M. Improving platinum catalyst binding energy to gra-phene through nitrogen doping. Chem. Phys. Lett., 2009, 481, 214-219.
[http://dx.doi.org/10.1016/j.cplett.2009.09.074]
[75]
Faye, O.; Raj, A.; Mittal, V.; Beye, A.C. H2S adsorption on graphene in the presence of sulfur: A density functional the-ory study. Comput. Mater. Sci., 2016, 117, 110-119.
[http://dx.doi.org/10.1016/j.commatsci.2016.01.034]

© 2024 Bentham Science Publishers | Privacy Policy