Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Scientific and Technological Prospecting of 1H-1,2,3-Triazoles

Author(s): Rodrigo Ribeiro Alves Caiana, Cosme Silva Santos, Ronaldo Nascimento de Oliveira* and Juliano Carlo Rufino Freitas*

Volume 26, Issue 3, 2022

Published on: 15 February, 2022

Page: [275 - 286] Pages: 12

DOI: 10.2174/1385272826666220126153429

Price: $65

conference banner
Abstract

The use of 1H-1,2,3-triazoles has become an important scaffold for applications in different technological sectors. Therefore, we sought to carry out technological monitoring to understand the international scenario involving 1H-1,2,3-triazoles from the patents filed, in addition to evaluating the relationship between the growth in the number of patents and the improvement of strategies for obtaining these compounds via a metal-catalyzed azide-alkyne cycloaddition reaction. Technological monitoring was performed with the support of the PatentInspiration ® platform, using the keywords "1,2,3-triazol", "1,2,3-triazole", and "1,2,3- triazolyl". A total of 960 registered patents were found, most for the years 2014 and 2019. The main filers were prestigious multinational companies, such as Syngenta, Merck, Sandoz, Pfizer, and Bayer. The United States, China, Japan, and Germany lead patent registrations, mainly addressing innovations in chemistry and metallurgy, human needs, and new technologies. These results help to understand the state of innovation for this topic, pointing out the characteristics of the main discoveries concerning 1H-1,2,3-triazole derivatives.

Keywords: Heterocycles, 1, 2, 3-triazole, cycloaddition, click chemistry, intellectual property, patents, innovation.

Graphical Abstract

[1]
Lamberth, C.; Jurgen Dinges, J. The Significance of Heterocycles for Pharmaceuticals and Agrochemicals. Bioactive Heterocyclic Compound Classes: Agrochemicals; Lamberth, C; Dinges, J., Ed.; Wiley-VCH: Weinheim, 2012, pp. 1-20.
[http://dx.doi.org/10.1002/9783527664412.ch1]
[2]
Sabir, S.; Alhazza, M.I.; Ibrahim, A.A. A review on heterocyclic moieties and their applications. Catal. Sustain. Energy, 2016, 2, 99-115.
[http://dx.doi.org/10.1515/cse-2015-0009]
[3]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[4]
Jain, A.; Piplani, P. Exploring the chemistry and therapeutic potential of triazoles: A comprehensive literature review. Mini Rev. Med. Chem., 2019, 19(16), 1298-1368.
[http://dx.doi.org/10.2174/1389557519666190312162601] [PMID: 30864516]
[5]
Asif, M. Biological potentials of biological active triazole derivatives: A short review. Organic Chem. Curr. Res, 2016, 5, 2-8.
[http://dx.doi.org/10.4172/2161-0401.1000173]
[6]
Melo, J.O.F.; Donnici, C.L.; Augusti, R.; Ferreira, V.F.; de Souza, M.C.B.V.; Ferreira, M.L.G.; Cunha, A.C. 1,2,3-triazolic heterocycles: History, preparations, applications and pharmacological activities. Quim. Nova, 2006, 29, 569-579.
[http://dx.doi.org/10.1590/S0100-40422006000300028]
[7]
Brunel, D.; Dumur, F. Recent advances on organic dyes and fluorophores comprising a 1,2,3-Triazole moiety. New J. Chem., 2020, 44, 3546-3561.
[http://dx.doi.org/10.1039/C9NJ06330G]
[8]
Ma, Q.; Qi, S.; He, X.; Tang, Y.; Lu, G. 1,2,3-Triazole derivatives as corrosion inhibitors for mild steel in acidic medium: Experimental and computational chemistry studies. Corros. Sci., 2017, 129, 91-101.
[http://dx.doi.org/10.1016/j.corsci.2017.09.025]
[9]
Fan, W.Q.; Katritzky, A.R. Comprehensive heterocyclic chemistry. In: 1,2,3-triazoles; Katritzky, A.R.; Rees, C.W.; Scriven, E.F.V., Eds.; Elsevier Science: Oxford, UK, 1996, Vol. 4, pp. 1-126.
[10]
Rodrigues, L.D.; Sunil, D.; Chaithra, D.; Bhagavath, P. 1,2,3/1,2,4-Triazole containing liquid crystalline materials: An up-to-date review of their synthetic design and mesomorphic behavior. J. Mol. Liq., 2020, 297111909
[http://dx.doi.org/10.1016/j.molliq.2019.111909]
[11]
Chen, Y.; Xianyu, Y.; Wu, J.; Yin, B.; Jiang, X. Click chemistry-mediated nanosensors for biochemical assays. Theranostics, 2016, 6(7), 969-985.
[http://dx.doi.org/10.7150/thno.14856] [PMID: 27217831]
[12]
Huo, J.; Hu, H.; Zhang, M.; Hu, X.; Chen, M.; Chen, D.; Liu, J.; Xiao, G.; Wang, Y.; Wen, Z. A mini review of the synthesis of poly-1,2,3-triazole-based functional materials. RSC Advances, 2017, 7, 2281-2287.
[http://dx.doi.org/10.1039/C6RA27012C]
[13]
Rodriguez, C.A.; Agudelo, M.; Zuluaga, A.F.; Vesga, O. In vivo pharmacodynamics of piperacillin/tazobactam: Implications for antimicrobial efficacy and resistance suppression with innovator and generic products. Int. J. Antimicrob. Agents, 2017, 49(2), 189-197.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.10.011] [PMID: 27988068]
[14]
Choi, H.G.; Jun, H.W.; Kim, D.D.; Sah, H.; Yoo, B.K.; Yong, C.S. Simultaneous determination of cefatrizine and clavulanic acid in dog plasma by HPLC. J. Pharm. Biomed. Anal., 2004, 35(1), 221-231.
[http://dx.doi.org/10.1016/j.jpba.2004.01.010] [PMID: 15030898]
[15]
Kothare, S.; Kluger, G.; Sachdeo, R.; Williams, B.; Olhaye, O.; Perdomo, C.; Bibbiani, F. Dosing considerations for rufinamide in patients with Lennox–Gastaut syndrome: Phase III trial results and real-world clinical data. Seizure, 2017, 47, 25-33.
[http://dx.doi.org/10.1016/j.seizure.2017.02.008] [PMID: 28284045]
[16]
Taylor, M.H.; Sandler, A.; Urba, W.J.; Omuro, A.M.P.; Gorman, G.S.; Karmali, R.A. Effect of Carboxyamidotriazole Orotate, a modulator of calcium-dependent signaling pathways, on advanced solid tumors. J. Cancer Ther., 2015, 6, 322-333.
[http://dx.doi.org/10.4236/jct.2015.64035]
[17]
Michalska, K.; Gruba, E.; Bocian, W.; Cielecka-Piontek, J. Enantioselective recognition of radezolid by cyclodextrin modified capillary electrokinetic chromatography and electronic circular dichroism. J. Pharm. Biomed. Anal., 2017, 139, 98-108.
[http://dx.doi.org/10.1016/j.jpba.2017.01.041] [PMID: 28279932]
[18]
Prasad, C.V.; Nayak, V.L.; Ramakrishna, S.; Mallavadhani, U.V. Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies. Chem. Biol. Drug Des., 2018, 91(1), 220-233.
[http://dx.doi.org/10.1111/cbdd.13073] [PMID: 28734085]
[19]
Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[20]
Elkanzi, N.A.A.; El-Sofany, W.I.; Gaballah, S.T.; Mohamed, A.M.; Kutkat, O.; El-Sayed, W.A. Synthesis, molecular modeling, and antiviral activity of novel triazole nucleosides and their analogs. Russ. J. Gen. Chem., 2019, 89, 1896-1904.
[http://dx.doi.org/10.1134/S1070363219090263]
[21]
Wang, T.; Ueda, Y.; Zhang, Z.; Yin, Z.; Matiskella, J.; Pearce, B.C.; Yang, Z.; Zheng, M.; Parker, D.D.; Yamanaka, G.A.; Gong, Y.F.; Ho, H.T.; Colonno, R.J.; Langley, D.R.; Lin, P.F.; Meanwell, N.A.; Kadow, J.F. Discovery of the human immunodeficiency virus type 1 (HIV-1) attachment inhibitor temsavir and its phosphonooxymethyl prodrug fostemsavir. J. Med. Chem., 2018, 61(14), 6308-6327.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00759] [PMID: 29920093]
[22]
Yang, J.J.; Yu, W.W.; Hu, L.L.; Liu, W.J.; Lin, X.H.; Wang, W.; Zhang, Q.; Wang, P.L.; Tang, S.W.; Wang, X.; Liu, M.; Lu, W.; Zhang, H.K. Discovery and characterization of 1H-1,2,3-Triazole derivatives as novel Prostanoid EP4 receptor antagonists for cancer immunotherapy. J. Med. Chem., 2020, 63(2), 569-590.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01269] [PMID: 31855426]
[23]
Meinel, R.S.; Almeida, A.D.C.; Stroppa, P.H.F.; Glanzmann, N.; Coimbra, E.S.; da Silva, A.D. Novel functionalized 1,2,3-triazole derivatives exhibit antileishmanial activity, increase in total and mitochondrial-ROS and depolarization of mitochondrial membrane potential of Leishmania amazonensis. Chem. Biol. Interact., 2020, 315, 108850-108856.
[http://dx.doi.org/10.1016/j.cbi.2019.108850] [PMID: 31634447]
[24]
Batra, N.; Rajendran, V.; Agarwal, D.; Wadi, I.; Ghosh, P.C.; Gupta, R.D.; Nath, M. Synthesis and antimalarial evaluation of [1, 2,3]-Triazole-Tethered Sulfonamide-Berberine Hybrids. ChemistrySelect, 2018, 3, 9790-9793.
[http://dx.doi.org/10.1002/slct.201801905]
[25]
Melo de Oliveira, V.N.; Flávia do Amaral Moura, C.; Peixoto, A.D.S.; Gonçalves Ferreira, V.P.; Araújo, H.M.; Lapa Montenegro Pimentel, L.M.; Pessoa, C.D.Ó.; Nicolete, R.; Versiani Dos Anjos, J.; Sharma, P.P.; Rathi, B.; Pena, L.J.; Rollin, P.; Tatibouët, A.; Nascimento de Oliveira, R. Synthesis of alkynylated 1,2,4-oxadiazole/1,2,3-1H-triazole glycoconjugates: Discovering new compounds for use in chemotherapy against lung carcinoma and Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 220113472
[http://dx.doi.org/10.1016/j.ejmech.2021.113472] [PMID: 33940463]
[26]
Cunha Lima, J.A.D.; DE Farias Silva, J.; Santos, C.S.; Caiana, R.R.A.; DE Moraes, M.M.; DA Câmara, C.A.G.; Freitas, J.C.R. Synthesis of new 1,4-disubstituted 1,2,3-triazoles using the CuAAC reaction and determination of their antioxidant activities. An. Acad. Bras. Cienc., 2021, 93(3), e20201672-e20201681.
[http://dx.doi.org/10.1590/0001-3765202120201672] [PMID: 34231760]
[27]
Assis, S.P.O.; Silva, M.T.D.; Silva, F.T.D.; Sant’Anna, M.P.; Tenório, C.M.B.A.; Santos, C.F.B.D.; Fonseca, C.S.M.D.; Seabra, G.; Lima, V.L.M.; Oliveira, R.N. Design and synthesis of Triazole-Phthalimide hybrids with anti-inflammatory activity. Chem. Pharm. Bull. (Tokyo), 2019, 67(2), 96-105.
[http://dx.doi.org/10.1248/cpb.c18-00607] [PMID: 30713279]
[28]
Porter, A.L. Technology futures analysis: Towards integration of the field and new methods. Technol. Forecast. Soc. Change, 2004, 71, 287-303.
[http://dx.doi.org/10.1016/j.techfore.2003.11.004]
[29]
Speziali, M.G.; Sinisterra, R.D. Technological information searching based on Patent Databank: Case study of ionic liquids in Brazil. Quim. Nova, 2015, 38, 1132-1138.
[http://dx.doi.org/10.5935/0100-4042.20150126]
[30]
Paranhos, R.C.S.; Ribeiro, N.M. The importance of patent-based technological prospects and their search objectives. Cadernos de Prospecção, 2018, 11, 1274-1292.
[http://dx.doi.org/10.9771/cp.v12i5.28190]
[31]
Meldal, M.; Diness, F. Recent fascinating aspects of the CuAAC click reaction. Trends Chem., 2020, 2, 569-584.
[http://dx.doi.org/10.1016/j.trechm.2020.03.007]
[32]
Michael, A. Ueber die Einwirkung von Diazobenzolimid auf Acetylendicarbonsäuremethylester. Adv. Synth. Catal., 1893, 48, 94-95.
[33]
Huisgen, R. Kinetics and mechanism of 1,3‐Dipolar Cycloadditions. Angew. Chem. Int. Ed. Engl., 1963, 2, 633-645.
[http://dx.doi.org/10.1002/anie.196306331]
[34]
Huisgen, R. 1,3‐Dipolar Cycloadditions. Past and future. Angew. Chem. Int. Ed. Engl., 1963, 2, 565-598.
[http://dx.doi.org/10.1002/anie.196305651]
[35]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(I) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[36]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[37]
Wolwski, W.L. 1,3-Dipolar Cycloaddition Reaction, 1st ed; John Wiley & Sons: New York, 1984.
[38]
Huisgen, R. 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984.
[39]
Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A Stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed., 2002, 41, 2596-2599.
[http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2596:AID-ANIE2596>3.0.CO;2-4]
[40]
Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem., 2002, 67(9), 3057-3064.
[http://dx.doi.org/10.1021/jo011148j] [PMID: 11975567]
[41]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[42]
Freitas, L.B.O.; Ruela, F.A.; Pereira, G.R.; Alves, R.B.; Freitas, R.P. The “click” reaction in the synthesis of 1,2,3-triazoles: Chemical aspects and applications. Quim. Nova, 2011, 34, 1791-1804.
[http://dx.doi.org/10.1590/S0100-40422011001000012]
[43]
Santos, C.S.; Oliveira, R.N.; Oliveira, R.J.; Freitas, J.C.R. 1,2,3-Triazoles: General, key synthetic strategies. ARKIVOC, 2020, 2020, 219-271.
[http://dx.doi.org/10.24820/ark.5550190.p011.293]
[44]
McNulty, J.; Keskar, K. Discovery of a robust and efficient homogeneous Silver(I) catalyst for the cycloaddition of azides onto terminal alkynes. Eur. J. Org. Chem., 2012, 0, 5462-5470.
[http://dx.doi.org/10.1002/ejoc.201200930]
[45]
Bebensee, F.; Bombis, C.; Vadapoo, S.R.; Cramer, J.R.; Besenbacher, F.; Gothelf, K.V.; Linderoth, T.R. On-surface azide-alkyne cycloaddition on Cu(111): Does it “click” in ultrahigh vacuum? J. Am. Chem. Soc., 2013, 135(6), 2136-2139.
[http://dx.doi.org/10.1021/ja312303a] [PMID: 23360358]
[46]
Rasolofonjatovo, E.; Theeramunkong, S.; Bouriaud, A.; Kolodych, S.; Chaumontet, M.; Taran, F. Iridium-catalyzed cycloaddition of azides and 1-bromoalkynes at room temperature. Org. Lett., 2013, 15(18), 4698-4701.
[http://dx.doi.org/10.1021/ol402008u] [PMID: 24011015]
[47]
Rao, H.S.P.; Chakibanda, G. Raney Ni catalyzed azide-alkyne cycloaddition reaction. RSC Advances, 2014, 4, 46040-46048.
[http://dx.doi.org/10.1039/C4RA07057G]
[48]
Meng, X.; Xu, X.; Gao, T.; Chen, B. Zn/C‐Catalyzed cycloaddition of azides and aryl alkynes. Eur. J. Org. Chem., 2010, 0, 5409-5414.
[http://dx.doi.org/10.1002/ejoc.201000610]
[49]
Hong, L.; Lin, W.; Zhang, F.; Liu, R.; Zhou, X. Ln[N(SiMe3)2]3-catalyzed cycloaddition of terminal alkynes to azides leading to 1,5-disubstituted 1,2,3-triazoles: New mechanistic features. Chem. Commun. (Camb.), 2013, 49(49), 5589-5591.
[http://dx.doi.org/10.1039/c3cc42534g] [PMID: 23676902]
[50]
Sasikala, R.; Rani, S.K.; Easwaramoorthy, D.; Karthikeyan, K. Lanthanum loaded CuO nanoparticles: Synthesis and characterization of a recyclable catalyst for the synthesis of 1,4-disubstituted 1,2,3-triazoles and propargylamines. RSC Advances, 2015, 5, 56507-56517.
[http://dx.doi.org/10.1039/C5RA05468K]
[51]
Zhang, L.; Chen, X.; Xue, P.; Sun, H.H.Y.; Williams, I.D.; Sharpless, K.B.; Fokin, V.V.; Jia, G. Ruthenium-catalyzed cycloaddition of alkynes and organic azides. J. Am. Chem. Soc., 2005, 127(46), 15998-15999.
[http://dx.doi.org/10.1021/ja054114s] [PMID: 16287266]
[52]
Clark, P.R.; Williams, G.D.; Hayes, J.F.; Tomkinson, N.C.O. A scalable Metal-, Azide-, and Halogen-Free method for the preparation of Triazoles. Angew. Chem. Int. Ed. Engl., 2020, 59(17), 6740-6744.
[http://dx.doi.org/10.1002/anie.201915944] [PMID: 31943599]
[53]
Agard, N.J.; Prescher, J.A.; Bertozzi, C.R.A. A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc., 2004, 126(46), 15046-15047.
[http://dx.doi.org/10.1021/ja044996f] [PMID: 15547999]
[54]
Dommerholt, J.; Rutjes, F.P.J.T.; van Delft, F.L. Strain-promoted 1,3-dipolar cycloaddition of cycloalkynes and organic azides. Top. Curr. Chem. (Cham), 2016, 374(2), 16.
[http://dx.doi.org/10.1007/s41061-016-0016-4] [PMID: 27573141]
[55]
Li, Z.; Seo, T.S.; Ju, J. 1,3-Dipolar cycloaddition of azides with electron-deficient alkynes under mild condition in water. Tetrahedron Lett., 2004, 45, 3143-3146.
[http://dx.doi.org/10.1016/j.tetlet.2004.02.089]
[56]
Adronov, A.; Chadwick, R.; van Gyzen, S.; Liogier, S. Scalable synthesis of strained Cyclooctyne Derivatives. Synthesis, 2014, 46, 669-677.
[http://dx.doi.org/10.1055/s-0033-1340509]
[57]
Anderton, G.I.; Bangerter, A.S.; Davis, T.C.; Feng, Z.; Furtak, A.J.; Larsen, J.O.; Scroggin, T.L.; Heemstra, J.M. Accelerating strain-promoted Azide-Alkyne Cycloaddition using micellar catalysis. Bioconjug. Chem., 2015, 26(8), 1687-1691.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00274] [PMID: 26056848]
[58]
Ramachary, D.B.; Ramakumar, K.; Narayana, V.V. Amino acid-catalyzed cascade [3+2]-cycloaddition/hydrolysis reactions based on the push-pull dienamine platform: Synthesis of highly functionalized NH-1,2,3-triazoles. Chemistry, 2008, 14(30), 9143-9147.
[http://dx.doi.org/10.1002/chem.200801325] [PMID: 18767077]
[59]
Jalani, H.B.; Karagöz, A.Ç.; Tsogoeva, S.B. Synthesis of substituted 1,2,3 Triazoles via metal-free click cycloaddition reactions and alternative cyclization methods. Synthesis, 2017, 49, 29-41.
[60]
Shaikh, M.H.; Subhedar, D.D.; Danne, A.B.; Mane, R.A.; Shingare, M.S.; Sathe, B.R.; Shingate, B.B. Synthetic strategies for 1,2,3-Triazole based bioactive compounds. Organic Chem. Curr. Res., 2015, 4, 1-2.
[61]
Ferreira, S.B.; Sodero, A.C.R.; Cardoso, M.F.C.; Lima, E.S.; Kaiser, C.R.; Silva, F.P., Jr; Ferreira, V.F. Synthesis, biological activity, and molecular modeling studies of 1H-1,2,3-triazole derivatives of carbohydrates as α-glucosidases inhibitors. J. Med. Chem., 2010, 53(6), 2364-2375.
[http://dx.doi.org/10.1021/jm901265h] [PMID: 20170190]
[62]
Whiting, M.; Muldoon, J.; Lin, Y.C.; Silverman, S.M.; Lindstrom, W.; Olson, A.J.; Kolb, H.C.; Finn, M.G.; Sharpless, K.B.; Elder, J.H.; Fokin, V.V. Inhibitors of HIV-1 protease by using in situ click chemistry. Angew. Chem. Int. Ed., 2006, 45(9), 1435-1439.
[http://dx.doi.org/10.1002/anie.200502161] [PMID: 16425339]
[63]
Song, Z.; Mansbach, R.A.; He, H.; Shih, K.C.; Baumgartner, R.; Zheng, N.; Ba, X.; Huang, Y.; Mani, D.; Liu, Y.; Lin, Y.; Nieh, M.P.; Ferguson, A.L.; Yin, L.; Cheng, J. Modulation of polypeptide conformation through donor-acceptor transformation of side-chain hydrogen bonding ligands. Nat. Commun., 2017, 8(1), 92.
[http://dx.doi.org/10.1038/s41467-017-00079-5] [PMID: 28733648]
[64]
Lauria, A.; Delisi, R.; Mingoia, F.; Terenzi, A.; Martorana, A.; Barone, G.; Almerico, A.M. 1,2,3-Triazole in heterocyclic compounds, endowed with biological activity, through 1,3-Dipolar Cycloadditions. Eur. J. Org. Chem., 2014, 16, 3289-3306.
[http://dx.doi.org/10.1002/ejoc.201301695]
[65]
Bonandi, E.; Christodoulou, M.S.; Fumagalli, G.; Perdicchia, D.; Rastelli, G.; Passarella, D. The 1,2,3-triazole ring as a bioisostere in medicinal chemistry. Drug Discov. Today, 2017, 22(10), 1572-1581.
[http://dx.doi.org/10.1016/j.drudis.2017.05.014] [PMID: 28676407]
[66]
Rang, H.P.; Ritter, J.M.; Flower, R.J.; Henderson, G. Farmacologia, 8th ed.; Elsevier: Rio de Janeiro, 2016.
[67]
Fiocruz. The foundation. Available from: https://portal.fiocruz.br/fundacao (Accessed on: February 18, 2021).
[68]
Pereira, F.C.; Costa, H.G.; Pereira, V. Patent filings versus articles published: A review of the literature in the context of Multicrea Decision Aid. World Pat. Inf., 2017, 50, 17-26.
[http://dx.doi.org/10.1016/j.wpi.2017.07.003]
[69]
Cornell University. The global innovation index 2020: Who will finance innovation? Ithaca, Fontainebleau, and Geneva. 2020. Available from: https://globalinnovationindex.org/gii-2020-report(Accessed on: February 18, 2021).
[70]
Varala, R.; Bollikolla, H.B.; Kurmarayuni, C.M. Synthesis of pharmacological relevant 1,2,3-triazole and its analogues - A review. Curr. Org. Synth., 2021, 18(2), 101-124.
[http://dx.doi.org/10.2174/1570179417666200914142229] [PMID: 32928090]
[71]
Wang, X.; Zhang, X.; Ding, S. 1,2,3-Triazole-based sequence-defined oligomers and polymers. Polym. Chem., 2021, 12, 2668-2688.
[http://dx.doi.org/10.1039/D1PY00123J]
[72]
Jacob, J.T. Corrosion inhibition. Patent GB1475049A, 1975.
[73]
Chen, S.T.; Fitzsimmons, J.A.; Rath, D.L.; Sankarapandian, M.; van der Straten, O. Titanium-Nitride removal. Patent US2014312265A1, 2014.
[74]
Huaiqing, Z.; Xiufen, L.; Ningxin, G.; Xi, Z. Method for synthesizing 1,2,3-triazole compound. Patent CN110015999A 2019.
[75]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[76]
Yanbing, Z.; Saiyang, Z.; Dongjun, F. 1,2,3-triazole tubulin polymerization inhibitor and synthesis method and application thereof. Patent CN109456312A, 2019.
[77]
Basf, A.G. Ludwig-Maximilians-Universität München. Un kit de reactivo para detectar un analito en una muestra. Patent AR085619A2, 2013.
[78]
Iparraguirre, J.M.A.; Aristizabal, G.A.; Celma, P.F.; Epelde, A.I.; Arregi, A.J.L.M.; Murua, J.I.M.; Toral-Ojedo, I.; Vallejo Illarramendi, A. Triazoles for regulating intracellular calcium homeostasis. Patent EP3466933B1,, 2016.
[79]
Hiroki, H.; Kobayashi, Y.; Suzuki, J.; Onoue, S.; Iwasaki, K.; Ootaka, A.; Doi, H.; Matsuo, E.; Onoue, M.; Okimoto, A. 1,2,3-triazole derivative and insecticide and acaricide containing said derivative as active ingredient. Patent US2019322630A1, 2019.
[80]
Russowsky, D.; Mass, E.B.; D’oca, M.G.M. Compostos híbridos de chalconas e dihidropirimidinonas, composição compreendendo os compostos, processo de produção e uso dos mesmos. Patent BR102018073352A2c,, 2018.
[81]
Geigy, J.R. Manufacture of phthalocyanine pigments and their use. Patent GB791359A, 1955.
[82]
The Procter & Gamble Company. Detergent, bleaching and whitening composition. Patent GB1045977A, 1966.
[83]
Bristol Myers, C.O. Antibiotic cephalosporin derivs - prepd by treatment of cephalosporin with 5-mercapto-1,2,3-triazole. Patent FR2294179A1 1976.
[84]
Sandoz, A.G. Triazoles, and their use against insect pests. Patent ES8307765A1,, 1983.
[85]
Donald, H.; Lawrence, A.; Nancy, B.; Barbara, A.A. 5-amino or substituted amino 1,2,3-triazoles useful as antiproliferative agents. Patent CA1325977C, 1994.
[86]
Yuki, M.; Hidetoshi, K. Silver halide photographic light-sensitive material, developer, and image-forming process. Patent US5508154A,, 1996.
[87]
Xu, Z.; Zhao, S.J.; Liu, Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur. J. Med. Chem., 2019, 183, 111700-111736.
[http://dx.doi.org/10.1016/j.ejmech.2019.111700] [PMID: 31546197]
[88]
Lal, K.; Yadav, P. Recent advancements in 1,4-disubstituted 1H-1,2,3-triazoles as potential anticancer agents. Anticancer. Agents Med. Chem., 2018, 18(1), 21-37.
[http://dx.doi.org/10.2174/1871520616666160811113531] [PMID: 27528183]
[89]
Gao, Q.Z.; Huang, Z.; Shi, Y.L. Application of saccharide coupled-1,2,3- triazole substituted polycyclic aromatic hydrocarbon derivative in preparation of anti-cancer drug. Tianjin University Patent CN107652338A, 2017.
[90]
Wang, Y.; Zhang, H.; Zheng, Y.; Zhu, Q. Preparation and anti-tumor application of 7-N3-brefeldin A and 1,2,3-triazole derivative thereof. Zhejiang University of Technology. Patent CN104592208A , 2014.
[91]
Mahavorasirikul, W.; Viyanant, V.; Chaijaroenkul, W.; Itharat, A.; Na-Bangchang, K. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro. BMC Complement. Altern. Med., 2010, 10, 55.
[http://dx.doi.org/10.1186/1472-6882-10-55] [PMID: 20920194]
[92]
Prayong, P.; Barusrux, S.; Weerapreeyakul, N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia, 2008, 79(7-8), 598-601.
[http://dx.doi.org/10.1016/j.fitote.2008.06.007] [PMID: 18664377]
[93]
Ashweek, N.J.; Moorjani, M.; Slee, D.; Williams, J.P. Substituted triazoles and methods relating thereto. Patent AU2016211292A1, 2016.
[94]
Hou, D.R.; Hung, M.S.; Liao, C.C.; Lin, C.C. 1,2,3-triazole derivatives as new cannabinoid-1 receptor antagonists. National Tsing Hua University. Patent TW201021797A, 2008.
[95]
Le Foll, B.; Goldberg, S.R. Cannabinoid CB1 receptor antagonists as promising new medications for drug dependence. J. Pharmacol. Exp. Ther., 2005, 312(3), 875-883.
[http://dx.doi.org/10.1124/jpet.104.077974] [PMID: 15525797]
[96]
Roser, P.; Vollenweider, F.X.; Kawohl, W. Potential antipsychotic properties of central cannabinoid (CB1) receptor antagonists. World J. Biol. Psychiatry, 2010, 11(2 Pt 2), 208-219.
[http://dx.doi.org/10.3109/15622970801908047] [PMID: 20218784]
[97]
Witkin, J.M.; Tzavara, E.T.; Davis, R.J.; Li, X.; Nomikos, G.G. A therapeutic role for cannabinoid CB1 receptor antagonists in major depressive disorders. Trends Pharmacol. Sci., 2005, 26(12), 609-617.
[http://dx.doi.org/10.1016/j.tips.2005.10.006] [PMID: 16260047]
[98]
Chen, J.; Dai, H.; Li, J.; Miao, H.; Qian, C.; Shi, L.; Wang, Y.; Zhang, H.; Zhang, Y.; Zhou, Y. Preparation and application of cyanoacrylate containing 1,2,3-triazole biphenyl. Nantong University. Patent CN111892546A 2020.
[99]
Dai, H.; Li, J.; Qian, C.; Shi, L.; Wang, K.; Wang, Z.; Xu, H.; Zhang, H.; Zhang, M.; Zhang, Y.; Zheng, D.; Zhou, B. Preparation method and application of 1,2,3-triazole benzyloxy pyrazole derivative containing 1,2,4- oxadiazole unit. Nantong University. Patent CN111560015A, 2020.
[100]
Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J., 2011, 6(10), 2696-2718.
[http://dx.doi.org/10.1002/asia.201100432] [PMID: 21954075]
[101]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[102]
Hou, Z.; An, R.; Zhang, K.; Xu, H.; Yang, D.; Su, X.; Hao, L.; Guo, C.; Guo, M. 1,2,3-triazole structure containing enol ether compounds as antifungal agent. Shenyang Pharmaceutical University. Patent CN108440506B , 2018.
[103]
Guo, Z.; Jiang, R.; Jiang, Y.; Li, W.; Liang, L.; Lv, X.; Shi, L.; Xu, G.; Zhang, W. Chrysin-1,2,3-triazole compound having antibacterial activity, and its preparation method. Henan Normal University. Patent CN103059006A , 2013.
[104]
Li, Y.; Liu, W.; Tan, C.; Tang, L.; Wang, Y.; Wang, Z.; Xu, W.; Zhao, G.; Zou, M. Glucoside containing 1,2,3-triazole structure, preparation method and application. Tianjin Institute of Pharmaceutical Research. Patent CN101508713A , 2009.
[105]
Gong, Y.; Jiang, C.; Meng, N.; Mou, X.; Zhang, H. Application of alkaloid compound having 1,2,3-triazole structural fragments to preparation of medicine for promoting angiogenesis. University Of Jinan. Patent CN110038012A, 2019.
[106]
Cai, L.; Gong, P.; Lu, K.; Wu, G.; Wu, Y.; Zhao, Y. Aryl formamide compound containing 1,2,3-triazole structure and application thereof. Shenyang Pharmaceutical University. Patent CN109336829A , 2017.
[107]
Antonovych, B.O. Hryhorovych, K.A.; Hryhorovych, K.Y.; Mykolaivna, O.V.; Ivanovych, P.O.; Volodymyrovych, P.V.; Serhiiovych, P.Y.; Andriiovych, S.A.; Oleksandrovyc, S. 1,2,3-triazole derivatives exhibiting analgesic activity. Zaporizhzhia State Medical University. Patent UA75996U , 2012.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy