Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Anticancer and Antimicrobial Evaluations on Alternative Reading Frame (ARF) Peptides and their Derivatives

Author(s): Yuxin Wang, Kamal Patel, Zimei Wu and Vijayalekshmi Sarojini*

Volume 29, Issue 3, 2022

Published on: 25 March, 2022

Page: [242 - 253] Pages: 12

DOI: 10.2174/0929866529666220131113531

Price: $65

Abstract

Background: Alternative reading frame (ARF) protein up-regulates the intracellular level of a tumour suppressor protein, p53, by blocking MDM2 mediated p53 ubiquitination. The two homologous forms of ARF proteins are p19ARF in mice and p14ARF in humans. In our study, p19ARF-derived peptide ARF (26-44) and its cell-penetrating peptide conjugate Tat-ARF (26-44), p14ARF-derived peptide ARF (1-22), and its NrLS conjugate ARF (1-22)-NrLS were designed, and their anticancer properties were investigated.

Objective: Our objective is to study the anticancer and antimicrobial properties of ARF-derived peptides and their cell-penetrating and NrLS conjugates.

Methods : Peptides synthesized using solid-phase peptide synthesis (SPPS) were purified using RPHPLC and characterized using Bruker MALDI-TOF mass spectrometry. Cytotoxicity was evaluated on HeLa and BE(2)-C cells by cell viability IC50 determination. Minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. Morphological studies were carried out using SEM and TEM techniques, live/dead staining, ROS and Hoest staining.

Results: Peptides Tat-ARF (1-22) and ARF (1-22)-NrLS exhibited potent cytotoxic effects, comparable to the known standard cisplatin. Cellular morphological studies showed signs of apoptosis which were confirmed by reactive oxygen species (ROS) generation and Hoechst nuclear staining. ARF peptides showed potent antimicrobial activities at low micromolar concentrations without haemolysis.

Conclusion : Tat modification improved the activity of ARF (26-44) by 9 folds against HeLa and 5 folds against BE(2)-C cells. NrLS modification of ARF (1-22) imparted 12 fold potency against HeLa and 2-fold potency against BE(2)-C cells. This study helps to further understand the effect of these peptides on MDM2 proteins and their role in the apoptosis signalling pathway.

Keywords: Alternative reading frame, anticancer, antimicrobial, IC50, scanning electron microscopy, human hepatocellular carcinoma cells.

Graphical Abstract

[1]
Ozenne, P.; Eymin, B.; Brambilla, E.; Gazzeri, S. The ARF tumor suppressor: Structure, functions and status in cancer. Int. J. Cancer, 2010, 127(10), 2239-2247.
[http://dx.doi.org/10.1002/ijc.25511] [PMID: 20549699]
[2]
Sherr, C.J.; McCormick, F. The RB and p53 pathways in cancer. Cancer Cell, 2002, 2(2), 103-112.
[http://dx.doi.org/10.1016/S1535-6108(02)00102-2] [PMID: 12204530]
[3]
Bertram, J.S. The molecular biology of cancer. Mol. Aspects Med., 2000, 21(6), 167-223.
[http://dx.doi.org/10.1016/S0098-2997(00)00007-8] [PMID: 11173079]
[4]
Moll, U.M.; Petrenko, O. The MDM2-p53 interaction. Mol. Cancer Res., 2003, 1(14), 1001-1008.
[PMID: 14707283]
[5]
Savchenko, A.; Yurchenko, M.; Snopok, B.; Kashuba, E. Study on the spatial architecture of p53, MDM2, and p14ARF containing complexes. Mol. Biotechnol., 2009, 41(3), 270-277.
[http://dx.doi.org/10.1007/s12033-008-9116-x] [PMID: 18989794]
[6]
Honda, R.; Tanaka, H.; Yasuda, H. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett., 1997, 420(1), 25-27.
[http://dx.doi.org/10.1016/S0014-5793(97)01480-4] [PMID: 9450543]
[7]
Saito, K.; Iioka, H.; Kojima, C.; Ogawa, M.; Kondo, E. Peptide-based tumor inhibitor encoding mitochondrial p14(ARF) is highly efficacious to diverse tumors. Cancer Sci., 2016, 107(9), 1290-1301.
[http://dx.doi.org/10.1111/cas.12991] [PMID: 27317619]
[8]
Weber, J.D.; Kuo, M.L.; Bothner, B.; DiGiammarino, E.L.; Kriwacki, R.W.; Roussel, M.F.; Sherr, C.J. Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex. Mol. Cell. Biol., 2000, 20(7), 2517-2528.
[http://dx.doi.org/10.1128/MCB.20.7.2517-2528.2000] [PMID: 10713175]
[9]
Midgley, C.A.; Desterro, J.M.; Saville, M.K.; Howard, S.; Sparks, A.; Hay, R.T.; Lane, D.P. An N-terminal p14ARF peptide blocks Mdm2-dependent ubiquitination in vitro and can activate p53 in vivo. Oncogene, 2000, 19(19), 2312-2323.
[http://dx.doi.org/10.1038/sj.onc.1203593] [PMID: 10822382]
[10]
Johansson, H.J.; El-Andaloussi, S.; Holm, T.; Mae, M.; Janes, J.; Maimets, T.; Langel, U. Characterization of a novel cytotoxic cell-penetrating peptide derived from p14ARF protein. Mol. Ther., 2008, 16(1), 115-123.
[http://dx.doi.org/10.1038/sj.mt.6300346]
[11]
Rizos, H.; Darmanian, A.P.; Mann, G.J.; Kefford, R.F. Two arginine rich domains in the p14ARF tumour suppressor mediate nucleolar localization. Oncogene, 2000, 19(26), 2978-2985.
[http://dx.doi.org/10.1038/sj.onc.1203629] [PMID: 10871849]
[12]
Kalinichenko, V.V.; Major, M.L.; Wang, X.; Petrovic, V.; Kuechle, J.; Yoder, H.M.; Dennewitz, M.B.; Shin, B.; Datta, A.; Raychaudhuri, P.; Costa, R.H. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor. Genes Dev., 2004, 18(7), 830-850.
[http://dx.doi.org/10.1101/gad.1200704] [PMID: 15082532]
[13]
Gusarova, G.A.; Wang, I.C.; Major, M.L.; Kalinichenko, V.V.; Ackerson, T.; Petrovic, V.; Costa, R.H. A cell-penetrating ARF peptide inhibitor of FoxM1 in mouse hepatocellular carcinoma treatment. J. Clin. Invest., 2007, 117(1), 99-111.
[http://dx.doi.org/10.1172/JCI27527] [PMID: 17173139]
[14]
Wender, P.A.; Mitchell, D.J.; Pattabiraman, K.; Pelkey, E.T.; Steinman, L.; Rothbard, J.B. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc. Natl. Acad. Sci. USA, 2000, 97(24), 13003-13008.
[http://dx.doi.org/10.1073/pnas.97.24.13003] [PMID: 11087855]
[15]
Wang, Z.; Choice, E.; Kaspar, A.; Hanson, D.; Okada, S.; Lyu, S.C.; Krensky, A.M.; Clayberger, C. Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin. J. Immunol., 2000, 165(3), 1486-1490.
[http://dx.doi.org/10.4049/jimmunol.165.3.1486] [PMID: 10903754]
[16]
Patel, K.D.; De Zoysa, G.H.; Kanamala, M.; Patel, K.; Pilkington, L.I.; Barker, D.; Reynisson, J.; Wu, Z.; Sarojini, V. Novel cell-penetrating peptide conjugated proteasome inhibitors: Anticancer and antifungal investigations. J. Med. Chem., 2020, 63(1), 334-348.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01694] [PMID: 31801019]
[17]
Dissanayake, S.; Denny, W.A.; Gamage, S.; Sarojini, V. Recent developments in anticancer drug delivery using cell penetrating and tumor targeting peptides. J. Control. Release, 2017, 250, 62-76.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.006] [PMID: 28167286]
[18]
Wiegand, I.; Hilpert, K.; Hancock, R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 2008, 3(2), 163-175.
[http://dx.doi.org/10.1038/nprot.2007.521] [PMID: 18274517]
[19]
Ziegler, A.; Nervi, P.; Dürrenberger, M.; Seelig, J. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: Optical, biophysical, and metabolic evidence. Biochemistry, 2005, 44(1), 138-148.
[http://dx.doi.org/10.1021/bi0491604] [PMID: 15628854]
[20]
van Wandelen, L.T.; van Ameijde, J.; Ismail-Ali, A.F.; van Ufford, H.C.; Vijftigschild, L.A.; Beekman, J.M.; Martin, N.I.; Ruijtenbeek, R.; Liskamp, R.M. Cell-penetrating bisubstrate-based protein kinase C inhibitors. ACS Chem. Biol., 2013, 8(7), 1479-1487.
[http://dx.doi.org/10.1021/cb300709g] [PMID: 23621550]
[21]
Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta, 2009, 1788(8), 1687-1692.
[http://dx.doi.org/10.1016/j.bbamem.2008.09.013] [PMID: 18952049]
[22]
van Rosmalen, M.; Krom, M.; Merkx, M. Tuning the flexibility of glycine-serine linkers to allow rational design of multidomain proteins. Biochemistry, 2017, 56(50), 6565-6574.
[http://dx.doi.org/10.1021/acs.biochem.7b00902] [PMID: 29168376]
[23]
Minagawa, Y.; Kigawa, J.; Itamochi, H.; Kanamori, Y.; Shimada, M.; Takahashi, M.; Terakawa, N. Cisplatin-resistant HeLa cells are resistant to apoptosis via p53-dependent and -independent pathways. Jpn. J. Cancer Res., 1999, 90(12), 1373-1379.
[http://dx.doi.org/10.1111/j.1349-7006.1999.tb00722.x] [PMID: 10665656]
[24]
Ulukaya, E.; Acilan, C.; Ari, F.; Ikitimur, E.; Yilmaz, Y. A Glance at the methods for detection of apoptosis qualitatively and quantitatively. Turk J Biochem, 2011, 36(3), 261-269.
[25]
Schumacker, P.T. Reactive oxygen species in cancer: A dance with the devil. Cancer Cell, 2015, 27(2), 156-157.
[http://dx.doi.org/10.1016/j.ccell.2015.01.007] [PMID: 25670075]
[26]
Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov., 2009, 8(7), 579-591.
[http://dx.doi.org/10.1038/nrd2803] [PMID: 19478820]
[27]
Stark, M.; Liu, L.P.; Deber, C.M. Cationic hydrophobic peptides with antimicrobial activity. Antimicrob. Agents Chemother., 2002, 46(11), 3585-3590.
[http://dx.doi.org/10.1128/AAC.46.11.3585-3590.2002] [PMID: 12384369]
[28]
Jiang, Z.; Vasil, A.I.; Hale, J.D.; Hancock, R.E.; Vasil, M.L.; Hodges, R.S. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic alpha-helical cationic antimicrobial peptides. Biopolymers, 2008, 90(3), 369-383.
[http://dx.doi.org/10.1002/bip.20911] [PMID: 18098173]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy