Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Effect of Disease Causing Missense Mutations on Intrinsically Disordered Regions in Proteins

Author(s): Suryanarayana Seera and Hampapathalu A. Nagarajaram*

Volume 29, Issue 3, 2022

Published on: 03 March, 2022

Page: [254 - 267] Pages: 14

DOI: 10.2174/0929866528666211126161200

Price: $65

conference banner
Abstract

Introduction: Disease causing missense mutations (DCMMs) destabilize protein structures. However it is not known how they impact the intrinsically disordered regions (IDRs) as these regions do not adopt stable 3D structures under physiological conditions. It is therefore imperative to investigate the effect of DCMMs on the functionally important IDRs.

Objective: To investigate impact of DCMMs on functionally important IDRs in human proteins.

Methods: We investigated the impact of the known DCMMs on three IDRs: a) an IDR with CRIB motif from WAS protein , b) a proline rich IDR of p22 protein and c) an IDR horboring TRM motif from SH3BP2 protein. Both the wild type and the mutant forms were subjected to detailed structural investigations using MD simulations for 100ns.

Results: MD studies revealed that the mutants adopt fewer conformational states as compared with their wild-type counterparts of which one or two form the dominant conformational states. This result was also corroborated by the free-energy landscapes of the mutants with a fewer minima as compared with the wild-types. It was also observed that the side chains of the mutated amino acid residues introduce new hydrogen bonding interactions that stabilize one or two of the dominant conformational states.

Conclusion: Our studies, thus, revealed that the disease causing missense mutations reduce the conformational heterogeneity of the intrinsically disordered proteins and furthermore, they are “locked” in one or two of those conformational states that presumably disfavour binding of the IDRs with their cognate interacting partners.

Keywords: Conformational heterogeneity, Intrinsically disordered protein, intrinsically disordered region, molecular dynamics, conformation, disease causing mutation, missense mutation, energy landscape.

Graphical Abstract

[1]
Wright, P.E.; Dyson, H.J. Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. J. Mol. Biol., 1999, 293(2), 321-331.
[http://dx.doi.org/10.1006/jmbi.1999.3110] [PMID: 10550212]
[2]
Uversky, V.N.; Gillespie, J.R.; Fink, A.L. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins, 2000, 41(3), 415-427.
[http://dx.doi.org/10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7] [PMID: 11025552]
[3]
Uversky, V.N.; Dunker, A.K. Understanding protein non-folding. Biochim. Biophys. Acta, 2010, 1804(6), 1231-1264.
[http://dx.doi.org/10.1016/j.bbapap.2010.01.017] [PMID: 20117254]
[4]
Uversky, V.N.; Oldfield, C.J.; Dunker, A.K. Showing your ID: Intrinsic disorder as an ID for recognition, regulation and cell signaling. J. Mol. Recognit., 2005, 18(5), 343-384.
[http://dx.doi.org/10.1002/jmr.747] [PMID: 16094605]
[5]
Dunker, A.K.; Brown, C.J.; Lawson, J.D.; Iakoucheva, L.M.; Obradović, Z. Intrinsic disorder and protein function. Biochemistry, 2002, 41(21), 6573-6582.
[http://dx.doi.org/10.1021/bi012159+] [PMID: 12022860]
[6]
Obradovic, Z.; Uversky, V.N. Functional anthology of intrinsic disorder. Biological processes and functions of proteins with long disordered regions. J Proteome Res., 2007, 6, 1882-1898.
[7]
Iakoucheva, L.M.; Brown, C.J.; Lawson, J.D.; Obradović, Z.; Dunker, A.K. Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Mol. Biol., 2002, 323(3), 573-584.
[http://dx.doi.org/10.1016/S0022-2836(02)00969-5]
[8]
Iakoucheva, L.M.; Radivojac, P.; Brown, C.J.; O’Connor, T.R.; Sikes, J.G.; Obradovic, Z.; Dunker, A.K. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res., 2004, 32(3), 1037-1049.
[http://dx.doi.org/10.1093/nar/gkh253] [PMID: 14960716]
[9]
Radivojac, P.; Vacic, V.; Haynes, C.; Cocklin, R.R.; Mohan, A.; Heyen, J.W.; Goebl, M.G.; Iakoucheva, L.M. Identification, analysis, and prediction of protein ubiquitination sites. Proteins, 2010, 78(2), 365-380.
[http://dx.doi.org/10.1002/prot.22555] [PMID: 19722269]
[10]
Wright, P.E.; Dyson, H.J. Intrinsically disordered proteins in cellular signalling and regulation. Nat. Rev. Mol. Cell Biol., 2015, 16(1), 18-29.
[http://dx.doi.org/10.1038/nrm3920] [PMID: 25531225]
[11]
Campen, A.; Williams, R.M.; Brown, C.J.; Meng, J.; Uversky, V.N.; Dunker, A.K. TOP-IDP-scale: A new amino acid scale measuring propensity for intrinsic disorder. Protein Pept. Lett., 2008, 15(9), 956-963.
[http://dx.doi.org/10.2174/092986608785849164] [PMID: 18991772]
[12]
Vucetic, S.; Brown, C.J.; Dunker, A.K.; Obradovic, Z. Flavors of protein disorder. Proteins, 2003, 52(4), 573-584.
[http://dx.doi.org/10.1002/prot.10437] [PMID: 12910457]
[13]
Brown, C.J.; Johnson, A.K.; Dunker, A.K.; Daughdrill, G.W. Evolution and Disorder; Elsevier Ltd., 2011, Vol. 21, pp. 441-446.
[http://dx.doi.org/10.1016/j.sbi.2011.02.005]
[14]
Fisher, C.K.; Stultz, C.M. Constructing Ensembles for Intrinsically Disordered Proteins; Elsevier Ltd., 2011, Vol. 21, pp. 426-431.
[http://dx.doi.org/10.1016/j.sbi.2011.04.001]
[15]
Schaefer, C.; Schlessinger, A.; Rost, B. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be. Bioinformatics, 2010, 26(5), 625-631.
[http://dx.doi.org/10.1093/bioinformatics/btq012] [PMID: 20081223]
[16]
Dosztányi, Z.; Chen, J.; Dunker, A.K.; Simon, I.; Tompa, P. Disorder and sequence repeats in hub proteins and their implications for network evolution. J. Proteome Res., 2006, 5(11), 2985-2995.
[http://dx.doi.org/10.1021/pr060171o] [PMID: 17081050]
[17]
Haynes, C.; Oldfield, C.J.; Ji, F.; Klitgord, N.; Cusick, M.E.; Radivojac, P.; Uversky, V.N.; Vidal, M.; Iakoucheva, L.M. Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput, Biol., 2006, 2, 890-901.
[http://dx.doi.org/10.1371/journal.pcbi.0020100]
[18]
Davey, N.E.; Van Roey, K.; Weatheritt, R.J.; Toedt, G.; Uyar, B.; Altenberg, B.; Budd, A.; Diella, F.; Dinkel, H.; Gibson, T.J. Attributes of short linear motifs. Mol. Biosyst., 2012, 8(1), 268-281.
[http://dx.doi.org/10.1039/C1MB05231D] [PMID: 21909575]
[19]
Diella, F.; Haslam, N.; Chica, C.; Budd, A.; Michael, S.; Brown, N.P.; Travé, G.; Gibson, T.J. Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci., 2008, 13, 6580-6603.
[20]
Patil, A.; Nakamura, H. Disordered domains and high surface charge confer hubs with the ability to interact with multiple proteins in interaction networks. FEBS Lett., 2006, 580(8), 2041-2045.
[http://dx.doi.org/10.1016/j.febslet.2006.03.003] [PMID: 16542654]
[21]
Oldfield, C.J.; Meng, J.; Yang, J.Y.; Yang, M.Q.; Uversky, V.N.; Dunker, A.K. Flexible nets: Disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genom., 2008, 9, S1.
[http://dx.doi.org/10.1186/1471-2164-9-S1-S1]
[22]
Qin, B.Y.; Liu, C.; Srinath, H.; Lam, S.S.; Correia, J.J.; Derynck, R.; Lin, K. Crystal structure of IRF-3 in complex with CBP. Structure, 2005, 13(9), 1269-1277.
[http://dx.doi.org/10.1016/j.str.2005.06.011] [PMID: 16154084]
[23]
Dyson, H.J.; Wright, P.E. Coupling of folding and binding for unstructured proteins. Curr. Opin. Struct. Biol., 2002, 12, 54-60.
[http://dx.doi.org/10.1016/S0959-440X(02)00289-0]
[24]
Borriello, A.; Cucciolla, V.; Oliva, A.; Zappia, V.; Della Ragione, F. p27Kip1 metabolism: A fascinating labyrinth. Cell Cycle, 2007, 6(9), 1053-1061.
[http://dx.doi.org/10.4161/cc.6.9.4142] [PMID: 17426451]
[25]
Espinoza-Fonseca, L.M. Leucine-rich hydrophobic clusters promote folding of the N-terminus of the intrinsically disordered transactivation domain of p53. FEBS Lett., 2009, 583(3), 556-560.
[http://dx.doi.org/10.1016/j.febslet.2008.12.060] [PMID: 19162020]
[26]
Kar, S.; Sakaguchi, K.; Shimohigashi, Y.; Samaddar, S.; Banerjee, R.; Basu, G.; Swaminathan, V.; Kundu, T.K.; Roy, S. Effect of phosphorylation on the structure and fold of transactivation domain of p53. J. Biol. Chem., 2002, 277(18), 15579-15585.
[http://dx.doi.org/10.1074/jbc.M106915200] [PMID: 11854266]
[27]
Lowry, D.F.; Stancik, A.; Shrestha, R.M.; Daughdrill, G.W. Modeling the accessible conformations of the intrinsically unstructured transactivation domain of p53. Proteins, 2008, 71(2), 587-598.
[http://dx.doi.org/10.1002/prot.21721] [PMID: 17972286]
[28]
Dogan, J.; Mu, X.; Engström, Å.; Jemth, P. The transition state structure for coupled binding and folding of disordered protein domains. Sci. Rep., 2013, 3, 2076.
[http://dx.doi.org/10.1038/srep02076] [PMID: 23799450]
[29]
Sugase, K.; Dyson, H.J.; Wright, P.E. Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature, 2007, 447(7147), 1021-1025.
[http://dx.doi.org/10.1038/nature05858] [PMID: 17522630]
[30]
Turjanski, A.G.; Gutkind, J.S.; Best, R.B.; Hummer, G. Binding-induced folding of a natively unstructured transcription factor. PLOS Comput. Biol., 2008, 4(4), e1000060.
[http://dx.doi.org/10.1371/journal.pcbi.1000060] [PMID: 18404207]
[31]
Dunker, A.K.; Obradovic, Z.; Romero, P.; Garner, E.C.; Brown, C.J. Intrinsic protein disorder in complete genomes. Genome Inform. Ser. Workshop Genome Inform., 2000, 11, 161-171.
[http://dx.doi.org/10.11234/gi1990.11.161]
[32]
Ward, J.J.; Sodhi, J.S.; McGuffin, L.J.; Buxton, B.F.; Jones, D.T. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol., 2004, 337(3), 635-645.
[http://dx.doi.org/10.1016/j.jmb.2004.02.002] [PMID: 15019783]
[33]
Uversky, V.N.; Oldfield, C.J.; Dunker, A.K. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Ann. Rev. Biophys., 2008, 37(1), 215-246.
[http://dx.doi.org/10.1146/annurev.biophys.37.032807.125924]
[34]
Vacic, V.; Iakoucheva, L.M. Disease mutations in disordered regions--exception to the rule? Mol. Biosyst., 2012, 8(1), 27-32.
[http://dx.doi.org/10.1039/C1MB05251A] [PMID: 22080206]
[35]
Vacic, V.; Markwick, P.R.L.; Oldfield, C.J.; Zhao, X.; Haynes, C.; Uversky, V.N.; Iakoucheva, L.M. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder. PLoS Comput. Biol., 2012, 8(10), e1002709.
[http://dx.doi.org/10.1371/journal.pcbi.1002709] [PMID: 23055912]
[36]
Jones, D.T.; Cozzetto, D. DISOPRED3: Precise disordered region predictions with annotated protein-binding activity. Bioinformatics, 2015, 31(6), 857-863.
[http://dx.doi.org/10.1093/bioinformatics/btu744] [PMID: 25391399]
[37]
Deshpande, N.; Addess, K.J.; Bluhm, W.F.; Merino-Ott, J.C.; Townsend-Merino, W.; Zhang, Q.; Knezevich, C.; Xie, L.; Chen, L.; Feng, Z.; Green, R.K.; Flippen-Anderson, J.L.; Westbrook, J.; Berman, H.M.; Bourne, P.E. The RCSB Protein Databa Bank: A redesigned query system and relational database based on the MmCIF schema. Nucleic Acids Res., 2005, 33, D233-D237.
[http://dx.doi.org/10.1093/nar/gki057]
[38]
Dye-terminator, T.; Abdul-manan, N.; Aghazadeh, B.; Liu, G.A.; Majumdar, A.; Ouerfelli, O. Structure of Cdc42 in complex with the GTPase-binding domain of the ‘ Wiskott – Aldrich Syndrome ’. Protein (Lond.), 1999, 399, 379-383.
[39]
Ogura, K.; Nobuhisa, I.; Yuzawa, S.; Takeya, R.; Torikai, S.; Saikawa, K.; Sumimoto, H.; Inagaki, F. NMR solution structure of the tandem Src homology 3 domains of P47 Phox complexed with a P22 Phox-derived. 2006, 281(6), 3660-3668.
[http://dx.doi.org/10.1074/jbc.M505193200]
[40]
Guettler, S.; LaRose, J.; Petsalaki, E.; Gish, G.; Scotter, A.; Pawson, T.; Rottapel, R.; Sicheri, F. Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Cell, 2011, 147(6), 1340-1354.
[http://dx.doi.org/10.1016/j.cell.2011.10.046] [PMID: 22153077]
[41]
Eswar, N.; Webb, B.; Marti-Renom, M.A.; Madhusudhan, M.S.; Eramian, D.; Shen, M.Y.; Pieper, U.; Sali, A. Comparative protein structure modeling using Modeller. Curr. Protoc. Bioinformatics, 2006, 5(1), 6.
[http://dx.doi.org/10.1002/0471250953.bi0506s15] [PMID: 18428767]
[42]
Roman Laskowski, B.A.; Macarthur, M.W.; Thornton, J.M. PROCHECK: A program to check the stereochemicai quality of protein structures. J. Appl. Cryst., 1993, 26, 283-291.
[43]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. Gromacs: High performance molecular simulations through multi-level Parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[44]
Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D. CHARMM36: An improved force field for folded and intrinsically disordered proteins. Biophys. J., 2017, 112(3), 175a-176a.
[http://dx.doi.org/10.1016/j.bpj.2016.11.971]
[45]
Daura, X.; Gademann, K.; Jaun, B.; Seebach, D.; van Gunsteren, W.F.; Mark, A.E. Peptide Folding: When simulation meets experiment. Angew. Chem. Int. Ed., 1999, 38(1-2), 236-240.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M]
[46]
Espinoza-Fonseca, L.M.; Ilizaliturri-Flores, I.; Correa-Basurto, J. Backbone conformational preferences of an intrinsically disordered protein in solution. Mol. Biosyst., 2012, 8(6), 1798-1805.
[http://dx.doi.org/10.1039/c2mb00004k] [PMID: 22506277]
[47]
Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res., 2003, 31(13), 3812-3814.
[http://dx.doi.org/10.1093/nar/gkg509] [PMID: 12824425]
[48]
Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods, 2010, 7(4), 248-249.
[http://dx.doi.org/10.1038/nmeth0410-248] [PMID: 20354512]
[49]
Acharya, V.; Nagarajaram, H.A. Hansa: an automated method for discriminating disease and neutral human nsSNPs. Hum. Mutat., 2012, 33(2), 332-337.
[http://dx.doi.org/10.1002/humu.21642] [PMID: 22045683]
[50]
Cory, G.O.C.; Cramer, R.; Blanchoin, L.; Ridley, A.J. Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP. 2003, 11, 1229-1239.
[51]
Luthi, J.N.; Gandhi, M.J.; Drachman, J.G. X-linked thrombocytopenia caused by a mutation in the Wiskott-Aldrich syndrome (WAS) gene that disrupts interaction with the WAS protein (WASP)-interacting protein (WIP). Exp. Hematol., 2003, 31(2), 150-158.
[http://dx.doi.org/10.1016/S0301-472X(02)01023-8] [PMID: 12591280]
[52]
Dinauer, M.C.; Orkin, S.H. Chronic granulomatous disease further annual reviews. Clin. Mol. Allergy, 2011, 9, 10.
[53]
Roos, D.; van Bruggen, R.; Meischl, C. Oxidative Killing of Microbes by Neutrophils. Microbes and Infection; Elsevier Masson SAS, 2003, pp. 1307-1315.
[http://dx.doi.org/10.1016/j.micinf.2003.09.009]
[54]
Heyworth, P.G.; Cross, A.R.; Curnutte, J.T. Chronic granulomatous disease. Curr. Opin. Immunol., 2003, 578-584.
[http://dx.doi.org/10.1016/S0952-7915(03)00109-2]
[55]
Dinauer, M.C.; Pierceo, E.A.; Erickson, R.W.; Muhlebach, T.J.; Messnerii, H.; Orkint, S.H.; Seger, R.A.; Curnutte, J.T. Point mutation in the cytoplasmic domain of the neutrophil P22-Phox Cytochrome b subunit is associated with a nonfunctional NADPH Oxidase and Chronic Granulomatous Disease. Proc. Natl. Acad. Sci. USA, 1991, 88, 11231-11235.
[http://dx.doi.org/10.1073/pnas.88.24.11231]
[56]
Ueki, Y.; Tiziani, V.; Santanna, C.; Fukai, N.; Maulik, C.; Garfinkle, J.; Ninomiya, C.; doAmaral, C.; Peters, H.; Habal, M.; Rhee-Morris, L.; Doss, J.B.; Kreiborg, S.; Olsen, B.R.; Reichenberger, E. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat. Genet., 2001, 28(2), 125-126.
[http://dx.doi.org/10.1038/88832] [PMID: 11381256]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy