Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Palladium-Catalysed Intermolecular Direct C–H Bond Arylation of Heteroarenes with Reagents Alternative to Aryl Halides: Current State of the Art

Author(s): Renzo Rossi* and Maurizio Ciofalo*

Volume 26, Issue 3, 2022

Published on: 01 February, 2022

Page: [215 - 274] Pages: 60

DOI: 10.2174/1385272826666220201124008

Price: $65

Abstract

This unprecedented review with 322 references provides a critical up-to-date picture of the Pd-catalysed intermolecular direct C–H bond arylation of heteroarenes with arylating reagents alternative to aryl halides that include aryl sulfonates (aryl triflates, tosylates, mesylates, and imidazole- 1-sulfonates), diaryliodonium salts, [(diacetoxy)iodo]arenes, arenediazonium salts, 1-aryltriazenes, arylhydrazines and N’-arylhydrazides, arenesulfonyl chlorides, sodium arenesulfinates, arenesulfinic acids, and arenesulfonohydrazides. Particular attention has been paid to summarise the preparation of the various arylating reagents and to highlight the practicality, versatility, and limitations of the various developed arylation protocols, also comparing their results with those achieved in analogous Pd-catalysed arylation reactions involving the use of aryl halides as electrophiles. Mechanistic proposals have also been briefly summarised and discussed. However, data concerning Pd-catalysed direct C–H bond arylations involving the C–H bonds of aryl substituents of the examined heteroarene derivatives have not been taken into account.

Keywords: Heteroarenes, palladium, direct C–H bond arylation, catalysis, regioselectivity, aryl halides.

Next »
Graphical Abstract

[1]
Rossi, R.; Ciofalo, M. Current advances in the synthesis and biological evaluation of pharmacologically relevant 1,2,4,5-tetrasubstituted-1H-imidazole derivatives. Curr. Org. Chem., 2019, 23, 2016-2101.
[http://dx.doi.org/10.2174/1385272823666191014154129]
[2]
Ke, Q.; Yan, G.; Yu, J.; Wu, X. Recent advances in the direct functionalization of quinoxalin-2(1H)-ones. Org. Biomol. Chem., 2019, 17, 5863-5881.
[http://dx.doi.org/10.1039/C9OB00782B] [PMID: 31157814]
[3]
Yang, Y.; Shi, Z. Regioselective direct arylation of indoles on the benzenoid moiety. Chem. Commun. (Camb.), 2018, 54, 1676-1685.
[http://dx.doi.org/10.1039/C7CC08752G] [PMID: 29367963]
[4]
Fuse, S.; Morita, T.; Nakamura, H. Step-by-step multifunctionalization of isoxazoles based on sear reactions and C-H direct arylations. Synthesis, 2017, 49, 2351-2360.
[http://dx.doi.org/10.1055/s-0036-1588784]
[5]
Soulé, J-F.; Doucet, H. New arylating agents in Pd-catalyzed C-H bond functionalization of 5-membered ring heteroarenes. Top. Organomet. Chem., 2016, 55, 103-118.
[http://dx.doi.org/10.1007/3418_2015_137]
[6]
Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Bellina, F. Direct (hetero)arylation reactions of (hetero)arenes as tools for the step- and atom-economical synthesis of biologically active unnatural compounds including pharmaceutical targets. Synthesis, 2016, 48, 3821-3862.
[http://dx.doi.org/10.1055/s-0036-1588303]
[7]
Théveau, L.; Schneider, C.; Fruit, C.; Hoarau, C. Orthogonal palladium-catalyzed direct C−H bond arylation of heteroaromatics with aryl halides. ChemCatChem, 2016, 8, 3183-3194.
[http://dx.doi.org/10.1002/cctc.201600489]
[8]
Rossi, R.; Lessi, M.; Manzini, C.; Marianetti, G.; Bellina, F. Achievement of regioselectivity in transition metal-catalyzed direct C-H (hetero)arylation reactions of heteroarenes with one heteroatom through the use of removable protecting/blocking substituents or traceless directing groups. Tetrahedron, 2016, 72, 1795-1837.
[http://dx.doi.org/10.1016/j.tet.2016.02.037]
[9]
Bellina, F. Recent developments in Pd-catalyzed direct arylations of heteroarenes with aryl halides. Top. Organomet. Chem., 2016, 55, 77-102.
[http://dx.doi.org/10.1007/3418_2015_121]
[10]
Bheeter, C.B.; Chen, L.; Soulé, J-F.; Doucet, H. Regioselectivity in palladium-catalysed direct arylation of 5-membered ring heteroaromatics. Catal. Sci. Technol., 2016, 6, 2005-2049.
[http://dx.doi.org/10.1039/C5CY02095F]
[11]
El Kazzouli, S.; Koubachi, J.; El Brahmi, N.; Guillaumet, G. Advances in direct C-H arylation of 5,5- 6,5- and 6,6-fused-heterocycles containing heteroatoms (N, O, S). RSC Adv., 2015, 5, 15292-15327.
[http://dx.doi.org/10.1039/C4RA15384G]
[12]
Cano, R.; Schmidt, A.F.; McGlacken, G.P. Direct arylation and heterogeneous catalysis; ever the twain shall meet. Chem. Sci. (Camb.), 2015, 6, 5338-5346.
[http://dx.doi.org/10.1039/C5SC01534K] [PMID: 28717441]
[13]
Rossi, R.; Bellina, F.; Lessi, M.; Manzini, C.; Perego, L. Synthesis of multiply arylated heteroarenes, including bioactive derivatives, via palladium-catalyzed direct C-H arylation of heteroarenes with (pseudo)aryl halides or aryliodonium salts. Synthesis, 2014, 46, 2833-2883.
[http://dx.doi.org/10.1055/s-0034-1378674]
[14]
Rossi, R.; Bellina, F.; Lessi, M.; Manzini, C. Cross-coupling of heteroarenes by C−H functionalization: Recent progress towards direct arylation and heteroarylation reactions involving heteroarenes containing one heteroatom. Adv. Synth. Catal., 2014, 356, 17-117.
[http://dx.doi.org/10.1002/adsc.201300922]
[15]
Su, Y-X.; Sun, L-P. Recent progress towards transition-metal-catalyzed direct arylation of heteroarenes. Mini Rev. Org. Chem., 2012, 9, 87-117.
[http://dx.doi.org/10.2174/157019312799079884]
[16]
Popowycz, F.; Métay, E.; Lemaire, M. Direct arylation: Alternative to classic cross-coupling chemistry and a fruitful synthetic tool for the access to novative bioactive molecules. C. R. Chim., 2011, 14, 621-628.
[http://dx.doi.org/10.1016/j.crci.2010.06.006]
[17]
Boorman, T.C.; Larrosa, I. Recent advances in the C-2 regioselective direct arylation of indoles.Progress in Heterocyclic Chemistry; Gribble, G.W.; Joule, J.A., Eds.; Elsevier, 2011, Vol. 22, pp. 1-20.
[http://dx.doi.org/10.1016/S0959-6380(11)22001-4]
[18]
Verrier, C.; Lassalas, P.; Théveau, L.; Quéguiner, G.; Trécourt, F.; Marsais, F.; Hoarau, C. Recent advances in direct C-H arylation: Methodology, selectivity and mechanism in oxazole series. Beilstein J. Org. Chem., 2011, 7, 1584-1601.
[http://dx.doi.org/10.3762/bjoc.7.187] [PMID: 22238536]
[19]
Ackermann, L. Transition-metal-catalyzed direct arylations via C-H bond cleavages. Pure Appl. Chem., 2010, 82, 1403-1413.
[http://dx.doi.org/10.1351/PAC-CON-09-08-17]
[20]
Roger, J.; Gottumukkala, A.L.; Doucet, H. Palladium-catalyzed C3 or C4 direct arylation of heteroaromatic compounds with aryl halides by C-H bond activation. ChemCatChem, 2010, 2, 20-40.
[http://dx.doi.org/10.1002/cctc.200900074]
[21]
Bellina, F.; Rossi, R. Recent advances in the synthesis of (hetero)aryl-substituted heteroarenes via transition metal-catalysed direct (hetero)arylation of heteroarene C-H bonds with aryl halides or pseudohalides, diaryliodonium salts, and potassium aryltrifluoroborates. Tetrahedron, 2009, 65, 10269-10310.
[http://dx.doi.org/10.1016/j.tet.2009.10.015]
[22]
Ackermann, L.; Vicente, R.; Kapdi, A.R. Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. Angew. Chem. Int. Ed. Engl., 2009, 48, 9792-9826.
[http://dx.doi.org/10.1002/anie.200902996] [PMID: 19998294]
[23]
Bellina, F.; Cauteruccio, S.; Rossi, R. Development and application of effective protocols for the synthesis of arylheteroarenes and biheteroaryls, including bioactive derivatives, by highly regioselective transition metal-catalyzed direct intermolecular arylation reactions of five-membered heteroarenes with (hetero)aryl halides. Curr. Org. Chem., 2008, 12, 774-790.
[http://dx.doi.org/10.2174/138527208784567205]
[24]
Alberico, D.; Scott, M.E.; Lautens, M. Aryl-aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev., 2007, 107, 174-238.
[http://dx.doi.org/10.1021/cr0509760] [PMID: 17212475]
[25]
Mori, A.; Sugie, A. Palladium-catalyzed, CH arylation and dehydrogenative homocoupling of heteroaromatic compounds and application to the design of advanced organic materials. Bull. Chem. Soc. Jpn., 2008, 81, 548-561.
[http://dx.doi.org/10.1246/bcsj.81.548]
[26]
Seregin, I.V.; Gevorgyan, V. Direct transition metal-catalyzed functionalization of heteroaromatic compounds. Chem. Soc. Rev., 2007, 36, 1173-1193.
[http://dx.doi.org/10.1039/b606984n] [PMID: 17576484]
[27]
Satoh, T.; Miura, M. Catalytic direct arylation of heteroaromatic compounds. Chem. Lett., 2007, 36, 200-205.
[http://dx.doi.org/10.1246/ci.2007.200]
[28]
Uçucu, U.; Karaburun, N.G.; Işikdağ, I. Synthesis and analgesic activity of some 1-benzyl-2-substituted-4,5-diphenyl-1H-imidazole derivatives. Farmaco, 2001, 56, 285-290.
[http://dx.doi.org/10.1016/S0014-827X(01)01076-X] [PMID: 11421256]
[29]
Shi, X.; Soulé, J.F.; Doucet, H. Reaction conditions for the regiodivergent direct arylations at C2‐ or C5‐positions of oxazoles using phosphine‐free palladium catalysts. Adv. Synth. Catal., 2019, 361, 4748-4760.
[http://dx.doi.org/10.1002/adsc.201900641]
[30]
Sasmal, A.; Roisnel, T.; Bera, J.K.; Doucet, H.; Soulé, J-F. Reactivity of 3-bromofuran in Pd-catalyzed C-H bond arylation toward the synthesis of 2,3,5-triarylfurans. Synthesis, 2019, 51, 3241-3249.
[http://dx.doi.org/10.1055/s-0037-1611819]
[31]
Regalla, V.R.; Addada, R.K.R.; Puli, V.S.; Saxena, A.S.; Chatterjee, A. Highly efficient synthesis of 2,4-disubstituted oxazoles through palladium/copper comediated direct arylation reaction. Asian J. Pharm. Clin. Res., 2018, 11, 511-514.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i8.26125]
[32]
Idris, I.; Derridj, F.; Soulé, J-F.; Doucet, H. Palladium-catalyzed regioselective direct arylation of benzofurazans at the C-4 position. Adv. Synth. Catal., 2017, 359, 2448-2456.
[http://dx.doi.org/10.1002/adsc.201700435]
[33]
Mokhtar, H.H.; Laidaoui, N.; El Abed, D.; Soulé, J-F.; Doucet, H. Palladium-catalysed direct arylation of heteroarenes using 1-(bromophenyl)-1,2,3-triazoles as aryl source. Catal. Commun., 2017, 92, 124-127.
[http://dx.doi.org/10.1016/j.catcom.2016.12.030]
[34]
Belkessam, F.; Aidene, M.; Soulé, J-F.; Doucet, H. Direct C3-arylation of 2H-indazole derivatives with aryl bromides by using low loading of a phosphine-free palladium catalyst. ChemCatChem, 2017, 9, 2239-2249.
[http://dx.doi.org/10.1002/cctc.201601420]
[35]
Copin, C.; Henry, N.; Buron, F.; Routier, S. Palladium-catalyzed direct arylation of 2,6-disubstituted Imidazo[2,1-b][1,3,4]thiadiazoles. Synlett, 2016, 27, 1091-1095.
[http://dx.doi.org/10.1055/s-0035-1561317]
[36]
Bizouard, P.; Testa, C.; Zinovyeva, V.; Roger, J.; Hierso, J-C. Palladium-polypyrrole nanocomposites Pd@PPy for direct C-H functionalization of pyrroles and imidazoles with bromoarenes. Synlett, 2016, 27, 1227-1231.
[http://dx.doi.org/10.1055/s-0035-1561113]
[37]
Bellina, F.; Lessi, M.; Manzini, C. Mild palladium-catalyzed regioselective direct arylation of azoles promoted by tetrabutylammonium acetate. Eur. J. Org. Chem., 2013, 5621-5630.
[http://dx.doi.org/10.1002/ejoc.201300704]
[38]
Zhao, L.; Bruneau, C.; Doucet, H. Phosphine-free palladium-catalyzed direct C2-arylation of benzothiophenes with aryl bromides. Tetrahedron, 2013, 69, 7082-7089.
[http://dx.doi.org/10.1016/j.tet.2013.06.037]
[39]
Kim, S.K.; Kim, J-H.; Park, Y.C.; Kim, J.W.; Yum, E.K. Synthesis of trisubstituted thiazoles by ligand-free palladium-catalyzed direct 5-arylation of 2,4-disubstituted thiazoles under conventional and microwave-assisted heating. Tetrahedron, 2013, 69, 10990-10995.
[http://dx.doi.org/10.1016/j.tet.2013.10.053]
[40]
Bensaid, S.; Doucet, H. Palladium-catalysed direct arylation of heteroaromatics with functionalised bromopyridines. Tetrahedron, 2012, 68, 7655-7662.
[http://dx.doi.org/10.1016/j.tet.2012.06.034]
[41]
Myers, J.T.; Hanna, J.M. Jr Palladium-catalyzed direct arylation of pyridine N-oxide with 2-bromoacetanilides. Synthesis of benzisoxazolo[2,3-a]pyridinium tetrafluoroborates. Tetrahedron Lett., 2012, 53, 612-615.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.110] [PMID: 22247576]
[42]
Carrër, A.; Rousselle, P.; Florent, J-C.; Bertounesque, E. Selective palladium-catalyzed direct arylation of furo[3,2-b]pyridines. Adv. Synth. Catal., 2012, 354, 2751-2756.
[http://dx.doi.org/10.1002/adsc.201200543]
[43]
Bheeter, C.B.; Bera, J.K.; Doucet, H. Palladium-catalysed direct arylations of NH-free pyrrole and N-tosylpyrrole with aryl bromides. Tetrahedron Lett., 2012, 53, 509-513.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.081]
[44]
Maity, S.; Das, D.; Sarkar, S.; Samanta, R. Direct Pd(II)-catalyzed site-selective C5-arylation of 2-pyridone using aryl iodides. Org. Lett., 2018, 20, 5167-5171.
[http://dx.doi.org/10.1021/acs.orglett.8b02112] [PMID: 30141333]
[45]
Campos, J.; Queiroz, M-J.; Berteina-Raboin, S. The first catalytic direct C-H arylation on C2 and C3 of thiophene ring applied to thieno-pyridines, -pyrimidines and -pyrazines. Catalysts, 2018, 8e137
[http://dx.doi.org/10.3390/catal8040137]
[46]
Maki, Y.; Goto, T.; Tsukada, N. Selective β-arylation of thiophenes with aryl iodides catalyzed by dinuclear palladium carboxylate complexes. ChemCatChem, 2016, 8, 699-702.
[http://dx.doi.org/10.1002/cctc.201501132]
[47]
Liang, Y.; Wnuk, S.F. Modification of purine and pyrimidine nucleosides by direct C-H bond activation. Molecules, 2015, 20, 4874-4901.
[http://dx.doi.org/10.3390/molecules20034874] [PMID: 25789821]
[48]
Ben-Yahia, A.; Naas, M.; El Kazzouli, S.; Essassi, E.M.; Guillaumet, G. Direct C-3-arylations of 1H-indazoles. Eur. J. Org. Chem., 2012, 7075-7081.
[http://dx.doi.org/10.1002/ejoc.201200860]
[49]
Yanagisawa, S.; Itami, K. Palladium/2,2¢-bipyridyl/Ag2CO3 catalyst for C-H bond arylation of heteroarenes with haloarenes. Tetrahedron, 2011, 67, 4425-4430.
[http://dx.doi.org/10.1016/j.tet.2011.03.093]
[50]
Ueda, K.; Yanagisawa, S.; Yamaguchi, J.; Itami, K. A general catalyst for the β-selective C-H bond arylation of thiophenes with iodoarenes. Angew. Chem. Int. Ed. Engl., 2010, 49, 8946-8949.
[http://dx.doi.org/10.1002/anie.201005082] [PMID: 20936614]
[51]
Shibahara, F.; Yamaguchi, E.; Murai, T. Direct multiple C-H bond arylation reaction of heteroarenes catalyzed by cationic palladium complex bearing 1,10-phenanthroline. Chem. Commun. (Camb.), 2010, 46, 2471-2473.
[http://dx.doi.org/10.1039/b920794e] [PMID: 20309471]
[52]
Bellina, F.; Cauteruccio, S.; Rossi, R. Palladium- and copper-mediated direct C-2 arylation of azoles — including free (NH)-imidazole, -benzimidazole and -indole — under base-free and ligandless conditions. Eur. J. Org. Chem., 2006, 2006, 1379-1382.
[http://dx.doi.org/10.1002/ejoc.200500957]
[53]
Littke, A.F.; Fu, G.C. A convenient and general method for Pd-catalyzed Suzuki cross-couplings of aryl chlorides and arylboronic acids. Angew. Chem. Int. Ed. Engl., 1998, 37, 3387-3388.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981231)37:24<3387:AID-ANIE3387>3.0.CO;2-P] [PMID: 29711304]
[54]
Yuen, O.Y.; Leung, M.P.; So, C.M.; Sun, R.W-Y.; Kwong, F.Y. Palladium-catalyzed direct arylation of polyfluoroarenes for accessing tetra- ortho-substituted biaryls: Buchwald-type ligand having complementary -PPh2 moiety exhibits better efficiency. J. Org. Chem., 2018, 83, 9008-9017.
[http://dx.doi.org/10.1021/acs.joc.8b01176] [PMID: 29882668]
[55]
Yamaguchi, M.; Suzuki, K.; Sato, Y.; Manabe, K. Palladium-catalyzed direct C3-selective arylation of N-unsubstituted indoles with aryl chlorides and triflates. Org. Lett., 2017, 19, 5388-5391.
[http://dx.doi.org/10.1021/acs.orglett.7b02669] [PMID: 28898099]
[56]
Ahmed, J.; Sau, S.C.P. S.; Hota, P. K.; Vardhanapu, P. K.; Vijaykumar, G.; Mandal, S. K., Direct C-H arylation of heteroarenes with aryl chlorides by using an abnormal N-heterocyclic-carbene-palladium catalyst. Eur. J. Org. Chem., 2017, 1004-1011.
[http://dx.doi.org/10.1002/ejoc.201601218]
[57]
Yin, S-C.; Zhou, Q.; Zhao, X-Y.; Shao, L-X. N-heterocyclic carbene-palladium(II)-1-methylimidazole complex catalyzed direct C-H bond arylation of benzo[b]furans with aryl chlorides. J. Org. Chem., 2015, 80, 8916-8921.
[http://dx.doi.org/10.1021/acs.joc.5b01544] [PMID: 26272350]
[58]
Özdemir, I.; Gürbüz, N.; Kaloğlu, N.; Doğan, O.; Kaloğlu, M.; Bruneau, C.; Doucet, H. N-Heterocyclic carbene-palladium catalysts for the direct arylation of pyrrole derivatives with aryl chlorides. Beilstein J. Org. Chem., 2013, 9, 303-312.
[http://dx.doi.org/10.3762/bjoc.9.35] [PMID: 23504414]
[59]
Ghosh, D.; Lee, H.M. Efficient Pd-catalyzed direct arylations of heterocycles with unreactive and hindered aryl chlorides. Org. Lett., 2012, 14, 5534-5537.
[http://dx.doi.org/10.1021/ol302635e] [PMID: 23098250]
[60]
Roy, D.; Mom, S.; Royer, S.; Lucas, D.; Hierso, J-C.; Doucet, H. Palladium-catalyzed direct arylation of heteroaromatics with activated aryl chlorides using a sterically relieved ferrocenyl-diphosphane. ACS Catal., 2012, 2, 1033-1041.
[http://dx.doi.org/10.1021/cs300097v]
[61]
Cao, H.; Lin, Y.; Zhan, H.; Du, Z.; Lin, X.; Liang, Q-M.; Zhang, H. Highly regioselective C-H bond functionalization: Palladium-catalyzed arylation of substituted imidazo[1,2-a]pyridine with aryl chlorides. RSC Advances, 2012, 2, 5972-5975.
[http://dx.doi.org/10.1039/c2ra20366a]
[62]
Nadres, E.T.; Lazareva, A.; Daugulis, O. Palladium-catalyzed indole, pyrrole, and furan arylation by aryl chlorides. J. Org. Chem., 2011, 76, 471-483.
[http://dx.doi.org/10.1021/jo1018969] [PMID: 21192652]
[63]
Chiong, H.A.; Daugulis, O. Palladium-catalyzed arylation of electron-rich heterocycles with aryl chlorides. Org. Lett., 2007, 9, 1449-1451.
[http://dx.doi.org/10.1021/ol0702324] [PMID: 17358073]
[64]
Campeau, L-C.; Parisien, M.; Jean, A.; Fagnou, K. Catalytic direct arylation with aryl chlorides, bromides, and iodides: Intramolecular studies leading to new intermolecular reactions. J. Am. Chem. Soc., 2006, 128, 581-590.
[http://dx.doi.org/10.1021/ja055819x] [PMID: 16402846]
[65]
Johnston, A.J.S.; Ling, K.B.; Sale, D.; Lebrasseur, N.; Larrosa, I. Direct ortho-arylation of pyridinecarboxylic acids: Overcoming the deactivating effect of sp2-nitrogen. Org. Lett., 2016, 18, 6094-6097.
[http://dx.doi.org/10.1021/acs.orglett.6b03085] [PMID: 27934340]
[66]
Si Larbi, K.; Fu, H.Y.; Laidaoui, N.; Beydoun, K.; Miloudi, A.; El Abed, D.; Djabbar, S.; Doucet, H. Palladium-based catalytic system for the direct C3-Arylation of furan-2-carboxamides and thiophene-2-carboxamides. ChemCatChem, 2012, 4, 815-823.
[http://dx.doi.org/10.1002/cctc.201100491]
[67]
Jafarpour, F.; Rahiminejadan, S.; Hazrati, H. Triethanolamine-mediated palladium-catalyzed regioselective C-2 direct arylation of free NH-pyrroles. J. Org. Chem., 2010, 75, 3109-3112.
[http://dx.doi.org/10.1021/jo902739n] [PMID: 20384290]
[68]
Liégault, B.; Lapointe, D.; Caron, L.; Vlassova, A.; Fagnou, K. Establishment of broadly applicable reaction conditions for the palladium-catalyzed direct arylation of heteroatom-containing aromatic compounds. J. Org. Chem., 2009, 74, 1826-1834.
[http://dx.doi.org/10.1021/jo8026565] [PMID: 19206211]
[69]
Roger, J.; Doucet, H. Aryl triflates: Useful coupling partners for the direct arylation of heteroaryl derivatives via Pd-catalyzed C-H activation-functionalization. Org. Biomol. Chem., 2008, 6, 169-174.
[http://dx.doi.org/10.1039/B715235C] [PMID: 18075663]
[70]
Yuan, K.; Soulé, J-F.; Doucet, H. Functionalization of C-H bonds via metal-catalyzed desulfitative coupling: An alternative tool for access to aryl- or alkyl-substituted (hetero)arenes. ACS Catal., 2015, 5, 978-991.
[http://dx.doi.org/10.1021/cs501686d]
[71]
Felpin, F-X.; Sengupta, S. Biaryl synthesis with arenediazonium salts: cross-coupling, CH-arylation and annulation reactions. Chem. Soc. Rev., 2019, 48, 1150-1193.
[http://dx.doi.org/10.1039/C8CS00453F] [PMID: 30608075]
[72]
Zeller, W.E. N-Phenyltrifluoromethanesulfonamide.Encyclopedia of Reagents for Organic Synthesis; Paquette, L.A., Ed.; Wiley: Chichester, 1995, pp. 4096-4097.
[73]
Bengtson, A.; Hallberg, A.; Larhed, M. Fast synthesis of aryl triflates with controlled microwave heating. Org. Lett., 2002, 4, 1231-1233.
[http://dx.doi.org/10.1021/ol025701a] [PMID: 11922826]
[74]
Frantz, D.E.; Weaver, D.G.; Carey, J.P.; Kress, M.H.; Dolling, U.H. Practical synthesis of aryl triflates under aqueous conditions. Org. Lett., 2002, 4, 4717-4718.
[http://dx.doi.org/10.1021/ol027154z] [PMID: 12489969]
[75]
Chung, C.W.Y.; Toy, P.H. A polystyrene-supported triflating reagent for the synthesis of aryl triflates. Tetrahedron, 2005, 61, 709-715.
[http://dx.doi.org/10.1016/j.tet.2004.10.108]
[76]
Sheppard, T.D. Metal-catalysed halogen exchange reactions of aryl halides. Org. Biomol. Chem., 2009, 7, 1043-1052.
[http://dx.doi.org/10.1039/b818155a] [PMID: 19262919]
[77]
Proudfoot, J.R.; Hargrave, K.D.; Kapadia, S.R.; Patel, U.R.; Grozinger, K.G.; McNeil, D.W.; Cullen, E.; Cardozo, M.; Tong, L.; Kelly, T.A.; Rose, J.; David, E.; Mauldin, S.C.; Fuchs, V.U.; Vitous, J.; Hoermann, M.; Klunder, J.M.; Raghavan, P.; Skiles, J.W.; Mui, P.; Richman, D.D.; Sullivan, J.L.; Shih, C-K.; Grob, P.M.; Adams, J. Novel non-nucleoside inhibitors of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase. 4. 2-Substituted dipyridodiazepinones as potent inhibitors of both wild-type and cysteine-181 HIV-1 reverse transcriptase enzymes. J. Med. Chem., 1995, 38, 4830-4838.
[http://dx.doi.org/10.1021/jm00024a010] [PMID: 7490732]
[78]
Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. Palladium-catalyzed multiple arylation of thiophenes. J. Am. Chem. Soc., 2002, 124, 5286-5287.
[http://dx.doi.org/10.1021/ja0259279] [PMID: 11996567]
[79]
Schipper, D.J.; El-Salfiti, M.; Whipp, C.J.; Fagnou, K. Direct arylation of azine N-oxides with aryl triflates. Tetrahedron, 2009, 65, 4977-4983.
[http://dx.doi.org/10.1016/j.tet.2009.03.077]
[80]
Franke, R.; Streich, W.J. Topological pharmacophores new methods and their application to a set of antimalarials Part 2: Results from LOGANA. Quant. Struct. Act. Relat., 1985, 4, 51-63.
[http://dx.doi.org/10.1002/qsar.19850040202]
[81]
Kim, K.H.; Hansch, C.; Fukunaga, J.Y.; Steller, E.E.; Jow, P.Y.C.; Craig, P.N.; Page, J. Quantitative structure-activity relationships in 1-aryl-2-(alkylamino)ethanol antimalarials. J. Med. Chem., 1979, 22, 366-391.
[http://dx.doi.org/10.1021/jm00190a007] [PMID: 372527]
[82]
Schmidt, L.H.; Crosby, R.; Rasco, J.; Vaughan, D. Antimalarial activities of various 4-quinolonemethanols with special attention to WR-142,490 (mefloquine). Antimicrob. Agents Chemother., 1978, 13, 1011-1030.
[http://dx.doi.org/10.1128/AAC.13.6.1011] [PMID: 98104]
[83]
LaMontagne, M.P.; Markovac, A.; Blumbergs, P. Antimalarials. 6. Synthesis, antimalarial activity, and configurations of racemic α-(2-piperidyl)-4-pyridinemethanols. J. Med. Chem., 1974, 17, 519-523.
[http://dx.doi.org/10.1021/jm00251a010] [PMID: 4598133]
[84]
Martín-Galiano, A.J.; Gorgojo, B.; Kunin, C.M.; de la Campa, A.G. Mefloquine and new related compounds target the F0 complex of the F0F1 H+-ATPase of Streptococcus pneumoniae. Antimicrob. Agents Chemother., 2002, 46, 1680-1687.
[http://dx.doi.org/10.1128/AAC.46.6.1680-1687.2002] [PMID: 12019076]
[85]
Kunin, C.M.; Ellis, W.Y. Antimicrobial activities of mefloquine and a series of related compounds. Antimicrob. Agents Chemother., 2000, 44, 848-852.
[http://dx.doi.org/10.1128/AAC.44.4.848-852.2000] [PMID: 10722480]
[86]
Markovac, A.; LaMontagne, M.P.; Blumbergs, P.; Ash, A.B.; Stevens, C.L. Antimalarials. 3. 2,6-Bis(aryl)-4-pyridinemethanols with trifluoromethyl substituents. J. Med. Chem., 1972, 15, 918-922.
[http://dx.doi.org/10.1021/jm00279a010] [PMID: 5051009]
[87]
Strotman, N.A.; Chobanian, H.R.; Guo, Y.; He, J.; Wilson, J.E. Highly regioselective palladium-catalyzed direct arylation of oxazole at C-2 or C-5 with aryl bromides, chlorides, and triflates. Org. Lett., 2010, 12, 3578-3581.
[http://dx.doi.org/10.1021/ol1011778] [PMID: 20704397]
[88]
Vachhani, D.D.; Sharma, A.; Van der Eycken, E. Pd/Cu-catalyzed C-H arylation of 1,3,4-thiadiazoles with (hetero)aryl iodides, bromides, and triflates. J. Org. Chem., 2012, 77, 8768-8774.
[http://dx.doi.org/10.1021/jo301401q] [PMID: 22957511]
[89]
Guo, T.; Liu, Y.; Zhao, Y-H.; Zhang, P-K.; Han, S-L.; Liu, H-M. Palladium-catalyzed coupling reactions of 4-coumarinyl triflates with indoles leading to 4-indolyl coumarins. Tetrahedron Lett., 2016, 57, 4629-4632.
[http://dx.doi.org/10.1016/j.tetlet.2016.09.012]
[90]
Ishikawa, S.; Manabe, K. DHTP ligands for the highly ortho-selective, palladium-catalyzed cross-coupling of dihaloarenes with Grignard reagents: A conformational approach for catalyst improvement. Angew. Chem. Int. Ed. Engl., 2010, 49, 772-775.
[http://dx.doi.org/10.1002/anie.200905544] [PMID: 20017175]
[91]
Yamaguchi, M.; Suzuki, K.; Manabe, K. Scalable synthesis of dihydroxyterphenylphosphine ligands. Tetrahedron, 2015, 71, 2743-2747.
[http://dx.doi.org/10.1016/j.tet.2015.03.030]
[92]
Durbin, M.J.; Willis, M.C. Palladium-catalyzed α-arylation of oxindoles. Org. Lett., 2008, 10, 1413-1415.
[http://dx.doi.org/10.1021/ol800141t] [PMID: 18321119]
[93]
Xu, L.w.; Xia, C.g. Solvent‐free synthesis of aryl tosylates under microwave activation. Synth. Commun., 2004, 34, 1199-1205.
[http://dx.doi.org/10.1081/SCC-120030306]
[94]
Lei, X.; Jalla, A.; Abou Shama, M.A.; Stafford, J.M.; Cao, B. Chromatography-free and eco-friendly synthesis of aryl tosylates and mesylates. Synthesis, 2015, 47, 2578-2585.
[http://dx.doi.org/10.1055/s-0034-1378867]
[95]
Ngassa, F.N.; Riley, S.; Atanasova, T.P.; Ahmed, A.O.; Kerr, S.; Cooley, T.A.; Dawood, I.A.S.; Austhof, E.R.; Duran, J.R.J.; Franklin, M. Facile synthesis of arylsulfonates from phenol derivatives and sulfonyl chlorides. Trends Org. Chem., 2017, 18, 1-14.
[http://dx.doi.org/10.31300/TOC.18.2017.1-14]
[96]
Sakurai, N.; Mukaiyama, T. A new preparative method of aryl sulfonate esters by using cyclic organobismuth reagents. Heterocycles, 2007, 74, 771-790.
[http://dx.doi.org/10.3987/COM-07-S(W)63]
[97]
Roy, A.H.; Hartwig, J.F. Oxidative addition of aryl tosylates to palladium(0) and coupling of unactivated aryl tosylates at room temperature. J. Am. Chem. Soc., 2003, 125, 8704-8705.
[http://dx.doi.org/10.1021/ja035835z] [PMID: 12862447]
[98]
Ackermann, L.; Althammer, A.; Fenner, S. Palladium-catalyzed direct arylations of heteroarenes with tosylates and mesylates. Angew. Chem. Int. Ed. Engl., 2009, 48, 201-204.
[http://dx.doi.org/10.1002/anie.200804517] [PMID: 19040238]
[99]
Martin, R.; Buchwald, S.L. Palladium-catalyzed Suzuki-Miyaura cross-coupling reactions employing dialkylbiaryl phosphine ligands. Acc. Chem. Res., 2008, 41, 1461-1473.
[http://dx.doi.org/10.1021/ar800036s] [PMID: 18620434]
[100]
Perry, R.J.; Wilson, B.D.; Miller, R.J. Synthesis of 2-arylbenzoxazoles via the palladium-catalyzed carbonylation and condensation of aromatic halides and o-aminophenols. J. Org. Chem., 1992, 57, 2883-2887.
[http://dx.doi.org/10.1021/jo00036a025]
[101]
Chang, J.; Zhao, K.; Pan, S. Synthesis of 2-arylbenzoxazoles via DDQ promoted oxidative cyclization of phenolic Schiff bases-A solution-phase strategy for library synthesis. Tetrahedron Lett., 2002, 43, 951-954.
[http://dx.doi.org/10.1016/S0040-4039(01)02302-4]
[102]
Kawashita, Y.; Nakamichi, N.; Kawabata, H.; Hayashi, M. Direct and practical synthesis of 2-arylbenzoxazoles promoted by activated carbon. Org. Lett., 2003, 5, 3713-3715.
[http://dx.doi.org/10.1021/ol035393w] [PMID: 14507212]
[103]
Ponnala, S.; Sahu, D.P. Iodine‐mediated synthesis of 2‐arylbenzoxazoles, 2‐arylbenzimidazoles, and 1,3,5‐trisubstituted pyrazoles. Synth. Commun., 2006, 36, 2189-2194.
[http://dx.doi.org/10.1080/00397910600638879]
[104]
Ueda, S.; Nagasawa, H. Synthesis of 2-arylbenzoxazoles by copper-catalyzed intramolecular oxidative C-O coupling of benzanilides. Angew. Chem. Int. Ed. Engl., 2008, 47, 6411-6413.
[http://dx.doi.org/10.1002/anie.200801240] [PMID: 18618531]
[105]
Liu, Y.K.; Mao, D.J.; Lou, S.J.; Qian, J.Q.; Xu, Z.Y. Facile and efficient one-pot synthesis of 2-arylbenzoxazoles using hydrogen tetrachloroaurate as catalyst under oxygen atmosphere. J. Zhejiang Univ. Sci. B, 2009, 10, 472-478.
[http://dx.doi.org/10.1631/jzus.B0820366] [PMID: 19489113]
[106]
Zhu, X.; Wei, Y. An efficient synthesis of 2-substituted benzoxazoles using cerium(III) chloride/sodium iodide as catalyst. Heterocycl. Commun., 2012, 18, 211-214.
[http://dx.doi.org/10.1515/hc-2012-0054]
[107]
Ackermann, L.; Fenner, S. Direct arylations of electron-deficient (hetero)arenes with aryl or alkenyl tosylates and mesylates. Chem. Commun. (Camb.), 2011, 47, 430-432.
[http://dx.doi.org/10.1039/C0CC02360D] [PMID: 20856961]
[108]
Campeau, L-C.; Rousseaux, S.; Fagnou, K. A solution to the 2-pyridyl organometallic cross-coupling problem: Regioselective catalytic direct arylation of pyridine N-oxides. J. Am. Chem. Soc., 2005, 127, 18020-18021.
[http://dx.doi.org/10.1021/ja056800x] [PMID: 16366550]
[109]
Dai, F.; Gui, Q.; Liu, J.; Yang, Z.; Chen, X.; Guo, R.; Tan, Z. Pd-catalyzed C3-selective arylation of pyridines with phenyl tosylates. Chem. Commun. (Camb.), 2013, 49, 4634-4636.
[http://dx.doi.org/10.1039/c3cc41066h] [PMID: 23576109]
[110]
Choy, P.Y.; Luk, K.C.; Wu, Y.; So, C.M.; Wang, L.L.; Kwong, F.Y. Regioselective direct C-3 arylation of imidazo[1,2-a]pyridines with aryl tosylates and mesylates promoted by palladium-phosphine complexes. J. Org. Chem., 2015, 80, 1457-1463.
[http://dx.doi.org/10.1021/jo502386w] [PMID: 25607730]
[111]
Singhaus, R.R.; Bernotas, R.C.; Steffan, R.; Matelan, E.; Quinet, E.; Nambi, P.; Feingold, I.; Huselton, C.; Wilhelmsson, A.; Goos-Nilsson, A.; Wrobel, J. 3-(3-Aryloxyaryl)imidazo[1,2-a]pyridine sulfones as liver X receptor agonists. Bioorg. Med. Chem. Lett., 2010, 20, 521-525.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.098] [PMID: 20005711]
[112]
Follot, S.; Debouzy, J-C.; Crouzier, D.; Enguehard-Gueiffier, C.; Gueiffier, A.; Nachon, F.; Lefebvre, B.; Fauvelle, F. Physicochemical properties and membrane interactions of anti-apoptotic derivatives 2-(4-fluorophenyl)-3-(pyridin-4-yl)imidazo[1,2-a]pyridine depending on the hydroxyalkylamino side chain length and conformation: An NMR and ESR study. Eur. J. Med. Chem., 2009, 44, 3509-3518.
[http://dx.doi.org/10.1016/j.ejmech.2008.12.026] [PMID: 19185956]
[113]
Tresadern, G.; Cid, J.M.; Macdonald, G.J.; Vega, J.A.; de Lucas, A.I.; García, A.; Matesanz, E.; Linares, M.L.; Oehlrich, D.; Lavreysen, H.; Biesmans, I.; Trabanco, A.A. Scaffold hopping from pyridones to imidazo[1,2-a]pyridines. New positive allosteric modulators of metabotropic glutamate 2 receptor. Bioorg. Med. Chem. Lett., 2010, 20, 175-179.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.008] [PMID: 19932615]
[114]
Fradley, R.L.; Guscott, M.R.; Bull, S.; Hallett, D.J.; Goodacre, S.C.; Wafford, K.A.; Garrett, E.M.; Newman, R.J.; O’Meara, G.F.; Whiting, P.J.; Rosahl, T.W.; Dawson, G.R.; Reynolds, D.S.; Atack, J.R. Differential contribution of GABAA receptor subtypes to the anticonvulsant efficacy of benzodiazepine site ligands. J. Psychopharmacol., 2007, 21, 384-391.
[http://dx.doi.org/10.1177/0269881106067255] [PMID: 17092983]
[115]
Marhadour, S.; Bazin, M-A.; Marchand, P. An efficient access to 2,3-diarylimidazo[1,2-a]pyridines via imidazo[1,2-a]pyridin-2-yl triflate through a Suzuki cross-coupling reaction-direct arylation sequence. Tetrahedron Lett., 2012, 53, 297-300.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.015]
[116]
Wang, S.; Liu, W.; Cen, J.; Liao, J.; Huang, J.; Zhan, H. Pd-catalyzed oxidative cross-coupling of imidazo[1,2-a]pyridine with arenes. Tetrahedron Lett., 2014, 55, 1589-1592.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.069]
[117]
Fu, H.Y.; Chen, L.; Doucet, H. Phosphine-free palladium-catalyzed direct arylation of imidazo[1,2-a]pyridines with aryl bromides at low catalyst loading. J. Org. Chem., 2012, 77, 4473-4478.
[http://dx.doi.org/10.1021/jo300528b] [PMID: 22506766]
[118]
Laroche, J.; Beydoun, K.; Guerchais, V.; Doucet, H. Direct heteroarylation of 5-bromothiophen-2-ylpyridine and of 8-bromoquinoline via palladium-catalysed C-H bond activation: Simpler access to heteroarylated nitrogen-based derivatives. Catal. Sci. Technol., 2013, 3, 2072-2080.
[http://dx.doi.org/10.1039/c3cy00150d]
[119]
Zhu, D-J.; Chen, J-X.; Liu, M-C.; Ding, J-C.; Wu, H-Y. Catalyst: And solvent-free synthesis of imidazo[1,2-a]pyridines. J. Braz. Chem. Soc., 2009, 20, 482-487.
[http://dx.doi.org/10.1590/S0103-50532009000300012]
[120]
Koubachi, J.; El Kazzouli, S.; Berteina-Raboin, S.; Mouaddib, A.; Guillaumet, G. Regioselective palladium-catalyzed arylation and heteroarylation of imidazo[1,2-a]pyridines. Synlett, 2006, 2006, 3237-3242.
[http://dx.doi.org/10.1055/s-2006-951562]
[121]
Tashrifi, Z.; Mohammadi-Khanaposhtani, M.; Larijani, B.; Mahdavi, M. C3-Functionalization of imidazo[1,2-a]pyridines. Eur. J. Org. Chem., 2020, 2020, 269-284. Eur. J. Org. Chem., 2020, 2020, 269-284.
[http://dx.doi.org/10.1002/ejoc.201901491]
[122]
Duan, J.; Kwong, F.Y. A palladium-catalyzed α-arylation of oxindoles with aryl tosylates. J. Org. Chem., 2017, 82, 6468-6473.
[http://dx.doi.org/10.1021/acs.joc.7b00855] [PMID: 28539045]
[123]
Natarajan, A.; Guo, Y.; Harbinski, F.; Fan, Y-H.; Chen, H.; Luus, L.; Diercks, J.; Aktas, H.; Chorev, M.; Halperin, J.A. Novel arylsulfoanilide-oxindole hybrid as an anticancer agent that inhibits translation initiation. J. Med. Chem., 2004, 47, 4979-4982.
[http://dx.doi.org/10.1021/jm0496234] [PMID: 15456240]
[124]
Hewawasam, P.; Gribkoff, V.K.; Pendri, Y.; Dworetzky, S.I.; Meanwell, N.A.; Martinez, E.; Boissard, C.G.; Post-Munson, D.J.; Trojnacki, J.T.; Yeleswaram, K.; Pajor, L.M.; Knipe, J.; Gao, Q.; Perrone, R.; Starrett, J.E., Jr The synthesis and characterization of BMS-204352 (MaxiPost) and related 3-fluorooxindoles as openers of maxi-K potassium channels. Bioorg. Med. Chem. Lett., 2002, 12, 1023-1026.
[http://dx.doi.org/10.1016/S0960-894X(02)00101-4] [PMID: 11909708]
[125]
Shintani, R.; Inoue, M.; Hayashi, T. Rhodium-catalyzed asymmetric addition of aryl- and alkenylboronic acids to isatins. Angew. Chem. Int. Ed., 2006, 45, 3353-3356.
[http://dx.doi.org/10.1002/anie.200600392] [PMID: 16596682]
[126]
Yi, Z.; Aschenaki, Y.; Daley, R.; Davick, S.; Schnaith, A.; Wander, R.; Kalyani, D. Palladium catalyzed arylation and benzylation of nitroarenes using aryl sulfonates and benzyl acetates. J. Org. Chem., 2017, 82, 6946-6957.
[http://dx.doi.org/10.1021/acs.joc.7b00550] [PMID: 28617611]
[127]
Kaboudin, B.; Abedi, Y. A novel synthesis of aryl mesylates via one-pot demethylation-mesylation of aryl methyl ethers using a mixture of phosphorus pentoxide in methanesulfonic acid. Synthesis, 2009, 2025-2028.
[http://dx.doi.org/10.1055/s-0029-1216790]
[128]
So, C.M.; Lau, C.P.; Kwong, F.Y. Palladium-catalyzed direct arylation of heteroarenes with aryl mesylates. Chemistry, 2011, 17, 761-765.
[http://dx.doi.org/10.1002/chem.201002354] [PMID: 21226087]
[129]
Ferguson, D.M.; Rudolph, S.R.; Kalyani, D. Palladium-catalyzed intra- and intermolecular C-H arylation using mesylates: Synthetic scope and mechanistic studies. ACS Catal., 2014, 4, 2395-2401.
[http://dx.doi.org/10.1021/cs500587b] [PMID: 25068072]
[130]
Albaneze-Walker, J.; Raju, R.; Vance, J.A.; Goodman, A.J.; Reeder, M.R.; Liao, J.; Maust, M.T.; Irish, P.A.; Espino, P.; Andrews, D.R. Imidazolylsulfonates: Electrophilic partners in cross-coupling reactions. Org. Lett., 2009, 11, 1463-1466.
[http://dx.doi.org/10.1021/ol802381k] [PMID: 19281220]
[131]
Ackermann, L.; Barfüsser, S.; Pospech, J. Palladium-catalyzed direct arylations, alkenylations, and benzylations through C-H bond cleavages with sulfamates or phosphates as electrophiles. Org. Lett., 2010, 12, 724-726.
[http://dx.doi.org/10.1021/ol9028034] [PMID: 20078115]
[132]
Merritt, E.A.; Olofsson, B. Diaryliodonium salts: A journey from obscurity to fame. Angew. Chem. Int. Ed. Engl., 2009, 48, 9052-9070.
[http://dx.doi.org/10.1002/anie.200904689] [PMID: 19876992]
[133]
Pacheco-Benichou, A.; Besson, T.; Fruit, C. Diaryliodoniums salts as coupling partners for transition-metal catalyzed C- and N-arylation of heteroarenes. Catalysts, 2020, 10e483
[http://dx.doi.org/10.3390/catal10050483]
[134]
Aradi, K.; Tóth, B.; Tolnai, G.; Novák, Z. Diaryliodonium salts in organic syntheses: A useful compound class for novel arylation strategies. Synlett, 2016, 27, 1456-1485.
[http://dx.doi.org/10.1055/s-0035-1561369]
[135]
Yusubov, M.S.; Maskaev, A.V.; Zhdankin, V.V. Iodonium salts in organic synthesis. ARKIVOC, 2011, 2011, 370-409.
[http://dx.doi.org/10.3998/ark.5550190.0012.107]
[136]
Yang, Q.; Chang, J.; Wu, Q.; Zhang, B. A simple phenylation of heteroaromatic compounds using diphenyliodonium triflate. Res. Chem. Intermed., 2012, 38, 1335-1340.
[http://dx.doi.org/10.1007/s11164-011-0453-1]
[137]
Tang, D-T.D.; Collins, K.D.; Ernst, J.B.; Glorius, F. Pd/C as a catalyst for completely regioselective C-H functionalization of thiophenes under mild conditions. Angew. Chem. Int. Ed. Engl., 2014, 53, 1809-1813.
[http://dx.doi.org/10.1002/anie.201309305] [PMID: 24505001]
[138]
Malmgren, J.; Nagendiran, A.; Tai, C.W.; Bäckvall, J.E.; Olofsson, B. C-2 selective arylation of indoles with heterogeneous nanopalladium and diaryliodonium salts. Chem. Eur. J., 2014, 20, 13531-13535.
[http://dx.doi.org/10.1002/chem.201404017] [PMID: 25169833]
[139]
Wu, X.; Yang, Y.; Han, J.; Wang, L. Palladium catalyzed C-I and vicinal CH dual activation of diaryliodonium salts for diarylation: Synthesis of 4,5-benzocoumarins. Org. Lett., 2015, 17, 5654-5657.
[http://dx.doi.org/10.1021/acs.orglett.5b02938] [PMID: 26523622]
[140]
Reay, A.J.; Williams, T.J.; Fairlamb, I.J.S. Unified mild reaction conditions for C2-selective Pd-catalysed tryptophan arylation, including tryptophan-containing peptides. Org. Biomol. Chem., 2015, 13, 8298-8309.
[http://dx.doi.org/10.1039/C5OB01174D] [PMID: 26146008]
[141]
Reay, A.; Neumann, L.; Fairlamb, I. Catalyst efficacy of homogeneous and heterogeneous palladium catalysts in the direct arylation of common heterocycles. Synlett, 2016, 27, 1211-1216.
[http://dx.doi.org/10.1055/s-0035-1561436]
[142]
Cano, R.; Pérez, J.M.; Ramón, D.J.; McGlacken, G.P. Impregnated palladium on magnetite as catalyst for direct arylation of heterocycles. Tetrahedron, 2016, 72, 1043-1050.
[http://dx.doi.org/10.1016/j.tet.2015.12.039]
[143]
Duan, L.; Fu, R.; Zhang, B.; Shi, W.; Chen, S.; Wan, Y. An efficient reusable mesoporous solid-based Pd catalyst for selective C2 arylation of indoles in water. ACS Catal., 2016, 6, 1062-1074.
[http://dx.doi.org/10.1021/acscatal.5b02147]
[144]
Arun, V.; Pilania, M.; Kumar, D. Access to 2-arylindoles via decarboxylative C-C coupling in aqueous medium and to heteroaryl carboxylates under base-free conditions using diaryliodonium salts. Chem. Asian J., 2016, 11, 3345-3349.
[http://dx.doi.org/10.1002/asia.201601290] [PMID: 27737502]
[145]
Yang, P.; Wang, R.; Wu, H.; Du, Z.; Fu, Y. Pd-catalyzed C−H arylation of benzothiazoles with diaryliodonium salt: One-pot synthesis of 2-arylbenzothiazoles. Asian J. Org. Chem., 2017, 6, 184-188.
[http://dx.doi.org/10.1002/ajoc.201600514]
[146]
Sun, J.; Jiang, J.; Pan, H.; Li, J. Additive-free Pd-catalysed C-2 arylation of tryptophan derivatives with diaryliodonium salts. J. Chem. Res. Synop., 2018, 42, 184-188.
[http://dx.doi.org/10.3184/174751918X15232701502261]
[147]
Alexander, T.S.; Clay, T.J.; Maldonado, B.; Nguyen, J.M.; Martin, D.B.C. Comparative studies of palladium and copper-catalysed γ-arylation of silyloxy furans with diaryliodonium salts. Tetrahedron, 2019, 75, 2229-2238.
[http://dx.doi.org/10.1016/j.tet.2019.02.042]
[148]
Prendergast, A.M.; Shanahan, R.; Hickey, A.; Harrington, F.; Schönbauer, D.; Byrne, P.A.; Schnürch, M.; McGlacken, G.P. Synthesis of a diaryliodonium salt and its use in the direct arylation of indole: A two-step experiment for the organic teaching laboratory. J. Chem. Educ., 2020, 97, 200-206.
[http://dx.doi.org/10.1021/acs.jchemed.9b00525]
[149]
Sharma, S.; Kumar, S.; Sharma, A. Palladium‐catalyzed regioselective C−H arylation of quinoline‐n‐oxides at C‐8 position using diaryliodonium salts. Asian J. Org. Chem., 2020, 9, 660-667.
[http://dx.doi.org/10.1002/ajoc.202000028]
[150]
Mehra, M.K.; Sharma, S.; Rangan, K.; Kumar, D. Substrate or solvent-controlled PdII-catalyzed regioselective arylation of quinolin-4(1H)-ones using diaryliodonium salts: facile access to benzoxocine and aaptamine analogues. Eur. J. Org. Chem., 2020, 2409-2413.
[http://dx.doi.org/10.1002/ejoc.202000013]
[151]
Wang, M.; Chen, S.; Jiang, X. Atom-economical applications of diaryliodonium salts. Chem. Asian J., 2018, 13, 2195-2207.
[http://dx.doi.org/10.1002/asia.201800609] [PMID: 29901850]
[152]
Beringer, F.M.; Falk, R.A.; Karniol, M.; Lillien, I.; Masullo, G.; Mausner, M.; Sommer, E. Diaryliodonium salts. IX. The synthesis of substituted diphenyliodonium salts. J. Am. Chem. Soc., 1959, 81, 342-351.
[http://dx.doi.org/10.1021/ja01511a020]
[153]
Hossain, M.D.; Ikegami, Y.; Kitamura, T. Reaction of arenes with iodine in the presence of potassium peroxodisulfate in trifluoroacetic acid. Direct and simple synthesis of diaryliodonium triflates. J. Org. Chem., 2006, 71, 9903-9905.
[http://dx.doi.org/10.1021/jo061889q] [PMID: 17168620]
[154]
Kraszkiewicz, L.; Skulski, L. Facile syntheses of symmetrical diaryliodonium salts from various arenes, with sodium metaperiodate as the coupling reagent in acidic media. Synthesis, 2008, 2008, 2373-2380.
[http://dx.doi.org/10.1055/s-2008-1067169]
[155]
McKillop, A.; Kemp, D. Further functional group oxidations using sodium perborate. Tetrahedron, 1989, 45, 3299-3306.
[http://dx.doi.org/10.1016/S0040-4020(01)81008-5]
[156]
Chen, D-W.; Ochiai, M. Chromium(II)-mediated reactions of iodonium tetrafluoroborates with aldehydes: umpolung of reactivity of diaryl-, alkenyl(aryl)-, and alkynyl(aryl)iodonium tetrafluoroborates. J. Org. Chem., 1999, 64, 6804-6814.
[http://dx.doi.org/10.1021/jo990809y] [PMID: 11674690]
[157]
Bielawski, M.; Olofsson, B. High-yielding one-pot synthesis of diaryliodonium triflates from arenes and iodine or aryl iodides. Chem. Commun. (Camb.), 2007, 2521-2523.
[http://dx.doi.org/10.1039/b701864a] [PMID: 17563816]
[158]
Bielawski, M.; Aili, D.; Olofsson, B. Regiospecific one-pot synthesis of diaryliodonium tetrafluoroborates from arylboronic acids and aryl iodides. J. Org. Chem., 2008, 73, 4602-4607.
[http://dx.doi.org/10.1021/jo8004974] [PMID: 18505294]
[159]
Bielawski, M.; Malmgren, J.; Pardo, L.M.; Wikmark, Y.; Olofsson, B. One-pot synthesis and applications of N-heteroaryl iodonium salts. ChemistryOpen, 2014, 3, 19-22.
[http://dx.doi.org/10.1002/open.201300042] [PMID: 24688890]
[160]
Soldatova, N.; Postnikov, P.; Kukurina, O.; Zhdankin, V.V.; Yoshimura, A.; Wirth, T.; Yusubov, M.S. Facile one-pot synthesis of diaryliodonium salts from arenes and aryl iodides with Oxone. ChemistryOpen, 2016, 6, 18-20.
[http://dx.doi.org/10.1002/open.201600129] [PMID: 28168145]
[161]
Soldatova, N.; Postnikov, P.; Kukurina, O.; Zhdankin, V.V.; Yoshimura, A.; Wirth, T.; Yusubov, M.S. One-pot synthesis of diaryliodonium salts from arenes and aryl iodides with Oxone-sulfuric acid. Beilstein J. Org. Chem., 2018, 14, 849-855.
[http://dx.doi.org/10.3762/bjoc.14.70] [PMID: 29719579]
[162]
Seidl, T.L.; Sundalam, S.K.; McCullough, B.; Stuart, D.R. Unsymmetrical aryl(2,4,6-trimethoxyphenyl)iodonium salts: One-pot synthesis, scope, stability, and synthetic studies. J. Org. Chem., 2016, 81, 1998-2009.
[http://dx.doi.org/10.1021/acs.joc.5b02833] [PMID: 26828570]
[163]
Lindstedt, E.; Reitti, M.; Olofsson, B. One-pot synthesis of unsymmetric diaryliodonium salts from iodine and arenes. J. Org. Chem., 2017, 82, 11909-11914.
[http://dx.doi.org/10.1021/acs.joc.7b01652] [PMID: 28809562]
[164]
Deprez, N.R.; Kalyani, D.; Krause, A.; Sanford, M.S. Room temperature palladium-catalyzed 2-arylation of indoles. J. Am. Chem. Soc., 2006, 128, 4972-4973.
[http://dx.doi.org/10.1021/ja060809x] [PMID: 16608329]
[165]
Wagner, A.M.; Sanford, M.S. Palladium-catalyzed C-H arylation of 2,5-substituted pyrroles. Org. Lett., 2011, 13, 288-291.
[http://dx.doi.org/10.1021/ol102734g] [PMID: 21141808]
[166]
Fall, Y.; Doucet, H.; Santelli, M. Palladium-catalysed direct 3- or 4-arylation of 2,5-disubstituted pyrrole derivatives: An economically and environmentally attractive procedure. ChemSusChem, 2009, 2, 153-157.
[http://dx.doi.org/10.1002/cssc.200800248] [PMID: 19173363]
[167]
Cano, R.; Ramón, D.J.; Yus, M. Impregnated palladium on magnetite, a new catalyst for the ligand-free cross-coupling Suzuki–Miyaura reaction. Tetrahedron, 2011, 67, 5432-5436.
[http://dx.doi.org/10.1016/j.tet.2011.05.072]
[168]
Mortimer, C.G.; Wells, G.; Crochard, J-P.; Stone, E.L.; Bradshaw, T.D.; Stevens, M.F.G.; Westwell, A.D. Antitumor benzothiazoles. 26 12-(3,4-Dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J. Med. Chem., 2006, 49, 179-185.
[http://dx.doi.org/10.1021/jm050942k] [PMID: 16392802]
[169]
Phoon, C.W.; Ng, P.Y.; Ting, A.E.; Yeo, S.L.; Sim, M.M. Biological evaluation of hepatitis C virus helicase inhibitors. Bioorg. Med. Chem. Lett., 2001, 11, 1647-1650.
[http://dx.doi.org/10.1016/S0960-894X(01)00263-3] [PMID: 11425528]
[170]
Aiello, S.; Wells, G.; Stone, E.L.; Kadri, H.; Bazzi, R.; Bell, D.R.; Stevens, M.F.G.; Matthews, C.S.; Bradshaw, T.D.; Westwell, A.D. Synthesis and biological properties of benzothiazole, benzoxazole, and chromen-4-one analogues of the potent antitumor agent 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (PMX 610, NSC 721648). J. Med. Chem., 2008, 51, 5135-5139.
[http://dx.doi.org/10.1021/jm800418z] [PMID: 18666770]
[171]
Gan, F.; Luo, P.; Lin, J.; Ding, Q. Recent advances in the synthesis and applications of 2-arylbenzothiazoles. Synthesis, 2020, 52, 3530-3548.
[http://dx.doi.org/10.1055/s-0040-1707208]
[172]
Lal, S.; Snape, T.J. 2-Arylindoles: A privileged molecular scaffold with potent, broad-ranging pharmacological activity. Curr. Med. Chem., 2012, 19, 4828-4837.
[http://dx.doi.org/10.2174/092986712803341449] [PMID: 22830349]
[173]
Sravanthi, T.V.; Manju, S.L. Indoles - A promising scaffold for drug development. Eur. J. Pharm. Sci., 2016, 91, 1-10.
[http://dx.doi.org/10.1016/j.ejps.2016.05.025] [PMID: 27237590]
[174]
Hudkins, R.L.; Diebold, J.L.; Marsh, F.D. Synthesis of 2-aryl- and 2-vinyl-1H-indoles via palladium-catalyzed cross-coupling of aryl and vinyl halides with 1-carboxy-2-(tributylstannyl)indole. J. Org. Chem., 1995, 60, 6218-6220.
[http://dx.doi.org/10.1021/jo00124a048]
[175]
Wang, X.; Lane, B.S.; Sames, D. Direct C-arylation of free (NH)-indoles and pyrroles catalyzed by Ar-Rh(III) complexes assembled in situ. J. Am. Chem. Soc., 2005, 127, 4996-4997.
[http://dx.doi.org/10.1021/ja050279p] [PMID: 15810815]
[176]
Oskooie, H.A.; Heravi, M.M.; Behbahani, F.K. A facile, mild and efficient one-pot synthesis of 2-substituted indole derivatives catalyzed by Pd(PPh3)2Cl2. Molecules, 2007, 12, 1438-1446.
[http://dx.doi.org/10.3390/12071438] [PMID: 17909499]
[177]
Ambrus, J.I.; Kelso, M.J.; Bremner, J.B.; Ball, A.R.; Casadei, G.; Lewis, K. Structure-activity relationships of 2-aryl-1H-indole inhibitors of the NorA efflux pump in Staphylococcus aureus. Bioorg. Med. Chem. Lett., 2008, 18, 4294-4297.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.093] [PMID: 18632270]
[178]
Zhao, J.; Zhang, Y.; Cheng, K. Palladium-catalyzed direct C-2 arylation of indoles with potassium aryltrifluoroborate salts. J. Org. Chem., 2008, 73, 7428-7431.
[http://dx.doi.org/10.1021/jo801371w] [PMID: 18702549]
[179]
Wang, H.; Li, Y.; Jiang, L.; Zhang, R.; Jin, K.; Zhao, D.; Duan, C. Ready synthesis of free N-H 2-arylindoles via the copper-catalyzed amination of 2-bromo-arylacetylenes with aqueous ammonia and sequential intramolecular cyclization. Org. Biomol. Chem., 2011, 9, 4983-4986.
[http://dx.doi.org/10.1039/c1ob05549f] [PMID: 21584339]
[180]
Gao, Y.; Zhu, W.; Yin, L.; Dong, B.; Fu, J.; Ye, Z.; Xue, F.; Jiang, C. Palladium-catalyzed direct C2-arylation of free (N-H) indoles via norbornene-mediated regioselective C-H activation. Tetrahedron Lett., 2017, 58, 2213-2216.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.066]
[181]
Jie, L.; Wang, L.; Xiong, D.; Yang, Z.; Zhao, D.; Cui, X. Synthesis of 2-arylindoles through Pd(II)-catalyzed cyclization of anilines with vinyl azides. J. Org. Chem., 2018, 83, 10974-10984.
[http://dx.doi.org/10.1021/acs.joc.8b01618] [PMID: 30101582]
[182]
Bzeih, T.; Zhang, K.; Khalaf, A.; Hachem, A.; Alami, M.; Hamze, A. one-pot reaction between N-tosylhydrazones and 2-nitrobenzyl bromide: route to NH-free C2-arylindoles. J. Org. Chem., 2019, 84, 228-238.
[http://dx.doi.org/10.1021/acs.joc.8b02623] [PMID: 30523682]
[183]
Tolle, N.; Kunick, C. Paullones as inhibitors of protein kinases. Curr. Top. Med. Chem., 2011, 11, 1320-1332.
[http://dx.doi.org/10.2174/156802611795589601] [PMID: 21513499]
[184]
Pawar, G.G.; Brahmanandan, A.; Kapur, M. Palladium(II)-catalyzed, heteroatom-directed, regioselective C-H nitration of anilines using pyrimidine as a removable directing group. Org. Lett., 2016, 18, 448-451.
[http://dx.doi.org/10.1021/acs.orglett.5b03493] [PMID: 26799985]
[185]
Das, R.; Kapur, M. Palladium-catalyzed, ortho-selective C-H halogenation of benzyl nitriles, aryl weinreb amides, and anilides. J. Org. Chem., 2017, 82, 1114-1126.
[http://dx.doi.org/10.1021/acs.joc.6b02731] [PMID: 28029050]
[186]
Saxena, P.; Kapur, M. Cobalt-catalyzed C-H nitration of indoles by employing a removable directing group. Chem. Asian J., 2018, 13, 861-870.
[http://dx.doi.org/10.1002/asia.201800036] [PMID: 29424476]
[187]
Lee, S.; Mah, S.; Hong, S. Catalyst controlled divergent C4/C8 site-selective C-H arylation of isoquinolones. Org. Lett., 2015, 17, 3864-3867.
[http://dx.doi.org/10.1021/acs.orglett.5b01840] [PMID: 26218668]
[188]
Iinuma, M.; Moriyama, K.; Togo, H. Simple and practical method for preparation of [(diacetoxy)iodo]arenes with iodoarenes and m-chloroperoxybenzoic acid. Synlett, 2012, 23, 2663-2666.
[http://dx.doi.org/10.1055/s-0032-1317345]
[189]
Zhou, D-J.; Zhai, Y-Y.; Meng, L-P.; Song, W-W.; Liu, X.; Yin, S-Q. Efficient synthesis of diacetoxyiodoarenes via intramolecular rearrangement. Lett. Org. Chem., 2019, 16, 911-914.
[http://dx.doi.org/10.2174/1570178616666181203142445]
[190]
Zhdankin, V.V. Hypervalent iodine(III) reagents in organic synthesis. ARKIVOC, 2009, •••, 1-62.
[http://dx.doi.org/10.3998/ark.5550190.0010.101]
[191]
Yu, P.; Zhang, G.; Chen, F.; Cheng, J. Direct arylation of benzoxazole C-H bonds with iodobenzene diacetates. Tetrahedron Lett., 2012, 53, 4588-4590.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.076]
[192]
Gao, F.; Kim, B-S.; Walsh, P.J. Room-temperature palladium-catalyzed direct 2-arylation of benzoxazoles with aryl and heteroaryl bromides. Chem. Commun. (Camb.), 2014, 50, 10661-10664.
[http://dx.doi.org/10.1039/C4CC05307A] [PMID: 25078988]
[193]
Zhang, J.; Bellomo, A.; Trongsiriwat, N.; Jia, T.; Carroll, P.J.; Dreher, S.D.; Tudge, M.T.; Yin, H.; Robinson, J.R.; Schelter, E.J.; Walsh, P.J. NiXantphos: A deprotonatable ligand for room-temperature palladium-catalyzed cross-couplings of aryl chlorides. J. Am. Chem. Soc., 2014, 136, 6276-6287.
[http://dx.doi.org/10.1021/ja411855d]] [PMID: 24745758]
[194]
Williams, T.J.; Fairlamb, I.J.S. A key role for iodobenzene in the direct C-H bond functionalisation of benzoxazoles using PhI(OAc)2 mediated by a Pd(OAc)2/1,10-phenanthroline catalyst system: In situ formation of well-defined Pd nanoparticles. Tetrahedron Lett., 2013, 54, 2906-2908.
[http://dx.doi.org/10.1016/j.tetlet.2013.03.018]
[195]
Oger, N.; d’Halluin, M.; Le Grognec, E.; Felpin, F-X. Using Aryl diazonium salts in palladium-catalyzed reactions under safer conditions. Org. Process Res. Dev., 2014, 18, 1786-1801.
[http://dx.doi.org/10.1021/op500299t]
[196]
Mo, F.; Dong, G.; Zhang, Y.; Wang, J. Recent applications of arene diazonium salts in organic synthesis. Org. Biomol. Chem., 2013, 11, 1582-1593.
[http://dx.doi.org/10.1039/c3ob27366k] [PMID: 23358692]
[197]
Trusova, M.E.; Kutonova, K.V.; Kurtukov, V.V.; Filimonov, V.D.; Postnikov, P.S. Arenediazonium salts transformations in water media: Coming round to origins. Resource-Efficient Technologies, 2016, 2, 36-42.
[http://dx.doi.org/10.1016/j.reffit.2016.01.001]
[198]
Colas, C.; Goeldner, M. An efficient procedure for the synthesis of crystalline aryldiazonium trifluoroacetates-Synthetic applications. Eur. J. Org. Chem., 1999, 1357-1366.
[http://dx.doi.org/10.1002/(SICI)1099-0690(199906)1999:6<1357:AID-EJOC1357>3.0.CO;2-P]
[199]
Biajoli, A.F.P.; da Penha, E.T.; Correia, C.R.D. Palladium catalysed regioselective arylation of indoles, benzofuran and benzothiophene with aryldiazonium salts. RSC Advances, 2012, 2, 11930-11935.
[http://dx.doi.org/10.1039/c2ra22213b]
[200]
Roe, A.; Hawkins, G.F. The preparation of heterocyclic fluorine compounds by the Schiemann reaction. I. The monofluoropyridines. J. Am. Chem. Soc., 1947, 69, 2443-2444.
[http://dx.doi.org/10.1021/ja01202a057]
[201]
Firth, J.D.; Fairlamb, I.J.S. A need for caution in the preparation and application of synthetically versatile aryl diazonium tetrafluoroborate salts. Org. Lett., 2020, 22, 7057-7059.
[http://dx.doi.org/10.1021/acs.orglett.0c02685] [PMID: 32856924]
[202]
Dao-Huy, T.; Haider, M.; Glatz, F.; Schnürch, M.; Mihovilovic, M.D. Direct arylation of benzo[b]furan and other benzo-fused heterocycles. Eur. J. Org. Chem., 2014, 2014, 8119-8125.
[http://dx.doi.org/10.1002/ejoc.201403125] [PMID: 26213483]
[203]
Gemoets, H.P.L.; Kalvet, I.; Nyuchev, A.V.; Erdmann, N.; Hessel, V.; Schoenebeck, F.; Noël, T. Mild and selective base-free C-H arylation of heteroarenes: Experiment and computation. Chem. Sci. (Camb.), 2017, 8, 1046-1055.
[http://dx.doi.org/10.1039/C6SC02595A] [PMID: 28451243]
[204]
Judd, D.B.; Dowle, M.D.; Middlemiss, D.; Scopes, D.I.C.; Ross, B.C.; Jack, T.I.; Pass, M.; Tranquillini, E.; Hobson, J.E.; Panchal, T.A.; Stuart, P.G.; Patón, J.M.S.; Hubbard, T.; Hilditch, A.; Drew, G.M.; Robertson, M.J.; Clark, K.L.; Travers, A.; Hunt, A.A.E.; Polley, J.; Eddershaw, P.J.; Bayliss, M.K.; Manchee, G.R.; Donnelly, M.D.; Walker, D.G.; Richards, S.A. Bromobenzofuran-based non-peptide antagonists of angiotensin II: GR138950, a potent antihypertensive agent with high oral bioavailability. J. Med. Chem., 1994, 37, 3108-3120.
[http://dx.doi.org/10.1021/jm00045a016] [PMID: 7932534]
[205]
Reay, A.J.; Hammarback, L.A.; Bray, J.T.W.; Sheridan, T.; Turnbull, D.; Whitwood, A.C.; Fairlamb, I.J.S. Mild and regioselective Pd(OAc)2-catalyzed C-H arylation of tryptophans by [ArN2]X, promoted by tosic acid. ACS Catal., 2017, 7, 5174-5179.
[http://dx.doi.org/10.1021/acscatal.6b03121] [PMID: 28824821]
[206]
Sutar, S.M.; Savanur, H.M.; Malunavar, S.S.; Prabhala, P.; Kalkhambkar, R.G.; Laali, K.K. 1-aryltriazenes in the Suzuki, Heck, and Sonogashira reactions in imidazolium-ils, with [BMIM(SO3H)][OTf] or Sc(OTf)3 as promoter, and Pd(OAc)2 or NiCl2·glyme as catalyst. Eur. J. Org. Chem., 2019, 6088-6093.
[http://dx.doi.org/10.1002/ejoc.201901070]
[207]
Yin, Z.; Wang, Z.; Wu, X-F. Palladium-catalyzed carbonylative synthesis of amides from aryltriazenes under additive-free conditions. Eur. J. Org. Chem., 2017, 3992-3995.
[http://dx.doi.org/10.1002/ejoc.201700784]
[208]
Zhang, Y.; Cao, D.; Liu, W.; Hu, H.; Zhang, X.; Liu, C. Recent applications of aryltriazenes in organic synthesis via C-N/N-N bond cleavage. Curr. Org. Chem., 2015, 19, 151-178.
[http://dx.doi.org/10.2174/1385272819666150119222344]
[209]
Nan, G.; Ren, F.; Luo, M. Suzuki-Miyaura cross-coupling reaction of 1-aryltriazenes with arylboronic acids catalyzed by a recyclable polymer-supported N-heterocyclic carbene-palladium complex catalyst. Beilstein J. Org. Chem., 2010, 6e70
[http://dx.doi.org/10.3762/bjoc.6.70] [PMID: 20703375]
[210]
Patrick, T.B.; Willaredt, R.P.; DeGonia, D.J. Synthesis of biaryls from aryltriazenes. J. Org. Chem., 1985, 50, 2232-2235.
[http://dx.doi.org/10.1021/jo00213a007]
[211]
Gross, M.L.; Blank, D.H.; Welch, W.M. The triazene moiety as a protecting group for aromatic amines. J. Org. Chem., 1993, 58, 2104-2109.
[http://dx.doi.org/10.1021/jo00060a028]
[212]
Liu, C.; Miao, T.; Zhang, L.; Li, P.; Zhang, Y.; Wang, L. Palladium-catalyzed direct C2 arylation of N-substituted indoles with 1-aryltriazenes. Chem. Asian J., 2014, 9, 2584-2589.
[http://dx.doi.org/10.1002/asia.201402274] [PMID: 24920177]
[213]
Dai, W-C.; Wang, Z-X. Palladium-catalyzed coupling of azoles with 1-aryltriazenes via C-H/C-N cleavage. Org. Chem. Front., 2017, 4, 1281-1288.
[http://dx.doi.org/10.1039/C7QO00174F]
[214]
Liu, C.; Wang, Z.; Wang, L.; Li, P.; Zhang, Y. Palladium-catalyzed direct C2-arylation of azoles with aromatic triazenes. Org. Biomol. Chem., 2019, 17, 9209-9216.
[http://dx.doi.org/10.1039/C9OB01883B] [PMID: 31595932]
[215]
Liu, Y.; Ma, X.; Wu, G.; Liu, Z.; Yang, X.; Wang, B.; Liu, C.; Zhang, Y.; Huang, Y. The controllable C2 arylation and C3 diazenylation of indoles with aryltriazenes under ambient conditions. New J. Chem., 2019, 43, 9255-9259.
[http://dx.doi.org/10.1039/C9NJ01728C]
[216]
Hosseinian, A.; Mohammadi, R.; Ahmadi, S.; Monfared, A.; Rahmani, Z. Arylhydrazines: Novel and versatile electrophilic partners in cross-coupling reactions. RSC Advances, 2018, 8, 33828-33844.
[http://dx.doi.org/10.1039/C8RA06423G]
[217]
Przheval’skii, N.M.; Laipanov, R.K.; Tokmakov, G.P.; Nam, N.L. The Grandberg reaction in the synthesis of biologically active compounds. Russ. Chem. Bull., 2016, 65, 1709-1715.
[http://dx.doi.org/10.1007/s11172-016-1499-4]
[218]
Hunsberger, I.M.; Shaw, E.R.; Fugger, J.; Ketcham, R.; Lednicer, D. The preparation of substituted hydrazines. IV. Arylhydrazines via conventional methods. J. Org. Chem., 1956, 21, 394-399.
[http://dx.doi.org/10.1021/jo01110a004]
[219]
Harrak, Y.; Romero, M.; Constans, P.; Pujol, M. Preparation of diarylamines and arylhydrazines using palladium catalysts. Lett. Org. Chem., 2006, 3, 29-34.
[http://dx.doi.org/10.2174/157017806774964503]
[220]
Jankowiak, A.; Kaszyński, P. Synthesis of oleophilic electron-rich phenylhydrazines. Beilstein J. Org. Chem., 2012, 8, 275-282.
[http://dx.doi.org/10.3762/bjoc.8.29] [PMID: 22423295]
[221]
Kurandina, D.V.; Eliseenkov, E.V.; Ilyin, P.V.; Boyarskiy, V.P. Facile and convenient synthesis of aryl hydrazines via copper-catalyzed C–N cross-coupling of aryl halides and hydrazine hydrate. Tetrahedron, 2014, 70, 4043-4048.
[http://dx.doi.org/10.1016/j.tet.2014.04.048]
[222]
Uemura, T.; Yamaguchi, M.; Chatani, N. Amination of arylboronic compounds via the copper-catalyzed addition of arylboronic esters to azodicarboxylates. Synthesis, 2015, 47, 3746-3750.
[http://dx.doi.org/10.1055/s-0035-1560468]
[223]
Kumar, S.V.; Ma, D. Synthesis of aryl hydrazines via CuI/BMPO catalyzed cross-coupling of aryl halides with hydrazine hydrate in water. Chin. J. Chem., 2018, 36, 1003-1006.
[http://dx.doi.org/10.1002/cjoc.201800326]
[224]
Chen, Y.; Guo, S.; Li, K.; Qu, J.; Yuan, H.; Hua, Q.; Chen, B. Palladium-catalyzed direct denitrogenative C-3-arylation of 1H-indoles with arylhydrazines using air as the oxidant. Adv. Synth. Catal., 2013, 355, 711-715.
[http://dx.doi.org/10.1002/adsc.201200997]
[225]
Cao, J.; Chen, Z-L.; Li, S-M.; Zhu, G-F.; Yang, Y-Y.; Wang, C.; Chen, W-Z.; Wang, J-T.; Zhang, J-Q.; Tang, L. Palladium-catalyzed regioselective C-2 arylation of benzofurans with N¢-acyl arylhydrazines. Eur. J. Org. Chem., 2018, 2774-2779.
[http://dx.doi.org/10.1002/ejoc.201800374]
[226]
Powell, J.H.; Gannett, P.M. Mechanisms of carcinogenicity of aryl hydrazines, aryl hydrazides, and arenediazonium ions. J. Environ. Pathol. Toxicol. Oncol., 2002, 21, 1-31.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v21.i1.10] [PMID: 11934010]
[227]
Zhang, Z.; Hu, Z.; Yu, Z.; Lei, P.; Chi, H.; Wang, Y.; He, R. Direct palladium-catalyzed C-3 arylation of indoles. Tetrahedron Lett., 2007, 48, 2415-2419.
[http://dx.doi.org/10.1016/j.tetlet.2007.01.173]
[228]
Bellina, F.; Benelli, F.; Rossi, R. Direct palladium-catalyzed C-3 arylation of free (NH)-indoles with aryl bromides under ligandless conditions. J. Org. Chem., 2008, 73, 5529-5535.
[http://dx.doi.org/10.1021/jo8007572] [PMID: 18543968]
[229]
Mohr, Y.; Renom-Carrasco, M.; Demarcy, C.; Quadrelli, E.A.; Camp, C.; Wisser, F.M.; Clot, E.; Thieuleux, C.; Canivet, J. Regiospecificity in ligand-free Pd-catalyzed C-H arylation of indoles: LiHMDS as base and transient directing group. ACS Catal., 2020, 10, 2713-2719.
[http://dx.doi.org/10.1021/acscatal.9b04864]
[230]
Muñiz, K.; Nieger, M. Catalytic activation of N-N multiple bonds: A homogeneous palladium catalyst for mechanistically unprecedented reduction of azo compounds. Angew. Chem. Int. Ed., 2006, 45, 2305-2308.
[http://dx.doi.org/10.1002/anie.200503875] [PMID: 16518789]
[231]
Noviany, N.; Samadi, A.; Yuliyan, N.; Hadi, S.; Aziz, M.; Purwitasari, N.; Mohamad, S.; Ismail, N.N.; Gable, K.P.; Mahmud, T. Structure characterization and biological activity of 2-arylbenzofurans from an indonesian plant, Sesbania grandiflora (L.). Pers. Phytochem. Lett., 2020, 35, 211-215.
[http://dx.doi.org/10.1016/j.phytol.2019.12.008] [PMID: 32863985]
[232]
Coy-Barrera, E. Discrimination of naturally-occurring 2-arylbenzofurans as cyclooxygenase-2 inhibitors: Insights into the binding mode and enzymatic inhibitory activity. Biomolecules, 2020, 10e176
[http://dx.doi.org/10.3390/biom10020176] [PMID: 31979339]
[233]
Hu, X.; Wu, J-W.; Wang, M.; Yu, M-H.; Zhao, Q-S.; Wang, H-Y.; Hou, A-J. 2-Arylbenzofuran, flavonoid, and tyrosinase inhibitory constituents of Morus yunnanensis. J. Nat. Prod., 2012, 75, 82-87.
[http://dx.doi.org/10.1021/np2007318] [PMID: 22165973]
[234]
Ni, G.; Zhang, Q-J.; Zheng, Z-F.; Chen, R-Y.; Yu, D-Q. 2-Arylbenzofuran derivatives from Morus cathayana. J. Nat. Prod., 2009, 72, 966-968.
[http://dx.doi.org/10.1021/np800789y] [PMID: 19338315]
[235]
Shen, H.; Hou, A-J. Prenylated 2-arylbenzofurans from Artocarpus petelotii. Nat. Prod. Res., 2008, 22, 1451-1456.
[http://dx.doi.org/10.1080/14786410802076374] [PMID: 19023808]
[236]
Ortgies, D.H.; Hassanpour, A.; Chen, F.; Woo, S.; Forgione, P. Desulfination as an emerging strategy in palladium-catalyzed C-C coupling reactions. Eur. J. Org. Chem., 2016, 408-425.
[http://dx.doi.org/10.1002/ejoc.201501231]
[237]
Li, H.; Sasmal, A.; Shi, X.; Soulé, J-F.; Doucet, H. Halo-substituted benzenesulfonyls and benzenesulfinates: Convenient sources of arenes in metal-catalyzed C-C bond formation reactions for the straightforward access to halo-substituted arenes. Org. Biomol. Chem., 2018, 16, 4399-4423.
[http://dx.doi.org/10.1039/C8OB00632F] [PMID: 29786741]
[238]
Harutyunyan, H.; Mantashyan, A. Recycling of SO2: Its conversion into elemental sulfur. 15th International Conference on Environmental Science and Technology Rhodes, Greece 31 August-2 September 2017 Rhodes, Greece, 2017.
[239]
Roy, P.; Sardar, A. SO2 Emission control and finding a way out to produce sulphuric acid from industrial SO2 emission. J. Chem. Eng. Process Technol., 2015, 06e230
[240]
Johnson, T.B. The synthesis of sulfonyl chlorides by chlorination of sulphur compounds. Proc. Natl. Acad. Sci. USA, 1939, 25, 448-452.
[http://dx.doi.org/10.1073/pnas.25.9.448] [PMID: 16577934]
[241]
Prinsen, A.J.; Cerfontain, H. The synthesis of arylsulfonyl halides. Recl. Trav. Chim. Pays Bas, 1965, 84, 24-30.
[http://dx.doi.org/10.1002/recl.19650840104]
[242]
Hamada, T.; Yonemitsu, O. An improved synthesis of arylsulfonyl chlorides from aryl halides. Synthesis, 1986, 1986, 852-854.
[http://dx.doi.org/10.1055/s-1986-31803]
[243]
Wallace, M.A.; Raab, C.E.; Dean, D.C.; Melillo, D.G. Synthesis of [35S]aryl sulfonyl chlorides from [35S]elemental sulfur. J. Labelled Comp. Radiopharm., 2005, 48, 275-283.
[http://dx.doi.org/10.1002/jlcr.920]
[244]
Hogan, P.J.; Cox, B.G. Aqueous process chemistry: The preparation of aryl sulfonyl chlorides. Org. Process Res. Dev., 2009, 13, 875-879.
[http://dx.doi.org/10.1021/op9000862]
[245]
Malet-Sanz, L.; Madrzak, J.; Ley, S.V.; Baxendale, I.R. Preparation of arylsulfonyl chlorides by chlorosulfonylation of in situ generated diazonium salts using a continuous flow reactor. Org. Biomol. Chem., 2010, 8, 5324-5332.
[http://dx.doi.org/10.1039/c0ob00450b] [PMID: 20877783]
[246]
Zhang, M.; Zhang, S.; Liu, M.; Cheng, J. Palladium-catalyzed desulfitative C-arylation of a benzo[d]oxazole C-H bond with arene sulfonyl chlorides. Chem. Commun. (Camb.), 2011, 47, 11522-11524.
[http://dx.doi.org/10.1039/c1cc14718h] [PMID: 21947089]
[247]
Jafarpour, F.; Olia, M.B.A.; Hazrati, H. Highly regioselective α-arylation of coumarins via palladium-catalyzed C-H activation/desulfitative coupling. Adv. Synth. Catal., 2013, 355, 3407-3412.
[http://dx.doi.org/10.1002/adsc.201300707]
[248]
Zhao, H.; Yan, B.; Peterson, L.B.; Blagg, B.S.J. 3-Arylcoumarin derivatives manifest anti-proliferative activity through Hsp90 inhibition. ACS Med. Chem. Lett., 2012, 3, 327-331.
[http://dx.doi.org/10.1021/ml300018e] [PMID: 23316269]
[249]
de Souza Santos, M.; Freire de Morais Del Lama, M.P.; Deliberto, L.A.; da Silva Emery, F.; Tallarico Pupo, M.; Zumstein Georgetto Naal, R.M. In situ screening of 3-arylcoumarin derivatives reveals new inhibitors of mast cell degranulation. Arch. Pharm. Res., 2013, 36, 731-738.
[http://dx.doi.org/10.1007/s12272-013-0084-8] [PMID: 23519647]
[250]
Hu, Y.; Wang, B.; Yang, J.; Liu, T.; Sun, J.; Wang, X. Synthesis and biological evaluation of 3-arylcoumarin derivatives as potential anti-diabetic agents. J. Enzyme Inhib. Med. Chem., 2019, 34, 15-30.
[http://dx.doi.org/10.1080/14756366.2018.1518958] [PMID: 30362362]
[251]
Sabitha, M.G.; Subba Rao, A.V. Synthesis of 3-arylcoumarins, 2-aroylbenzofurans and 3-aryl-2H-1,4-benzoazines under phase-transfer catalysis conditions. Synth. Commun., 1987, 17, 341-354.
[http://dx.doi.org/10.1080/00397918708077315]
[252]
Roussaki, M.; Kontogiorgis, C.A.; Hadjipavlou-Litina, D.; Hamilakis, S.; Detsi, A. A novel synthesis of 3-aryl coumarins and evaluation of their antioxidant and lipoxygenase inhibitory activity. Bioorg. Med. Chem. Lett., 2010, 20, 3889-3892.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.022] [PMID: 20627725]
[253]
Matos, M.J.; Vazquez-Rodriguez, S.; Borges, F.; Santana, L.; Uriarte, E. Synthesis of 3-arylcoumarins via Suzuki-cross-coupling reactions of 3-chlorocoumarin. Tetrahedron Lett., 2011, 52, 1225-1227.
[http://dx.doi.org/10.1016/j.tetlet.2011.01.048]
[254]
Ge, H.Y.; Fang, Z.J.; Qian, B.H. Synthesis of 3-arylcoumarins by FeCl3-promoted cyclization of orto-methoxy-substituted (E)-2,3-diphenylpropenoic acids or their methyl esters. Chem. Heterocycl. Compd., 2014, 50, 12-18.
[http://dx.doi.org/10.1007/s10593-014-1442-2]
[255]
Wang, Z-M.; Li, X-M.; Xue, G-M.; Xu, W.; Wang, X-B.; Kong, L-Y. Synthesis and evaluation of 6-substituted 3-arylcoumarin derivatives as multifunctional acetylcholinesterase/monoamine oxidase B dual inhibitors for the treatment of Alzheimer’s disease. RSC Advances, 2015, 5, 104122-104137.
[http://dx.doi.org/10.1039/C5RA22296F]
[256]
Gryko, D.T.; Vakuliuk, O.; Gryko, D.; Koszarna, B. Palladium-catalyzed 2-arylation of pyrroles. J. Org. Chem., 2009, 74, 9517-9520.
[http://dx.doi.org/10.1021/jo902124c] [PMID: 19904960]
[257]
Jin, R.; Yuan, K.; Chatelain, E.; Soulé, J-F.; Doucet, H. Palladium-catalysed direct desulfitative arylation of pyrroles using benzenesulfonyl chlorides as alternative coupling partners. Adv. Synth. Catal., 2014, 356, 3831-3841.
[http://dx.doi.org/10.1002/adsc.201400736]
[258]
Roger, J.; Doucet, H. Regioselective C-2 or C-5 direct arylation of pyrroles with aryl bromides using a ligand-free palladium catalyst. Adv. Synth. Catal., 2009, 351, 1977-1990.
[http://dx.doi.org/10.1002/adsc.200900196]
[259]
Yuan, K.; Doucet, H. Benzenesulfonyl chlorides: New reagents for access to alternative regioisomers in palladium-catalysed direct arylations of thiophenes. Chem. Sci. (Camb.), 2014, 5, 392-396.
[http://dx.doi.org/10.1039/C3SC52420E]
[260]
Zhang, W.; Liu, F.; Zhao, B. Desulfitative palladium-catalyzed direct C-3 arylation of indolizines with arylsulfonyl chlorides. Appl. Organomet. Chem., 2015, 29, 524-527.
[http://dx.doi.org/10.1002/aoc.3326]
[261]
S.; Venugopala, K.; Khedr, M. A.; Attimarad, M.; Padmashali, B.; Kulkarni, R. S.; Venugopala, R.; Odhav, B., Review on chemistry of natural and synthetic indolizines with their chemical and pharmacological properties. J. Basic Clin. Pharm., 2017, 8, 49-60.
[262]
Singh, G.S.; Mmatli, E.E. Recent progress in synthesis and bioactivity studies of indolizines. Eur. J. Med. Chem., 2011, 46, 5237-5257.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.042] [PMID: 21937153]
[263]
Sadowski, B.; Klajn, J.; Gryko, D.T. Recent advances in the synthesis of indolizines and their π-expanded analogues. Org. Biomol. Chem., 2016, 14, 7804-7828.
[http://dx.doi.org/10.1039/C6OB00985A] [PMID: 27396991]
[264]
Loukotova, L.; Yuan, K.; Doucet, H. Regiocontroled palladium-catalysed direct arylation at carbon C2 of benzofurans using benzenesulfonyl chlorides as the coupling partners. ChemCatChem, 2014, 6, 1303-1309.
[http://dx.doi.org/10.1002/cctc.201301077]
[265]
Saoudi, B.; Debache, A.; Soulé, J-F.; Doucet, H. Synthesis of heteroarenes dyads from heteroarenes and heteroarylsulfonyl chlorides via Pd-catalyzed desulfitative C-H bond heteroarylations. RSC Advances, 2015, 5, 65175-65183.
[http://dx.doi.org/10.1039/C5RA07762A]
[266]
Hfaiedh, A.; Yuan, K.; Ben Ammar, H.; Ben Hassine, B.; Soulé, J-F.; Doucet, H. Eco-friendly solvents for palladium-catalyzed desulfitative C-H bond arylation of heteroarenes. ChemSusChem, 2015, 8, 1794-1804.
[http://dx.doi.org/10.1002/cssc.201403429] [PMID: 25881692]
[267]
Häckl, K.; Kunz, W. Some aspects of green solvents. C. R. Chim., 2018, 21, 572-580.
[http://dx.doi.org/10.1016/j.crci.2018.03.010]
[268]
Skhiri, A.; Beladhria, A.; Yuan, K.; Soulé, J-F.; Ben Salem, R.; Doucet, H. Pd-catalysed direct arylation of heteroaromatics using (poly)halobenzene-sulfonyl chlorides as coupling partners: One step access to (poly)halo-substituted bi(hetero)aryls. Eur. J. Org. Chem., 2015, 2015, 4428-4436.
[http://dx.doi.org/10.1002/ejoc.201500354]
[269]
Hfaiedh, A.; Ben Ammar, H.; Soulé, J-F.; Doucet, H. Palladium-catalyzed direct desulfitative C2 arylations of 3-halo-N-protected indoles using (hetero)arenesulfonyl chlorides. Org. Biomol. Chem., 2016, 14, 4947-4956.
[http://dx.doi.org/10.1039/C6OB00584E] [PMID: 27171489]
[270]
Hagui, W.; Besbes, N.; Srasra, E.; Roisnel, T.; Soulé, J-F.; Doucet, H. Short synthesis of sulfur analogues of polyaromatic hydrocarbons through three palladium-catalyzed C-H bond arylations. Org. Lett., 2016, 18, 4182-4185.
[http://dx.doi.org/10.1021/acs.orglett.6b01735] [PMID: 27550151]
[271]
Daigle, M.; Picard-Lafond, A.; Soligo, E.; Morin, J-F. Regioselective synthesis of nanographenes by photochemical cyclodehydrochlorination. Angew. Chem. Int. Ed. Engl., 2016, 55, 2042-2047.
[http://dx.doi.org/10.1002/anie.201509130] [PMID: 26693659]
[272]
Davy, N.C.; Man, G.; Kerner, R.A.; Fusella, M.A.; Purdum, G.E.; Sezen, M.; Rand, B.P.; Kahn, A.; Loo, Y-L. Contorted hexabenzocoronenes with extended heterocyclic moieties improve visible-light absorption and performance in organic solar cells. Chem. Mater., 2016, 28, 673-681.
[http://dx.doi.org/10.1021/acs.chemmater.5b04503]
[273]
Skhiri, A.; Salem, R.B.; Soulé, J-F.; Doucet, H. Unprecedented access to β-arylated selenophenes through palladium-catalysed direct arylation. Chemistry, 2017, 23, 2788-2791.
[http://dx.doi.org/10.1002/chem.201700202] [PMID: 28093829]
[274]
Skhiri, A.; Ben Salem, R.; Soulé, J-F.; Doucet, H. Access to (hetero)arylated selenophenes via palladium-catalysed Stille, Negishi or Suzuki couplings or C-H bond functionalization reaction. ChemCatChem, 2017, 9, 2895-2913.
[http://dx.doi.org/10.1002/cctc.201700256]
[275]
Shi, X.; Mao, S.; Roisnel, T.; Doucet, H.; Soulé, J-F. Palladium-catalyzed successive C-H bond arylations and annulations toward the π-extension of selenophene-containing aromatic skeletons. Org. Chem. Front., 2019, 6, 2398-2403.
[http://dx.doi.org/10.1039/C9QO00218A]
[276]
Rampon, D.S.; Wessjohann, L.A.; Schneider, P.H. Palladium-catalyzed direct arylation of selenophene. J. Org. Chem., 2014, 79, 5987-5992.
[http://dx.doi.org/10.1021/jo500094t] [PMID: 24893620]
[277]
Li, H.; Roisnel, T.; Soulé, J-F.; Doucet, H. Regiocontrolled palladium-catalyzed direct C2-arylations of Methoxalen using benzenesulfonyl chlorides and C2,C3-diarylations using aryl bromides as the aryl sources. Tetrahedron Lett., 2020, 61e151342
[http://dx.doi.org/10.1016/j.tetlet.2019.151342]
[278]
de Wolff, F.A.; Thomas, T.V. Clinical pharmacokinetics of methoxsalen and other psoralens. Clin. Pharmacokinet., 1986, 11, 62-75.
[http://dx.doi.org/10.2165/00003088-198611010-00004] [PMID: 3512141]
[279]
Nakamura, S.; Toru, T. Product class 11: Arenesulfinic acids and derivatives. In: Science of Synthesis: Houben-Weyl Methods of Molecular Transformations; Ramsden, C.A., Ed.; Stuttgart: Thieme, , 2007. 31a, pp. 879-906.
[280]
Chen, R.; Liu, S.; Liu, X.; Yang, L.; Deng, G-J. Palladium-catalyzed desulfitative C-H arylation of azoles with sodium sulfinates. Org. Biomol. Chem., 2011, 9, 7675-7679.
[http://dx.doi.org/10.1039/c1ob06387a] [PMID: 21938298]
[281]
Liu, B.; Guo, Q.; Cheng, Y.; Lan, J.; You, J. Palladium-catalyzed desulfitative C-H arylation of heteroarenes with sodium sulfinates. Chemistry, 2011, 17, 13415-13419.
[http://dx.doi.org/10.1002/chem.201102644] [PMID: 22052538]
[282]
Wu, M.; Luo, J.; Xiao, F.; Zhang, S.; Deng, G-J.; Luo, H-A. Palladium-catalyzed direct and site-selective desulfitative arylation of indoles with sodium sulfinates. Adv. Synth. Catal., 2012, 354, 335-340.
[http://dx.doi.org/10.1002/adsc.201100603]
[283]
Grimster, N.P.; Gauntlett, C.; Godfrey, C.R.A.; Gaunt, M.J. Palladium-catalyzed intermolecular alkenylation of indoles by solvent-controlled regioselective C-H functionalization. Angew. Chem. Int. Ed., 2005, 44, 3125-3129.
[http://dx.doi.org/10.1002/anie.200500468] [PMID: 15828033]
[284]
Djakovitch, L.; Rouge, P. New homogeneously and heterogeneously [Pd/Cu]-catalysed C3-alkenylation of free NH-indoles. J. Mol. Catal. Chem., 2007, 273, 230-239.
[http://dx.doi.org/10.1016/j.molcata.2007.04.011]
[285]
Djakovitch, L.; Rouge, P. Environmentally friendly [Pd/Cu]-catalysed C3-alkenylation of free NH-indoles. Catal. Today, 2009, 140, 90-99.
[http://dx.doi.org/10.1016/j.cattod.2008.07.013]
[286]
Wang, M.; Li, D.; Zhou, W.; Wang, L. A highly efficient palladium-catalyzed desulfitative arylation of azoles with sodium arylsulfinates. Tetrahedron, 2012, 68, 1926-1930.
[http://dx.doi.org/10.1016/j.tet.2011.12.072]
[287]
Miao, T.; Li, P.; Wang, G-W.; Wang, L. Microwave-accelerated Pd-catalyzed desulfitative direct C2-arylation of free (NH)-indoles with arylsulfinic acids. Chem. Asian J., 2013, 8, 3185-3190.
[http://dx.doi.org/10.1002/asia.201300913] [PMID: 24000204]
[288]
Wang, S.; Liu, W.; Lin, J.; Jiang, Y.; Zhang, Q.; Zhong, Y. Palladium-catalyzed direct and regioselective C-5 desulfitative arylation of thiazolo[3,2-b]-1,2,4-triazoles with sodium sulfinates. Synlett, 2014, 25, 586-590.
[289]
Lesyk, R.; Vladzimirska, O.; Holota, S.; Zaprutko, L.; Gzella, A. New 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones: Synthesis and anticancer evaluation. Eur. J. Med. Chem., 2007, 42, 641-648.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.006] [PMID: 17303290]
[290]
Barbuceanu, S-F.; Draghici, C.; Barbuceanu, F.; Bancescu, G.; Saramet, G. Design, synthesis, characterization and antimicrobial evaluation of some heterocyclic condensed systems with bridgehead nitrogen from thiazolotriazole class. Chem. Pharm. Bull. (Tokyo), 2015, 63, 694-700.
[http://dx.doi.org/10.1248/cpb.c15-00379] [PMID: 26329862]
[291]
Tozkoparan, B.; Aytaç, S.P.; Gürsoy, Ş.; Aktay, G. Design and synthesis of some thiazolotriazolyl esters as anti-inflammatory and analgesic agents. Med. Chem. Res., 2012, 21, 192-201.
[http://dx.doi.org/10.1007/s00044-010-9508-x]
[292]
Assarzadeh, M.J.; Almasirad, A.; Shafiee, A.; Koopaei, M.N.; Abdollahi, M. Synthesis of new thiazolo[3,2-b][1,2,4]triazole-6(5H)-one derivatives as potent analgesic and anti-inflammatory agents. Med. Chem. Res., 2014, 23, 948-957.
[http://dx.doi.org/10.1007/s00044-013-0697-y]
[293]
Lobo, P.L.; Poojary, B.; Manjunatha, K.; Kumari, N.S. Synthesis and antimicrobial evaluation of some new 2-(6-oxo-5,6-dihydro[1,3]thiazolo[3,2-b]-2-aryloxymethyl-1,2,4-triazol-5-yl)-N-arylacetamides. Z. Naturforsch. B: Chem. Sci., 2010, 65, 617-624.
[http://dx.doi.org/10.1515/znb-2010-0512]
[294]
Korol, N.I.; Slivka, M.V. Recent progress in the synthesis of thiazolo[3,2-b][1,2,4]triazoles (microreview). Chem. Heterocycl. Compd., 2017, 53, 852-854.
[http://dx.doi.org/10.1007/s10593-017-2136-3]
[295]
Zhu, J.; Chen, Y.; Lin, F.; Wang, B.; Huang, Q.; Liu, L. Highly regioselective arylation of 1,2,3-triazole N-oxides with sodium arenesulfinates via palladium-catalyzed desulfitative cross-coupling reaction. Synlett, 2015, 26, 1124-1130.
[http://dx.doi.org/10.1055/s-0034-1380186]
[296]
Godovikova, T.I.; Ignat’eva, E.L.; Khmel’nitskii, L.I. Synthesis and properties of 1,2,3-triazole 1-oxides. Chem. Heterocycl. Compd., 1989, 25, 113-121.
[http://dx.doi.org/10.1007/BF00479900]
[297]
González-Mojica, N.; Almazán-Sánchez, L.; García-Torres, J.G.; Santana-Martinez, I.; Martínez-Otero, D.; Sánchez-Carmona, M.A.; Cuevas-Yañez, E. Oxidation of 1,4-disubstituted-1,2,3-triazoles with H2O2-CF3CO2H: Efficient synthesis of 1,2,3-triazole 3-oxides. Synth. Commun., 2019, 49, 679-687.
[http://dx.doi.org/10.1080/00397911.2019.1566473]
[298]
Liu, W.; Li, Y.; Wang, Y.; Kuang, C. Site-selective direct arylation of 1,2,3-triazole N-oxides. Eur. J. Org. Chem., 2013, 5272-5275.
[http://dx.doi.org/10.1002/ejoc.201300747]
[299]
Liu, W.; Li, Y.; Xu, B.; Kuang, C. Palladium-catalyzed olefination and arylation of 2-substituted 1,2,3-triazole N-oxides. Org. Lett., 2013, 15, 2342-2345.
[http://dx.doi.org/10.1021/ol401002w] [PMID: 23621845]
[300]
Wang, C.; Jia, H.; Li, Z.; Zhang, H.; Zhao, B. Palladium-catalyzed C-3 desulfitative arylation of indolizines with sodium arylsulfinates and arylsulfonyl hydrazides. RSC Advances, 2016, 6, 21814-21821.
[http://dx.doi.org/10.1039/C5RA25504J]
[301]
Tang, X.; Yang, K.; Zeng, L.; Liu, Q.; Chen, H. Pd-catalyzed desulfitative arylation for the synthesis of 2,5-diarylated oxazole-4-carboxylates using dioxygen as the terminal oxidant. Org. Biomol. Chem., 2017, 15, 8504-8507.
[http://dx.doi.org/10.1039/C7OB01912B] [PMID: 28975186]
[302]
Yeh, V.S.C. Recent advances in the total syntheses of oxazole-containing natural products. Tetrahedron, 2004, 60, 11995-12042.
[http://dx.doi.org/10.1016/j.tet.2004.10.001]
[303]
Moriya, T.; Takabe, S.; Maeda, S.; Matsumoto, K.; Takashima, K.; Mori, T.; Takeyama, S. Synthesis and hypolipidemic activities of 5-thienyl-4-oxazoleacetic acid derivatives. J. Med. Chem., 1986, 29, 333-341.
[http://dx.doi.org/10.1021/jm00153a006] [PMID: 3950914]
[304]
Verrier, C.; Fiol-Petit, C.; Hoarau, C.; Marsais, F. DPO and POPOP carboxylate-analog sensors by sequential palladium-catalysed direct arylation of oxazole-4-carboxylates. Org. Biomol. Chem., 2011, 9, 6215-6218.
[http://dx.doi.org/10.1039/c1ob05261f] [PMID: 21796283]
[305]
McCairn, M.C.; Culliford, S.J.; Kozlowski, R.Z.; Sutherland, A.J. Synthesis, evaluation and incorporation into liposomes of 4-functionalised-2,5-diphenyloxazole derivatives for application in scintillation proximity assays. Tetrahedron Lett., 2004, 45, 2163-2166.
[http://dx.doi.org/10.1016/j.tetlet.2004.01.034]
[306]
Hamerton, I.; Hay, J.N.; Jones, J.R.; Lu, S-Y. Covalent incorporation of 2,5-diphenyloxazole in sol-gel matrices and their application in radioanalytical chemistry. Chem. Mater., 2000, 12, 568-572.
[http://dx.doi.org/10.1021/cm991157x]
[307]
Friedman, L.; Litle, R.L.; Reichle, W.R. p-Toluenesulfonylhydrazide. In: Organic Syntheses; Wiley, , 1973. Coll. 5, p. 1055.
[308]
Myers, A.G.; Zheng, B.; Movassaghi, M. Preparation of the reagent o-nitrobenzenesulfonylhydrazide. J. Org. Chem., 1997, 62, 7507.
[http://dx.doi.org/10.1021/jo9710137] [PMID: 11671877]
[309]
Zhao, S.; Chen, K.; Zhang, L.; Yang, W.; Huang, D. Sulfonyl hydrazides in organic synthesis: A review of recent studies. Adv. Synth. Catal., 2020, 362, 3516-3541.
[http://dx.doi.org/10.1002/adsc.202000466]
[310]
Yu, X.; Li, X.; Wan, B. Palladium-catalyzed desulfitative arylation of azoles with arylsulfonyl hydrazides. Org. Biomol. Chem., 2012, 10, 7479-7482.
[http://dx.doi.org/10.1039/c2ob26270c] [PMID: 22892562]
[311]
Bedford, R.B.; Blake, M.E.; Butts, C.P.; Holder, D. The Suzuki coupling of aryl chlorides in TBAB-water mixtures. Chem. Commun. (Camb.), 2003, 466-467.
[http://dx.doi.org/10.1039/b211329e] [PMID: 12638952]
[312]
Gong, X.; Song, G.; Zhang, H.; Li, X. Palladium-catalyzed oxidative cross-coupling between pyridine N-oxides and indoles. Org. Lett., 2011, 13, 1766-1769.
[http://dx.doi.org/10.1021/ol200306y] [PMID: 21388218]
[313]
Yuen, O.Y.; So, C.M.; Wong, W.T.; Kwong, F.Y. Direct oxidative C-H arylation of benzoxazoles with arylsulfonyl hydrazides promoted by palladium complexes. Synlett, 2012, 23, 2714-2718.
[http://dx.doi.org/10.1055/s-0032-1317350]
[314]
Liu, C.; Ding, L.; Guo, G.; Liu, W.; Yang, F-L. Palladium-catalyzed direct arylation of indoles with arylsulfonyl hydrazides. Org. Biomol. Chem., 2016, 14, 2824-2827.
[http://dx.doi.org/10.1039/C5OB02569A] [PMID: 26870920]
[315]
Yang, J.; Zong, L.L.; Zhu, X.T.; Zhu, X.Y.; Zhao, J.Y. Well‐defined (NHC)Pd(N-heterocyclic carboxylate)(OAc) complexes‐catalyzed direct C2‐arylation of free (NH)‐indoles with arylsulfonyl hydrazides. Appl. Organomet. Chem., 2020, 34e5985
[http://dx.doi.org/10.1002/aoc.5985]
[316]
Wang, K.; Wang, M. Direct arylation polymerization: A green, streamlining synthetic approach to π-conjugated polymers. Curr. Org. Chem., 2013, 17, 999-1012.
[http://dx.doi.org/10.2174/1385272811317090011]
[317]
Mercier, L.G.; Leclerc, M. Direct (hetero)arylation: A new tool for polymer chemists. Acc. Chem. Res., 2013, 46, 1597-1605.
[http://dx.doi.org/10.1021/ar3003305] [PMID: 23544354]
[318]
Leclerc, M.; Brassard, S.; Beaupré, S. Direct (hetero)arylation polymerization: Toward defect-free conjugated polymers. Polym. J., 2020, 52, 13-20.
[http://dx.doi.org/10.1038/s41428-019-0245-9]
[319]
Bakhmutov, V.I.; Berry, J.F.; Cotton, F.A.; Ibragimov, S.; Murillo, C.A. Non-trivial behavior of palladium(II) acetate. Dalton Trans., 2005, 1989-1992.
[http://dx.doi.org/10.1039/b502122g] [PMID: 15909048]
[320]
Stolyarov, I.P.; Demina, L.I.; Cherkashina, N.V. Preparative synthesis of palladium(II) acetate: Reactions, intermediates, and by-products. Russ. J. Inorg. Chem., 2011, 56, 1532-1537.
[http://dx.doi.org/10.1134/S003602361110024X]
[321]
Storr, T.E.; Baumann, C.G.; Thatcher, R.J.; De Ornellas, S.; Whitwood, A.C.; Fairlamb, I.J.S. Pd(0)/Cu(I)-mediated direct arylation of 2¢-deoxyadenosines: Mechanistic role of Cu(I) and reactivity comparisons with related purine nucleosides. J. Org. Chem., 2009, 74, 5810-5821.
[http://dx.doi.org/10.1021/jo9012282] [PMID: 19630437]
[322]
Bajwa, S.E.; Storr, T.E.; Hatcher, L.E.; Williams, T.J.; Baumann, C.G.; Whitwood, A.C.; Allan, D.R.; Teat, S.J.; Raithby, P.R.; Fairlamb, I.J.S. On the appearance of nitrite anion in [PdX(OAc)L2] and [Pd(X)(C^N)L] syntheses (X=OAc or NO2): Photocrystallographic identification of metastable Pd(η1-ONO)(C^N)PPh3. Chem. Sci. (Camb.), 2012, 3, 1656-1661.
[http://dx.doi.org/10.1039/c2sc01050j]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy