Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Kappa/Lambda light-chain typing in Alzheimer’s Disease

Author(s): Zelal Zuhal Kaya, Mete Bora Tuzuner, Betul Sahin, Emel Akgun, Fehime Aksungar, Sebile Koca, Muhittin Serdar, Sevki Sahin, Nilgun Cinar, Sibel Karsidag, Hasmet Ayhan Hanagasi, Meltem Kilercik, Mustafa Serteser and Ahmet Tari k Baykal

Volume 19, Issue 1, 2022

Published on: 31 January, 2022

Page: [84 - 93] Pages: 10

DOI: 10.2174/1567205019666220131101334

Price: $65

Abstract

Background: Alzheimer's disease is a progressive neurodegenerative disorder characterized by memory loss and cognitive impairment. The diagnosis of Alzheimer's disease according to symptomatic events is still a puzzling task. Developing a biomarker-based, low-cost, and high-throughput test, readily applicable in clinical laboratories, dramatically impacts the rapid and reliable detection of the disease.

Objective: This study aimed to develop an accurate, sensitive, and reliable screening tool for diagnosing Alzheimer's disease, which can significantly reduce the cost and time of existing methods.

Methods: We have employed a MALDI-TOF-MS-based methodology combined with a microaffinity chromatography enrichment approach using affinity capture resins to determine serum kappa (κ) and lambda (λ) light chain levels in control and patients with AD.

Results: We observed a statistically significant difference in the kappa light chain over lambda light chain (κLC/λLC) ratios between patients with AD and controls (mean difference -0,409; % 95 CI:- 0.547 to -0.269; p<0.001). Our method demonstrated higher sensitivity (100.00%) and specificity (71.43%) for discrimination between AD and controls.

Conclusion: We have developed a high-throughput screening test with a novel sample enrichment method for determining κLC/λLC ratios associated with AD diagnosis. Following further validation, we believe our test has the potential for clinical laboratories.

Keywords: Alzheimer's disease, MALDI-TOF-MS, screening tool, microaffinity chromatography, affinity capture resins, kappa light chain, ratio, lambda light chain ratio.

« Previous
[1]
Weiner MW, Veitch DP, Aisen PS, et al. The Alzheimer’s Disease Neuroimaging Initiative 3: Continued innovation for clinical trial improvement. Alzheimers Dement 2017; 13(5): 561-71.
[2]
Hampel H, Mesulam MM, Cuello AC, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018; 141(7): 1917-33.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[3]
2020 Alzheimer’s disease facts and figures. Alzheimers Dement 2020; 16(3): 391-460.
[http://dx.doi.org/10.1002/alz.12068]
[4]
Patterson C. World Alzheimer Report 2018 - The state of the art of dementia research: New frontiers. UK. Alzheimer’s Dis Int London 2018; 1-48.
[5]
Lin YS, Lee WJ, Wang SJ, Fuh JL. Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Sci Rep 2018; 8(1): 17368.
[http://dx.doi.org/10.1038/s41598-018-35766-w] [PMID: 30478269]
[6]
Zhou W, Zhang J, Ye F, et al. Plasma neurofilament light chain levels in Alzheimer’s disease. Neurosci Lett 2017; 650: 60-4.
[http://dx.doi.org/10.1016/j.neulet.2017.04.027] [PMID: 28428015]
[7]
Jin M, Cao L, Dai YP. Role of neurofilament light chain as a potential biomarker for Alzheimer’s disease: A correlative meta-analysis. Front Aging Neurosci 2019; 11: 254.
[http://dx.doi.org/10.3389/fnagi.2019.00254] [PMID: 31572170]
[8]
Massa F, Meli R, Morbelli S, Nobili F, Pardini M. Serum neurofilament light chain rate of change in Alzheimer’s disease: Potentials applications and notes of caution. Ann Transl Med 2019; 7(S3)(Suppl. 3): S133-3.
[http://dx.doi.org/10.21037/atm.2019.05.81] [PMID: 31576340]
[9]
O’Bryant SE, Mielke MM, Rissman RA, et al. Blood-based biomarkers in Alzheimer disease: Current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers Dement 2017; 13(1): 45-58.
[http://dx.doi.org/10.1016/j.jalz.2016.09.014] [PMID: 27870940]
[10]
Lewczuk P, Ermann N, Andreasson U, et al. Plasma neurofilament light as a potential biomarker of neurodegeneration in Alzheimer’s disease. Alzheimers Res Ther 2018; 10(1): 71.
[http://dx.doi.org/10.1186/s13195-018-0404-9] [PMID: 30055655]
[11]
Groot Kormelink T, Powe DG, Kuijpers SA, et al. Immunoglobulin free light chains are biomarkers of poor prognosis in basal-like breast cancer and are potential targets in tumor-associated inflammation. Oncotarget 2014; 5(10): 3159-67.
[http://dx.doi.org/10.18632/oncotarget.1868] [PMID: 24931643]
[12]
Qiu Y, Korteweg C, Chen Z, et al. Immunoglobulin G expression and its colocalization with complement proteins in papillary thyroid cancer. Mod Pathol 2012; 25(1): 36-45.
[http://dx.doi.org/10.1038/modpathol.2011.139] [PMID: 21909078]
[13]
Wang PX, Sanders PW. Immunoglobulin light chains generate hydrogen peroxide. J Am Soc Nephrol 2007; 18(4): 1239-45.
[http://dx.doi.org/10.1681/ASN.2006111299] [PMID: 17360948]
[14]
Migrino RQ, Hari P, Gutterman DD, et al. Systemic and microvascular oxidative stress induced by light chain amyloidosis. Int J Cardiol 2010; 145(1): 67-8.
[http://dx.doi.org/10.1016/j.ijcard.2009.04.044] [PMID: 19446898]
[15]
Huang WJ, Zhang X, Chen WW. Role of oxidative stress in Alzheimer’s disease. (review) Biomed Rep 2016; 4(5): 519-22.
[16]
Hegen H, Walde J, Milosavljevic D, et al. Free light chains in the cerebrospinal fluid. Comparison of different methods to determine intrathecal synthesis. Clin Chem Lab Med 2019; 57(10): 1574-86.
[http://dx.doi.org/10.1515/cclm-2018-1300] [PMID: 31112501]
[17]
Altinier S, Puthenparampil M, Zaninotto M, et al. Free light chains in cerebrospinal fluid of multiple sclerosis patients negative for IgG oligoclonal bands. Clin Chim Acta 2019; 496: 117-20.
[http://dx.doi.org/10.1016/j.cca.2019.06.016] [PMID: 31233736]
[18]
Jenkins MA, Cheng L, Ratnaike S. Multiple sclerosis: Use of light-chain typing to assist diagnosis. Ann Clin Biochem 2001; 38(Pt 3): 235-41.
[http://dx.doi.org/10.1258/0004563011900669] [PMID: 11392498]
[19]
Bayart JL, Muls N, van Pesch V. Free Kappa light chains in neuroinflammatory disorders: Complement rather than substitute? Acta Neurol Scand 2018; 138(4): 352-8.
[http://dx.doi.org/10.1111/ane.12969] [PMID: 29900542]
[20]
Siegel D, Bilotti E, van Hoeven KH. Serum free light chain analysis for diagnosis, monitoring, and prognosis of monoclonal gammopathies. Lab Med 2009; 40(6): 363-6.
[http://dx.doi.org/10.1309/LMPHODC7R1L0MEWW]
[21]
Davids MS, Murali MR, Kuter DJ. Serum free light chain analysis. Am J Hematol 2010; 85(10): 787-90.
[http://dx.doi.org/10.1002/ajh.21815] [PMID: 20721885]
[22]
Kumar S, Larson DR, Dispenzieri A, et al. Polyclonal serum free light chain elevation is associated with increased risk of monoclonal gammopathies. Blood Cancer J 2019; 9(6): 49.
[http://dx.doi.org/10.1038/s41408-019-0210-z] [PMID: 31101803]
[23]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[24]
Mills JR, Kohlhagen MC, Dasari S, et al. Comprehensive assessment of M-proteins using nanobody enrichment coupled to MALDI-TOF mass spectrometry. Clin Chem 2016; 62(10): 1334-44.
[http://dx.doi.org/10.1373/clinchem.2015.253740] [PMID: 27540026]
[25]
Youden WJ. Index for rating diagnostic tests. Cancer 1950; 3(1): 32-5.
[http://dx.doi.org/10.1002/1097-0142(1950)3:1<32:AID-CNCR2820030106>3.0.CO;2-3] [PMID: 15405679]
[26]
Sepiashvili L, Kohlhagen MC, Snyder MR, et al. Direct detection of monoclonal free light chains in serum by use of immunoenrichment-coupled MALDI-TOF mass spectrometry. Clin Chem 2019; 65(8): 1015-22.
[http://dx.doi.org/10.1373/clinchem.2018.299461] [PMID: 31171529]
[27]
Leung N. Chapter 8: Clinical Tests for Monoclonal Proteins. American Soc Nephrol 2016. Available from: .https://www.asn-online.org/education/distancelearning/curricula/onco/Chapter8.pdf
[28]
Bradwell A, Harding S, Fourrier N, et al. Prognostic utility of intact immunoglobulin Ig’κ/Ig’λ ratios in multiple myeloma patients. Leukemia 2013; 27(1): 202-7.
[http://dx.doi.org/10.1038/leu.2012.159] [PMID: 22699454]
[29]
Ludwig H, Milosavljevic D, Zojer N, et al. Immunoglobulin heavy/light chain ratios improve paraprotein detection and monitoring, identify residual disease and correlate with survival in multiple myeloma patients. Leukemia 2013; 27(1): 213-9.
[http://dx.doi.org/10.1038/leu.2012.197] [PMID: 22955329]
[30]
Paolini L, Di Noto G, Maffina F, et al. Comparison of Hevylite™ IgA and IgG assay with conventional techniques for the diagnosis and follow-up of plasma cell dyscrasia. Ann Clin Biochem 2015; 52(Pt 3): 337-45.
[http://dx.doi.org/10.1177/0004563214564225] [PMID: 25468997]
[31]
Katzmann JA, Kyle RA, Benson J, et al. Screening panels for detection of monoclonal gammopathies. Clin Chem 2009; 55(8): 1517-22.
[http://dx.doi.org/10.1373/clinchem.2009.126664] [PMID: 19520758]
[32]
Nakano T, Miyazaki S, Takahashi H, et al. Immunochemical quantification of free immunoglobulin light chains from an analytical perspective. Clin Chem Lab Med 2006; 44(5): 522-32.
[http://dx.doi.org/10.1515/CCLM.2006.118] [PMID: 16681419]
[33]
Felhofer JL, Blanes L, Garcia CD. Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis 2010; 31(15): 2469-86.
[http://dx.doi.org/10.1002/elps.201000203]
[34]
Bossuyt X, Mariën G. False-negative results in detection of monoclonal proteins by capillary zone electrophoresis: a prospective study. Clin Chem 2001; 47(8): 1477-9.
[http://dx.doi.org/10.1093/clinchem/47.8.1477] [PMID: 11468244]
[35]
McCudden CR, Jacobs JFM, Keren D, Caillon H, Dejoie T, Andersen K. Recognition and management of common, rare, and novel serum protein electrophoresis and immunofixation interferences. Clin Biochem 2018; 51: 72-9.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.08.013]
[36]
Kim HS, Kim HS, Shin KS, et al. Clinical comparisons of two free light chain assays to immunofixation electrophoresis for detecting monoclonal gammopathy. BioMed Res Int 2014; 2014647238
[http://dx.doi.org/10.1155/2014/647238] [PMID: 24971342]
[37]
Ladwig PM, Barnidge DR, Willrich MAV. Quantification of the IgG2/4 kappa monoclonal therapeutic eculizumab from serum using isotype specific affinity purification and microflow LC-ESI-Q-TOF mass spectrometry. Journal of the American Society for Mass Spectrometry Springer New York LLC 2017; LLC: 811-7.
[http://dx.doi.org/10.1007/s13361-016-1566-y]
[38]
Hermans P, Adams H, Detmers F. Purification of antibodies and antibody fragments using CaptureSelect™ affinity resins. Methods Mol Biol 2014; 1131: 297-314.
[http://dx.doi.org/10.1007/978-1-62703-992-5_19] [PMID: 24515474]
[39]
Kaplan B, Livneh A, Sela B-A. Immunoglobulin free light chain dimers in human diseases. Scientific World J 2011; 11: 726-35.
[40]
Mossuto MF. Disulfide bonding in neurodegenerative misfolding diseases. Int J Cell Biol 2013; 2013318319
[41]
Bechtel TJ, Weerapana E. From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics 2017; 17(6): 10.
[42]
Perri ER, Thomas CJ, Parakh S, Spencer DM, Atkin JD. The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration 2016. Available from:.www.frontiersin.org
[43]
Bienert GP, Schjoerring JK, Jahn TP. Membrane transport of hydrogen peroxide. Biochim Biophys Acta 2006. [Epub ahead of Print
[http://dx.doi.org/10.1016/j.bbamem.2006.02.015]
[44]
Brenner DA, Jain M, Pimentel DR, et al. Human amyloidogenic light chains directly impair cardiomyocyte function through an increase in cellular oxidant stress. Circ Res 2004; 94(8): 1008-10.
[http://dx.doi.org/10.1161/01.RES.0000126569.75419.74] [PMID: 15044325]
[45]
Patwardhan MB, McCrory DC, Matchar DB, Samsa GP, Rutschmann OT. Alzheimer disease: Operating characteristics of PET - A meta-analysis. Radiol 2004; 231(1): 73-80.
[46]
Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L. Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 2006; 5(3): 228-34.
[http://dx.doi.org/10.1016/S1474-4422(06)70355-6] [PMID: 16488378]
[47]
Sjögren M, Vanderstichele H, Ågren H, et al. Tau and Abeta42 in cerebrospinal fluid from healthy adults 21-93 years of age: establishment of reference values. Clin Chem 2001; 47(10): 1776-81.
[http://dx.doi.org/10.1093/clinchem/47.10.1776] [PMID: 11568086]
[48]
Guo Z, Zhang Q, Zou H, Guo B, Ni J. A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal Chem 2002; 74(7): 1637-41.
[http://dx.doi.org/10.1021/ac010979m] [PMID: 12033256]
[49]
Singhal N, Kumar M, Kanaujia PK, Virdi JS. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Front Microbiol 2015; 6(AUG): 791.
[http://dx.doi.org/10.3389/fmicb.2015.00791] [PMID: 26300860]
[50]
Swiatly A, Horala A, Hajduk J, Matysiak J, Nowak-Markwitz E, Kokot ZJ. MALDI-TOF-MS analysis in discovery and identification of serum proteomic patterns of ovarian cancer. BMC Cancer 2017; 17(1): 472.
[http://dx.doi.org/10.1186/s12885-017-3467-2] [PMID: 28683725]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy