Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Perspective

Simple Models of Charge-Transfer Reactivity

Author(s): Roman F. Nalewajski*

Volume 12, Issue 1, 2022

Published on: 10 May, 2022

Page: [11 - 23] Pages: 13

DOI: 10.2174/1877946812666220302150715

Abstract

Finite-difference expressions for the chemical potential (negative electronegativity) and hardness (inverse softness) descriptors of molecular and donor-acceptor systems are summarized and chemically “biased” (informed) and “unbiased” (uninformed) estimates of charge-transfer (CT) descriptors in A(acid)-B(base) systems are reexamined. The former recognizes the chemical characteristics of reactants and the chemical-potential discontinuity, while in the latter no prior knowledge of such kind is used. The biased chemical potential and fragment hardness descriptors are interpreted in terms of the frontier-electron orbitals, and the equivalence of predictions in both treatments is demonstrated using the electronegativity- equalization principle. Two-state description of CT involves a statistical mixture of initial state |NCT = 0〉 = |A0, B0〉 of the polarized (mutually closed) reactants in R+ = (A+|B+), and one of admissible final states for the full electron transfer, |NCT| = 1, in the forward B0→A0 or reverse A0→B0 directions, leading to ion-pairs |B0→A0〉 = |NCT = 1〉 = |A−1, B+1〉 and |A0→B0〉 = |NCT = −1〉 = |A+1, B−1〉. Parabolic interpolation between energies of the integral-N states identifies the process activation and reaction energies predicts the equilibrium amount of CT and stabilization energy it generates.

Keywords: Charge-transfer reactivity, simple models, chemical potential, donor-acceptor systems, electronegativity- equalization principle, molecular-orbital.

[1]
Nalewajski, R.F.; Korchowiec, J.; Michalak, A. Reac-tivity criteria in charge sensitivity analysis. Density functional theory IV. Topics in Current Chemistry 183; Nalewajski, R.F., Ed.; , 1996, pp. 25-141.
[http://dx.doi.org/10.1007/3-540-61131-2_2]
[2]
Nalewajski, R.F.; Korchowiec, J. Charge sensitivity approach to electronic structure and chemical reac-tivity; World Scientific: Singapore, 1997.
[http://dx.doi.org/10.1142/2735]
[3]
Nalewajski, R.F. Sensitivity analysis of charge trans-fer systems: In situ quantities, intersecting-state mod-el and its implications. Int. J. Quantum Chem., 1994, 49, 675-703.
[http://dx.doi.org/10.1002/qua.560490512]
[4]
Chattaraj, P.K., Ed.; Chemical reactivity theory: a density functional view; CRC Press: Boca Raton, 2009, p. 610.
[http://dx.doi.org/10.1201/9781420065442]
[5]
Parr, R.G.; Yang, W. Density-functional theory of atoms and molecules; Oxford University Press: New York, 1989.
[6]
Perdew, J.P.; Parr, R.G.; Levy, M.; Balduz, J.L. Densi-ty functional theory for fractional particle number: Derivative discontinuities of the energy. Phys. Rev. Lett., 1982, 49, 1691-1694.
[http://dx.doi.org/10.1103/PhysRevLett.49.1691]
[7]
Fukui, K. Theory of orientation and stereoselection; Springer-verlag:Berlin 1975, Vol. 2, 99., 134.
[http://dx.doi.org/10.1007/978-3-642-61917-5]
[8]
Fukui, K. Role of frontier orbitals in chemical reac-tions. Science, 1982, 218(4574), 747-754.
[http://dx.doi.org/10.1126/science.218.4574.747] [PMID: 17771019]
[9]
Fujimoto, H.; Fukui, K. Intermolecular interactions and chemical reactivity. In: Chemical reactivity and reaction paths; Klopman, G., Ed.; Wiley-Interscience: New York, 1974; pp. 23-54.
[10]
Mulliken, R.S. A new electronegativity scale: Togeth-er with data on valence states and on ionization po-tentials and electron affinities. J. Chem. Phys., 1934, 2, 782-793.
[http://dx.doi.org/10.1063/1.1749394]
[11]
Parr, R.G.; Pearson, R.G. Absolute hardness: Com-panion parameter to absolute electronegativity. J. Am. Chem. Soc., 1983, 105, 7512-7516.
[http://dx.doi.org/10.1021/ja00364a005]
[12]
Gyftopoulos, E.P.; Hatsopoulos, G.N. Quantum-thermodynamic definition of electronegativity. Proc. Natl. Acad. Sci. USA, 1968, 60(3), 786-793.
[http://dx.doi.org/10.1073/pnas.60.3.786] [PMID: 16591659]
[13]
Parr, R.G.; Yang, W. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc., 1984, 106, 4049-4050.
[http://dx.doi.org/10.1021/ja00326a036]
[14]
Nalewajski, R.F.; Korchowiec, J.; Zhou, Z. Molecular hardness and softness parameters and their use in chemistry. Int. J. Quantum Chem. Symp., 1988, 22, 349-366.
[http://dx.doi.org/10.1002/qua.560340840]
[15]
Kohn, W.; Sham, L.J. Self-consistent equations in-cluding exchange and correlation effects. Phys. Rev., 1965, 140A, 1133-1138.
[http://dx.doi.org/10.1103/PhysRev.140.A1133]
[16]
Nalewajski, R.F. N-Dependence of electronic energies in atoms and molecules: Mulliken and exponential interpolations. J. Math. Chem., 2010, 47, 1068-1076.
[http://dx.doi.org/10.1007/s10910-009-9630-5]
[17]
Nalewajski, R.F. Understanding electronic structure and chemical reactivity: Quantum-information per-spective. Appl. Sci., 2019, 9, 1262-1292.
[http://dx.doi.org/10.3390/app9061262]
[18]
Nalewajski, R.F. Phase equalization, charge transfer, information flows and electron communications in donor-acceptor systems. Appl. Sci., 2020, 3615-3646.
[http://dx.doi.org/10.3390/app10103615]
[19]
Nalewajski, R.F. Chemical reactivity in quantum me-chanics and information theory; Elsevier, 2021.
[20]
Mulliken, R.S.; Person, W.B. Molecular Complexes: a Lecture and Reprint Volume; Wile-Interscience: New York, 1969.
[21]
Marcus, R.A. On the theory of oxidation-reduction reactions involving electron transfer: I. J. Chem. Phys., 1956, 24, 966-978.
[http://dx.doi.org/10.1063/1.1742723]
[22]
Marcus, R.A. Electrostatic free-energy and other properties of states having non equilibrium polariza-tion. I. J. Chem. Phys., 1956, 24, 979-989.
[http://dx.doi.org/10.1063/1.1742724]
[23]
Marcus, R.A. On the theory of oxidation-reduction reactions involving electron transfer. II. Applications to data on the rates of isotopic exchange reactions. J. Chem. Phys., 1956, 26, 867-871.
[http://dx.doi.org/10.1063/1.1743423]
[24]
Marcus, R.A. On the theory of oxidation-reduction reactions involving electron transfer. III. Application to data on the rates of organic redox reactions. J. Chem. Phys., 1956, 26, 872-877.
[http://dx.doi.org/10.1063/1.1743424]

© 2024 Bentham Science Publishers | Privacy Policy