Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Interleukin Receptor Antagonists and Janus Kinase Inhibitors Repurposed for Treatment of COVID-19

Author(s): Nitin Tandon, Vijay Luxami, Runjhun Tandon* and Kamaldeep Paul*

Volume 22, Issue 21, 2022

Published on: 31 March, 2022

Page: [2752 - 2768] Pages: 17

DOI: 10.2174/1389557522999220128150814

Price: $65

Abstract

SARS-CoV-2 infection is the most contagious among the three coronavirus infections the world has witnessed to date, which has affected almost all parts of the world in millions of population since its outbreak in China in December 2019. Moreover, it has severely hit the world economy and therefore there is a dire need to develop the treatment of this deadly disease. A number of potential vaccines are in the early or advanced stage of clinical trials. But the development of a vaccine is a very tedious and time-consuming task. Therefore, various groups are working on repurposing of drugs with already known safety and efficacy profiles to shorten the time of development of the potential treatment. The main aim of this review article is to summarize the clinical outcomes of Interleukin receptor antagonists and Janus kinase inhibitors based drugs which have been repurposed for the treatment of COVID-19 associated with SARS-CoV-2.

Keywords: SARS-CoV-2, COVID-19, Interleukin receptor antagonists, Janus kinase inhibitors, the standard of care, clinical outcomes.

Graphical Abstract

[1]
Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). 2003. Available from: https://www.who.int/csr/sars/WHOconsensus.pdf?ua=1 (Assessed on 26th Sept. 2020).
[2]
Alfaraj, S.H.; Al-Tawfiq, J.A.; Assiri, A.Y.; Alzahrani, N.A.; Alanazi, A.A.; Memish, Z.A. Clinical predictors of mortality of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) infection: A cohort study. Travel Med. Infect. Dis., 2019, 29, 48-50.
[http://dx.doi.org/10.1016/j.tmaid.2019.03.004] [PMID: 30872071]
[3]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[4]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[5]
Guan, Y.; Zheng, B.J.; He, Y.Q.; Liu, X.L.; Zhuang, Z.X.; Cheung, C.L.; Luo, S.W.; Li, P.H.; Zhang, L.J.; Guan, Y.J.; Butt, K.M.; Wong, K.L.; Chan, K.W.; Lim, W.; Shortridge, K.F.; Yuen, K.Y.; Peiris, J.S.; Poon, L.L. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 2003, 302(5643), 276-278.
[http://dx.doi.org/10.1126/science.1087139] [PMID: 12958366]
[6]
Kan, B.; Wang, M.; Jing, H.; Xu, H.; Jiang, X.; Yan, M.; Liang, W.; Zheng, H.; Wan, K.; Liu, Q.; Cui, B.; Xu, Y.; Zhang, E.; Wang, H.; Ye, J.; Li, G.; Li, M.; Cui, Z.; Qi, X.; Chen, K.; Du, L.; Gao, K.; Zhao, Y.T.; Zou, X.Z.; Feng, Y.J.; Gao, Y.F.; Hai, R.; Yu, D.; Guan, Y.; Xu, J. Molecular evolution analysis and geographic investigation of severe acute respiratory syndrome coronavirus-like virus in palm civets at an animal market and on farms. J. Virol., 2005, 79(18), 11892-11900.
[http://dx.doi.org/10.1128/JVI.79.18.11892-11900.2005] [PMID: 16140765]
[7]
Wang, M.; Yan, M.; Xu, H.; Liang, W.; Kan, B.; Zheng, B.; Chen, H.; Zheng, H.; Xu, Y.; Zhang, E.; Wang, H.; Ye, J.; Li, G.; Li, M.; Cui, Z.; Liu, Y.F.; Guo, R.T.; Liu, X.N.; Zhan, L.H.; Zhou, D.H.; Zhao, A.; Hai, R.; Yu, D.; Guan, Y.; Xu, J. SARS-CoV infection in a restaurant from palm civet. Emerg. Infect. Dis., 2005, 11(12), 1860-1865.
[http://dx.doi.org/10.3201/eid1112.041293] [PMID: 16485471]
[8]
Tortorici, M.A.; Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res., 2019, 105, 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002] [PMID: 31522710]
[9]
Walls, A.C.; Park, Y.J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the sars-cov-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[10]
Clinical characteristics of COVID-19. Available from: https://www.ecdc.europa.eu/en/covid-19/latest-evidence/clinical (Accessed on 28th Sept. 2020).
[11]
WHO Coronavirus Disease (COVID-19) Dashboard. Available from: https://covid19.who.int/ (Accessed on 14th Oct. 2020).
[12]
WHO director-general's opening remarks at the media briefing on COVID-19. 2020. Available from: . https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020 (Assessed on 26th Sept. 2020).
[13]
National Bureau of Statistics of China. Purchasing managers index for february 2020 national bureau of statistics of China. Beijing: department of service statistics of NBS. 2020. Available from: http://www.stats.gov.cn/english/PressRelease/202003/t20200302_1729254.html (Accessed on 26th Sept. 2020).
[14]
International Air Transport Association. IATA Ecoznomics' chart of the week: return to air travel expected to be slow. In: IATA economics report. 2020. Available from: https://www.iata.org/en/iata-repository/publications/economic-reports/return-to-air-travel-expected-to-be-slow/ (Accessed on 26th Sept. 2020).
[15]
Dey, M.; Loewenstein, M.A. How many workers are employed in sectors directly affected by COVID-19 shutdowns, where do they work, and how much do they earn? Mon. Labor Rev., 2020, 1-19.
[http://dx.doi.org/10.21916/mlr.2020.6]
[16]
U.S. Department of Labour. COVID-19 Impact the COVID-19 virus continues to impact the number of initial claims and insured unemployment. In: Employment and Training Administration, 2020.
[17]
Pak, A.; Adegboye, O.A.; Adekunle, A.I.; Rahman, K.M.; McBryde, E.S.; Eisen, D.P. Economic consequences of the COVID-19 outbreak: the need for epidemic preparedness. Front. Public Health, 2020, 8, 241-244.
[http://dx.doi.org/10.3389/fpubh.2020.00241] [PMID: 32574307]
[18]
Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing covid-19 vaccines at pandemic speed. N. Engl. J. Med., 2020, 382(21), 1969-1973.
[http://dx.doi.org/10.1056/NEJMp2005630] [PMID: 32227757]
[19]
Bar-Zeev, N.; Inglesby, T. COVID-19 vaccines: early success and remaining challenges. Lancet, 2020, 396(10255), 868-869.
[http://dx.doi.org/10.1016/S0140-6736(20)31867-5] [PMID: 32896290]
[20]
Escobar, L.E.; Molina-Cruz, A.; Barillas-Mury, C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc. Natl. Acad. Sci. USA, 2020, 117(30), 17720-17726.
[http://dx.doi.org/10.1073/pnas.2008410117] [PMID: 32647056]
[21]
Koirala, A.; Joo, Y.J.; Khatami, A.; Chiu, C.; Britton, P.N. Vaccines for COVID-19: The current state of play. Paediatr. Respir. Rev., 2020, 35, 43-49.
[PMID: 32653463]
[22]
Kaur, S.P.; Gupta, V. COVID-19 vaccine: A comprehensive status report. Virus Res., 2020, 288, 198114-198125.
[http://dx.doi.org/10.1016/j.virusres.2020.198114] [PMID: 32800805]
[23]
Chugh, T. Timelines of COVID-19 vaccines. Curr. Med. Res. Pract., 2020, 10(4), 137-138.
[PMID: 32839724]
[24]
Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305-306.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[25]
Mukherjee, R. Global efforts on vaccines for COVID-19: Since, sooner or later, we all will catch the coronavirus. J. Biosci., 2020, 45(1), 68.
[http://dx.doi.org/10.1007/s12038-020-00040-7] [PMID: 32385219]
[26]
Vaccine testing and the approval process. Available from: https://www.cdc.gov/vaccines/basics/test-approve.html (Accessed on 26th Sept 2020).
[27]
Bregu, M.; Draper, S.J.; Hill, A.V.S.; Greenwood, B.M. Accelerating vaccine development and deployment: Report of a Royal Society satellite meeting. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2011, 366(1579), 2841-2849.
[http://dx.doi.org/10.1098/rstb.2011.0100] [PMID: 21893549]
[28]
Henao-Restrepo, A.M.; Camacho, A.; Longini, I.M.; Watson, C.H.; Edmunds, W.J.; Egger, M.; Carroll, M.W.; Dean, N.E.; Diatta, I.; Doumbia, M.; Draguez, B.; Duraffour, S.; Enwere, G.; Grais, R.; Gunther, S.; Gsell, P.S.; Hossmann, S.; Watle, S.V.; Kondé, M.K.; Kéïta, S.; Kone, S.; Kuisma, E.; Levine, M.M.; Mandal, S.; Mauget, T.; Norheim, G.; Riveros, X.; Soumah, A.; Trelle, S.; Vicari, A.S.; Røttingen, J.A.; Kieny, M.P. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: Final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet, 2017, 389(10068), 505-518.
[http://dx.doi.org/10.1016/S0140-6736(16)32621-6] [PMID: 28017403]
[29]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[30]
Chong, C.R.; Sullivan, D.J. Jr. New uses for old drugs. Nature, 2007, 448(7154), 645-646.
[http://dx.doi.org/10.1038/448645a] [PMID: 17687303]
[31]
Jomah, S.; Asdaq, S.M.B.; Al-Yamani, M.J. Clinical efficacy of antivirals against novel coronavirus (COVID-19): A review. J. Infect. Public Health, 2020, 13(9), 1187-1195.
[http://dx.doi.org/10.1016/j.jiph.2020.07.013] [PMID: 32773212]
[32]
Scavone, C.; Brusco, S.; Bertini, M.; Sportiello, L.; Rafaniello, C.; Zoccoli, A.; Berrino, L.; Racagni, G.; Rossi, F.; Capuano, A. Current pharmacological treatments for COVID-19: What’s next? Br. J. Pharmacol., 2020, 177(21), 4813-4824.
[http://dx.doi.org/10.1111/bph.15072] [PMID: 32329520]
[33]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, 2020, 323(18), 1824-1836.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[34]
Ali, M.J.; Hanif, M.; Haider, M.A.; Ahmed, M.U.; Sundas, F.; Hirani, A.; Khan, I.A.; Anis, K.; Karim, A.H. Treatment options for covid-19: A review. Front. Med. (Lausanne), 2020, 7, 480-489.
[http://dx.doi.org/10.3389/fmed.2020.00480] [PMID: 32850922]
[35]
Savi, C.D.; Hughes, D.L.; Kvaerno, L. Quest for a covid-19 cure by repurposing small-molecule drugs: Mechanism of action, clinical development, synthesis at scale, and outlook for supply. Org. Process Res. Dev., 2020, 24(6), 940-976.
[http://dx.doi.org/10.1021/acs.oprd.0c00233]
[36]
Wu, R.; Wang, L.; Kuo, H.D.; Shannar, A.; Peter, R.; Chou, P.J.; Li, S.; Hudlikar, R.; Liu, X.; Liu, Z.; Poiani, G.J.; Amorosa, L.; Brunetti, L.; Kong, A.N. An update on current therapeutic drugs treating covid-19. Curr. Pharmacol. Rep., 2020, 6, 1-15.
[http://dx.doi.org/10.1007/s40495-020-00216-7] [PMID: 32395418]
[37]
Ku, Z.; Ye, X.; Salazar, G.T.; Zhang, N. Antibody therapies for the treatment of COVID-19. Antib. Ther., 2020, 3(2), 101-108.
[http://dx.doi.org/10.1093/abt/tbaa007]
[38]
Khan, Z.; Karatas, Y.; Ceylan, A.F.; Rahman, H. COVID-19 and therapeutic drugs repurposing in hand: The need for collaborative efforts. Pharm. Hosp. Clin., 2021, 56(1), 3-11.
[http://dx.doi.org/10.1016/j.phclin.2020.06.003]
[39]
Wang, X.; Guan, Y. COVID‐19 drug repurposing: A review of computational screening methods, clinical trials, and protein interaction assays. Med. Res. Rev., 2020, 41(1), 5-28.
[http://dx.doi.org/10.1002/med.21728] [PMID: 32864815]
[40]
Ciliberto, G.; Mancini, R.; Paggi, M.G. Drug repurposing against COVID-19: Focus on anticancer agents. J. Exp. Clin. Cancer Res., 2020, 39(1), 86-94.
[http://dx.doi.org/10.1186/s13046-020-01590-2] [PMID: 32398164]
[41]
Pawełczyk, A.; Zaprutko, L. Anti-COVID drugs: Repurposing existing drugs or search for new complex entities, strategies and perspectives. Future Med. Chem., 2020, 12(19), 1743-1757.
[http://dx.doi.org/10.4155/fmc-2020-0204] [PMID: 32698626]
[42]
Senanayake, S.L. Drug repurposing strategies for COVID-19. Future Drug Discov., 2020.
[http://dx.doi.org/10.4155/fdd-2020-0010]
[43]
Guy, R.K.; DiPaola, R.S.; Romanelli, F.; Dutch, R.E. Rapid repurposing of drugs for COVID-19. Science, 2020, 368(6493), 829-830.
[http://dx.doi.org/10.1126/science.abb9332] [PMID: 32385101]
[44]
Singh, T.U.; Parida, S.; Lingaraju, M.C.; Kesavan, M.; Kumar, D.; Singh, R.K. Drug repurposing approach to fight COVID-19. Pharmacol. Rep., 2020, 72(6), 1479-1508.
[http://dx.doi.org/10.1007/s43440-020-00155-6] [PMID: 32889701]
[45]
Abbasi, J. Drug repurposing study pinpoints potential covid-19 antivirals. JAMA, 2020, 324(10), 928.
[http://dx.doi.org/10.1001/jama.2020.15948] [PMID: 32897326]
[46]
Abuo-Rahma, G.E.D.A.; Mohamed, M.F.A.; Ibrahim, T.S.; Shoman, M.E. Potential repurposed SARS-CoV-2 (COVID-19) infection drugs. RSC Adv, 2020, 10(45), 26895-26916.
[http://dx.doi.org/10.1039/D0RA05821A]
[47]
Cherian, S.S.; Agrawal, M.; Basu, A.; Abraham, P.; Gangakhedkar, R.R.; Bhargava, B. Perspectives for repurposing drugs for the coronavirus disease 2019. Indian J. Med. Res., 2020, 151(2 & 3), 160-171.
[http://dx.doi.org/10.4103/ijmr.IJMR_585_20] [PMID: 32317408]
[48]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[49]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[50]
Feldmann, M.; Maini, R.N.; Woody, J.N.; Holgate, S.T.; Winter, G.; Rowland, M.; Richards, D.; Hussell, T. Trials of anti-tumour necrosis factor therapy for COVID-19 are urgently needed. Lancet, 2020, 395(10234), 1407-1409.
[http://dx.doi.org/10.1016/S0140-6736(20)30858-8] [PMID: 32278362]
[51]
Schwartz, D.M.; Kanno, Y.; Villarino, A.; Ward, M.; Gadina, M.; O’Shea, J.J. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov., 2017, 17(1), 78-118.
[http://dx.doi.org/10.1038/nrd.2017.267] [PMID: 29282366]
[52]
Kang, S.; Tanaka, T.; Narazaki, M.; Kishimoto, T. Targeting interleukin-6 signaling in clinic. Immunity, 2019, 50(4), 1007-1023.
[http://dx.doi.org/10.1016/j.immuni.2019.03.026] [PMID: 30995492]
[53]
Garbers, C.; Heink, S.; Korn, T.; Rose-John, S. Interleukin-6: designing specific therapeutics for a complex cytokine. Nat. Rev. Drug Discov., 2018, 17(6), 395-412.
[http://dx.doi.org/10.1038/nrd.2018.45] [PMID: 29725131]
[54]
He, L.; Ding, Y.; Zhang, Q.; Che, X.; He, Y.; Shen, H.; Wang, H.; Li, Z.; Zhao, L.; Geng, J.; Deng, Y.; Yang, L.; Li, J.; Cai, J.; Qiu, L.; Wen, K.; Xu, X.; Jiang, S. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS. J. Pathol., 2006, 210(3), 288-297.
[http://dx.doi.org/10.1002/path.2067] [PMID: 17031779]
[55]
Nicholls, J.M.; Poon, L.L.M.; Lee, K.C.; Ng, W.F.; Lai, S.T.; Leung, C.Y.; Chu, C.M.; Hui, P.K.; Mak, K.L.; Lim, W.; Yan, K.W.; Chan, K.H.; Tsang, N.C.; Guan, Y.; Yuen, K.Y.; Peiris, J.S.M. Lung pathology of fatal severe acute respiratory syndrome. Lancet, 2003, 361(9371), 1773-1778.
[http://dx.doi.org/10.1016/S0140-6736(03)13413-7] [PMID: 12781536]
[56]
Ye, R.; Liu, Z. ACE2 exhibits protective effects against LPS-induced acute lung injury in mice by inhibiting the LPS-TLR4 pathway. Exp. Mol. Pathol., 2020, 113(3)104350
[http://dx.doi.org/10.1016/j.yexmp.2019.104350] [PMID: 31805278]
[57]
Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. HLH Across Speciality Collaboration, UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet, 2020, 395(10229), 1033-1034.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[58]
Li, G.; De Clercq, E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug Discov., 2020, 19(3), 149-150.
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
[59]
Heimfarth, L.; Serafini, M.R.; Martins-Filho, P.R.S.; Quintans, J.S.S.; Quintans-Júnior, L.J. Drug repurposing and cytokine management in response to COVID-19: A review. Int. Immunopharmacol., 2020, 88106947
[http://dx.doi.org/10.1016/j.intimp.2020.106947] [PMID: 32919216]
[60]
Mehta, P.; Cron, R.Q.; Hartwell, J.; Manson, J.J.; Tattersall, R.S. Silencing the cytokine storm: the use of intravenous anakinra in haemophagocytic lymphohistiocytosis or macrophage activation syndrome. Lancet Rheumatol., 2020, 2(6), e358-e367.
[http://dx.doi.org/10.1016/S2665-9913(20)30096-5] [PMID: 32373790]
[61]
Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med., 2020, 46(5), 846-848.
[http://dx.doi.org/10.1007/s00134-020-05991-x] [PMID: 32125452]
[62]
Aouba, A.; Baldolli, A.; Geffray, L.; Verdon, R.; Bergot, E.; Martin-Silva, N.; Justet, A. Targeting the inflammatory cascade with anakinra in moderate to severe COVID-19 pneumonia: Case series. Ann. Rheum. Dis., 2020, 79(10), 1381-1382.
[http://dx.doi.org/10.1136/annrheumdis-2020-217706] [PMID: 32376597]
[63]
Cauchois, R.; Koubi, M.; Delarbre, D.; Manet, C.; Carvelli, J.; Blasco, V.B.; Jean, R.; Fouche, L.; Bornet, C.; Pauly, V.; Mazodier, K.; Pestre, V.; Jarrot, P.A.; Dinarello, C.A.; Kaplanski, G. Early IL-1 receptor blockade in severe inflammatory respiratory failure complicating COVID-19. Proc. Natl. Acad. Sci. USA, 2020, 117(32), 18951-18953.
[http://dx.doi.org/10.1073/pnas.2009017117] [PMID: 32699149]
[64]
Cavalli, G.; De Luca, G.; Campochiaro, C.; Della-Torre, E.; Ripa, M.; Canetti, D.; Oltolini, C.; Castiglioni, B.; Tassan Din, C.; Boffini, N.; Tomelleri, A.; Farina, N.; Ruggeri, A.; Rovere-Querini, P.; Di Lucca, G.; Martinenghi, S.; Scotti, R.; Tresoldi, M.; Ciceri, F.; Landoni, G.; Zangrillo, A.; Scarpellini, P.; Dagna, L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: A retrospective cohort study. Lancet Rheumatol., 2020, 2(6), e325-e331.
[http://dx.doi.org/10.1016/S2665-9913(20)30127-2] [PMID: 32501454]
[65]
Dimopoulos, G.; de Mast, Q.; Markou, N.; Theodorakopoulou, M.; Komnos, A.; Mouktaroudi, M.; Netea, M.G.; Spyridopoulos, T.; Verheggen, R.J.; Hoogerwerf, J.; Lachana, A.; van de Veerdonk, F.L.; Giamarellos-Bourboulis, E.J. Favorable anakinra responses in severe covid-19 patients with secondary hemophagocytic lymphohistiocytosis. Cell Host Microbe, 2020, 28(1), 117-123.e1.
[http://dx.doi.org/10.1016/j.chom.2020.05.007] [PMID: 32411313]
[66]
Filocamo, G.; Mangioni, D.; Tagliabue, P.; Aliberti, S.; Costantino, G.; Minoia, F.; Bandera, A. Use of anakinra in severe COVID-19: A case report. Int. J. Infect. Dis., 2020, 96, 607-609.
[http://dx.doi.org/10.1016/j.ijid.2020.05.026] [PMID: 32437934]
[67]
Huet, T.; Beaussier, H.; Voisin, O.; Jouveshomme, S.; Dauriat, G.; Lazareth, I.; Sacco, E.; Naccache, J.M.; Bézie, Y.; Laplanche, S.; Le Berre, A.; Le Pavec, J.; Salmeron, S.; Emmerich, J.; Mourad, J.J.; Chatellier, G.; Hayem, G. Anakinra for severe forms of COVID-19: A cohort study. Lancet Rheumatol., 2020, 2(7), e393-e400.
[http://dx.doi.org/10.1016/S2665-9913(20)30164-8] [PMID: 32835245]
[68]
Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol., 2008, 9(5), 503-510.
[http://dx.doi.org/10.1038/ni1582] [PMID: 18425107]
[69]
Caracciolo, M.; Macheda, S.; Labate, D.; Tescione, M.; La Scala, S.; Vadalà, E.; Squillaci, R.; D’Aleo, F.; Morabito, A.; Garreffa, C.; Marciano, M.C.; Oliva, E.N. Case report: Canakinumab for the treatment of a patient with covid-19 acute respiratory distress syndrome. Front. Immunol., 2020, 11, 1942-1946.
[http://dx.doi.org/10.3389/fimmu.2020.01942] [PMID: 32983123]
[70]
Sheng, C.C.; Sahoo, D.; Dugar, S.; Prada, R.A.; Wang, T.K.M.; Abou Hassan, O.K.; Brennan, D.; Culver, D.A.; Rajendram, P.; Duggal, A.; Lincoff, A.M.; Nissen, S.E.; Menon, V.; Cremer, P.C. Canakinumab to reduce deterioration of cardiac and respiratory function in SARS-CoV-2 associated myocardial injury with heightened inflammation (canakinumab in Covid-19 cardiac injury: The three C study). Clin. Cardiol., 2020, 43(10), 1055-1063.
[http://dx.doi.org/10.1002/clc.23451] [PMID: 32830894]
[71]
Ucciferri, C.; Auricchio, A.; Di Nicola, M.; Potere, N.; Abbate, A.; Cipollone, F.; Vecchiet, J.; Falasca, K. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol., 2020, 2(8), e457-ee458.
[http://dx.doi.org/10.1016/S2665-9913(20)30167-3] [PMID: 32835251]
[72]
Xu, Z.; Shi, L.; Wang, Y.; Zhang, J.; Huang, L.; Zhang, C.; Liu, S.; Zhao, P.; Liu, H.; Zhu, L.; Tai, Y.; Bai, C.; Gao, T.; Song, J.; Xia, P.; Dong, J.; Zhao, J.; Wang, F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med., 2020, 8(4), 420-422.
[http://dx.doi.org/10.1016/S2213-2600(20)30076-X] [PMID: 32085846]
[73]
Zhou, Y.; Fu, B.; Zheng, X.; Wang, D.; Zhao, C.; Qi, Y.; Sun, R.; Tian, Z.; Xu, X.; Wei, H. Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl. Sci. Rev., 2020, 7(6), 998-1002.
[http://dx.doi.org/10.1093/nsr/nwaa041] [PMID: 34676125]
[74]
Guaraldi, G.; Meschiari, M.; Cozzi-Lepri, A.; Milic, J.; Tonelli, R.; Menozzi, M.; Franceschini, E.; Cuomo, G.; Orlando, G.; Borghi, V.; Santoro, A.; Di Gaetano, M.; Puzzolante, C.; Carli, F.; Bedini, A.; Corradi, L.; Fantini, R.; Castaniere, I.; Tabbì, L.; Girardis, M.; Tedeschi, S.; Giannella, M.; Bartoletti, M.; Pascale, R.; Dolci, G.; Brugioni, L.; Pietrangelo, A.; Cossarizza, A.; Pea, F.; Clini, E.; Salvarani, C.; Massari, M.; Viale, P.L.; Mussini, C. Tocilizumab in patients with severe COVID-19: A retrospective cohort study. Lancet Rheumatol., 2020, 2(8), e474-e484.
[http://dx.doi.org/10.1016/S2665-9913(20)30173-9] [PMID: 32835257]
[75]
Klopfenstein, T.; Zayet, S.; Lohse, A.; Balblanc, J.C.; Badie, J.; Royer, P.Y.; Toko, L.; Mezher, C.; Kadiane-Oussou, N.J.; Bossert, M.; Bozgan, A.M.; Charpentier, A.; Roux, M.F.; Contreras, R.; Mazurier, I.; Dussert, P.; Gendrin, V.; Conrozier, T. HNF Hospital Tocilizumab multidisciplinary team. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med. Mal. Infect., 2020, 50(5), 397-400.
[http://dx.doi.org/10.1016/j.medmal.2020.05.001] [PMID: 32387320]
[76]
Luo, P.; Liu, Y.; Qiu, L.; Liu, X.; Liu, D.; Li, J. Tocilizumab treatment in COVID-19: A single center experience. J. Med. Virol., 2020, 92(7), 814-818.
[http://dx.doi.org/10.1002/jmv.25801] [PMID: 32253759]
[77]
Michot, J.M.; Albiges, L.; Chaput, N.; Saada, V.; Pommeret, F.; Griscelli, F.; Balleyguier, C.; Besse, B.; Marabelle, A.; Netzer, F.; Merad, M.; Robert, C.; Barlesi, F.; Gachot, B.; Stoclin, A. Tocilizumab, an anti-IL-6 receptor antibody, to treat COVID-19-related respiratory failure: A case report. Ann. Oncol., 2020, 31(7), 961-964.
[http://dx.doi.org/10.1016/j.annonc.2020.03.300] [PMID: 32247642]
[78]
Mihai, C.; Dobrota, R.; Schröder, M.; Garaiman, A.; Jordan, S.; Becker, M.O.; Maurer, B.; Distler, O. COVID-19 in a patient with systemic sclerosis treated with tocilizumab for SSc-ILD. Ann. Rheum. Dis., 2020, 79(5), 668-669.
[http://dx.doi.org/10.1136/annrheumdis-2020-217442] [PMID: 32241792]
[79]
Radbel, J.; Narayanan, N.; Bhatt, P.J. Use of tocilizumab for COVID-19-induced cytokine release syndrome: A cautionary case report. Chest, 2020, 158(1), e15-e19.
[http://dx.doi.org/10.1016/j.chest.2020.04.024] [PMID: 32343968]
[80]
Sciascia, S.; Aprà, F.; Baffa, A.; Baldovino, S.; Boaro, D.; Boero, R.; Bonora, S.; Calcagno, A.; Cecchi, I.; Cinnirella, G.; Converso, M.; Cozzi, M.; Crosasso, P.; De Iaco, F.; Di Perri, G.; Eandi, M.; Fenoglio, R.; Giusti, M.; Imperiale, D.; Imperiale, G.; Livigni, S.; Manno, E.; Massara, C.; Milone, V.; Natale, G.; Navarra, M.; Oddone, V.; Osella, S.; Piccioni, P.; Radin, M.; Roccatello, D.; Rossi, D. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID-19. Clin. Exp. Rheumatol., 2020, 38(3), 529-532.
[PMID: 32359035]
[81]
Toniati, P.; Piva, S.; Cattalini, M.; Garrafa, E.; Regola, F.; Castelli, F.; Franceschini, F.; Airò, P.; Bazzani, C.; Beindorf, E.A.; Berlendis, M.; Bezzi, M.; Bossini, N.; Castellano, M.; Cattaneo, S.; Cavazzana, I.; Contessi, G.B.; Crippa, M.; Delbarba, A.; De Peri, E.; Faletti, A.; Filippini, M.; Filippini, M.; Frassi, M.; Gaggiotti, M.; Gorla, R.; Lanspa, M.; Lorenzotti, S.; Marino, R.; Maroldi, R.; Metra, M.; Matteelli, A.; Modina, D.; Moioli, G.; Montani, G.; Muiesan, M.L.; Odolini, S.; Peli, E.; Pesenti, S.; Pezzoli, M.C.; Pirola, I.; Pozzi, A.; Proto, A.; Rasulo, F.A.; Renisi, G.; Ricci, C.; Rizzoni, D.; Romanelli, G.; Rossi, M.; Salvetti, M.; Scolari, F.; Signorini, L.; Taglietti, M.; Tomasoni, G.; Tomasoni, L.R.; Turla, F.; Valsecchi, A.; Zani, D.; Zuccalà, F.; Zunica, F.; Focà, E.; Andreoli, L.; Latronico, N. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun. Rev., 2020, 19(7), 102568-102573.
[http://dx.doi.org/10.1016/j.autrev.2020.102568] [PMID: 32376398]
[82]
Xu, X.; Han, M.; Li, T.; Sun, W.; Wang, D.; Fu, B.; Zhou, Y.; Zheng, X.; Yang, Y.; Li, X.; Zhang, X.; Pan, A.; Wei, H. Effective treatment of severe COVID-19 patients with tocilizumab. Proc. Natl. Acad. Sci. USA, 2020, 117(20), 10970-10975.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[83]
Zhang, X.; Song, K.; Tong, F.; Fei, M.; Guo, H.; Lu, Z.; Wang, J.; Zheng, C. First case of COVID-19 in a patient with multiple myeloma successfully treated with tocilizumab. Blood Adv., 2020, 4(7), 1307-1310.
[http://dx.doi.org/10.1182/bloodadvances.2020001907] [PMID: 32243501]
[84]
Benucci, M.; Giannasi, G.; Cecchini, P.; Gobbi, F.L.; Damiani, A.; Grossi, V.; Infantino, M.; Manfredi, M. COVID-19 pneumonia treated with Sarilumab: A clinical series of eight patients. J. Med. Virol., 2020, 92(11), 2368-2370.
[http://dx.doi.org/10.1002/jmv.26062] [PMID: 32472703]
[85]
Della-Torre, E.; Campochiaro, C.; Cavalli, G.; De Luca, G.; Napolitano, A.; La Marca, S.; Boffini, N.; Da Prat, V.; Di Terlizzi, G.; Lanzillotta, M.; Rovere Querini, P.; Ruggeri, A.; Landoni, G.; Tresoldi, M.; Ciceri, F.; Zangrillo, A.; De Cobelli, F.; Dagna, L. SARI-RAF Study Group. SARI-RAF Study Group members. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia with systemic hyperinflammation: An open-label cohort study. Ann. Rheum. Dis., 2020, 79(10), 1277-1285.
[http://dx.doi.org/10.1136/annrheumdis-2020-218122] [PMID: 32620597]
[86]
Balestri, R.; Rech, G.; Girardelli, C.R. SARS-CoV-2 infection in a psoriatic patient treated with IL-17 inhibitor. J. Eur. Acad. Dermatol. Venereol., 2020, 34(8), e357-e358.
[http://dx.doi.org/10.1111/jdv.16571] [PMID: 32358791]
[87]
Conti, A.; Lasagni, C.; Bigi, L.; Pellacani, G. Evolution of COVID-19 infection in four psoriatic patients treated with biological drugs. J. Eur. Acad. Dermatol. Venereol., 2020, 34(8), e360-e361.
[http://dx.doi.org/10.1111/jdv.16587] [PMID: 32379913]
[88]
Messina, F.; Piaserico, S. SARS-CoV-2 infection in a psoriatic patient treated with IL-23 inhibitor. J. Eur. Acad. Dermatol. Venereol., 2020, 34(6), e254-e255.
[http://dx.doi.org/10.1111/jdv.16468] [PMID: 32294258]
[89]
Benhadou, F.; Del Marmol, V. Improvement of SARS-CoV-2 symptoms following Guselkumab injection in a psoriatic patient. J. Eur. Acad. Dermatol. Venereol., 2020, 34(8), e363-e364.
[http://dx.doi.org/10.1111/jdv.16590] [PMID: 32379925]
[90]
Khanna, R.; Chande, N.; Vermeire, S.; Sandborn, W.J.; Parker, C.E.; Feagan, B.G. The next wave of biological agents for the treatment of IBD: Evidence from cochrane reviews. Inflamm. Bowel Dis., 2016, 22(7), 1737-1743.
[http://dx.doi.org/10.1097/MIB.0000000000000808] [PMID: 27306074]
[91]
Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Rawling, M.; Savory, E.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 2020, 395(10223), e30-e31.
[http://dx.doi.org/10.1016/S0140-6736(20)30304-4] [PMID: 32032529]
[92]
Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol., 2002, 2(5), 364-371.
[http://dx.doi.org/10.1038/nri802] [PMID: 12033742]
[93]
Jacobs, J.; Clark-Snustad, K.; Lee, S. Case report of SARS-CoV-2 infection in a patient with ulcerative colitis on tofacitinib. Inflamm. Bowel Dis., 2020, 26(7)e64
[http://dx.doi.org/10.1093/ibd/izaa093] [PMID: 32342098]
[94]
Caocci, G.; La Nasa, G. Could ruxolitinib be effective in patients with COVID-19 infection at risk of acute respiratory distress syndrome (ARDS)? Ann. Hematol., 2020, 99(7), 1675-1676.
[http://dx.doi.org/10.1007/s00277-020-04067-6] [PMID: 32405693]
[95]
Gaspari, V.; Zengarini, C.; Greco, S.; Vangeli, V.; Mastroianni, A. Side effects of ruxolitinib in patients with SARS-CoV-2 infection: Two case reports. Int. J. Antimicrob. Agents, 2020, 56(2), 106023-106024.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106023] [PMID: 32450201]
[96]
Cao, Y.; Wei, J.; Zou, L.; Jiang, T.; Wang, G.; Chen, L.; Huang, L.; Meng, F.; Huang, L.; Wang, N.; Zhou, X.; Luo, H.; Mao, Z.; Chen, X.; Xie, J.; Liu, J.; Cheng, H.; Zhao, J.; Huang, G.; Wang, W.; Zhou, J. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J. Allergy Clin. Immunol., 2020, 146(1), 137-146.e3.
[http://dx.doi.org/10.1016/j.jaci.2020.05.019] [PMID: 32470486]
[97]
Capochiani, E.; Frediani, B.; Iervasi, G.; Paolicchi, A.; Sani, S.; Roncucci, P.; Cuccaro, A.; Franchi, F.; Simonetti, F.; Carrara, D.; Bertaggia, I.; Nasso, D.; Riccioni, R.; Scolletta, S.; Valente, S.; Conticini, E.; Gozzetti, A.; Bocchia, M. Ruxolitinib rapidly reduces acute respiratory distress syndrome in covid-19 disease. Analysis of data collection from respire protocol. Front. Med. (Lausanne), 2020, 7, 466-474.
[http://dx.doi.org/10.3389/fmed.2020.00466] [PMID: 32850921]
[98]
La Rosée, F.; Bremer, H.C.; Gehrke, I.; Kehr, A.; Hochhaus, A.; Birndt, S.; Fellhauer, M.; Henkes, M.; Kumle, B.; Russo, S.G.; La Rosée, P. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia, 2020, 34(7), 1805-1815.
[http://dx.doi.org/10.1038/s41375-020-0891-0] [PMID: 32518419]
[99]
Zhang, X.; Zhang, Y.; Qiao, W.; Zhang, J.; Qi, Z. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19. Int. Immunopharmacol., 2020, 86, 106749-106753.
[http://dx.doi.org/10.1016/j.intimp.2020.106749] [PMID: 32645632]
[100]
Lenz, H-J.; Richardson, P.; Stebbing, J. The emergence of baricitinib: A story of tortoises versus hares. Clin. Infect. Dis., 2021, 72(7), 1251-1252.
[http://dx.doi.org/10.1093/cid/ciaa940] [PMID: 32901809]
[101]
Bronte1, V.; Ugel, S.; Tinazzi, E.; Vella, A. Baricitinib restrains the immune dysregulation in COVID-19 patients. J. Clin. Invest., 2020, 130(12), 6409-6419.
[http://dx.doi.org/10.1172/JCI141772]
[102]
Cantini, F.; Niccoli, L.; Matarrese, D.; Nicastri, E.; Stobbione, P.; Goletti, D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect., 2020, 81(2), 318-356.
[http://dx.doi.org/10.1016/j.jinf.2020.04.017] [PMID: 32333918]
[103]
Cingolani, A.; Tummolo, A.M.; Montemurro, G.; Gremese, E.; Larosa, L.; Cipriani, M.C.; Pasciuto, G.; Liperoti, R.; Murri, R.; Pirronti, T.; Cauda, R.; Fantoni, M. for COVID 2 Columbus Working Group. Baricitinib as rescue therapy in a patient with COVID-19 with no complete response to sarilumab. Infection, 2020, 48(5), 767-771.
[http://dx.doi.org/10.1007/s15010-020-01476-7] [PMID: 32642806]
[104]
Sodani, P.; Mucci, L.; Girolimetti, R.; Tedesco, S.; Monaco, F.; Campanozzi, D.; Brunori, M.; Maltoni, S.; Bedetta, S.; Di Carlo, A.M.; Candoli, P.; Mancini, M.; Rebonato, A.; D’Adamo, F.; Capalbo, M.; Frausini, G. Successful recovery from COVID-19 pneumonia after receiving baricitinib, tocilizumab, and remdesivir. A case report: Review of treatments and clinical role of computed tomography analysis. Respir. Med. Case Rep., 2020, 31, 101115-101117.
[http://dx.doi.org/10.1016/j.rmcr.2020.101115] [PMID: 32670785]
[105]
Titanji, B.K.; Farley, M.M.; Mehta, A.; Connor-Schuler, R. Use of baricitinib in patients with moderate and severe Covid-19. Clin. Infect. Dis., 2021, 72(7), 1247-1250.
[http://dx.doi.org/10.1093/cid/ciaa879] [PMID: 32597466]
[106]
Praveen, D.; Puvvada, R.C.; Aanandhi, V.A. Janus kinase inhibitor baricitinib is not an ideal option for management of COVID-19. Int. J. Antimicrob. Agents, 2020, 55(5), 105967-105968.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105967] [PMID: 32259575]
[107]
Chaplin, S. Baricitinib: A new oral treatment for rheumatoid arthritis. Prescriber, 2017, 28(6), 44-46.
[http://dx.doi.org/10.1002/psb.1586]
[109]
Stebbing, J.; Krishnan, V.; de Bono, S.; Ottaviani, S.; Casalini, G.; Richardson, P.J.; Monteil, V.; Lauschke, V.M.; Mirazimi, A.; Youhanna, S.; Tan, Y.J.; Baldanti, F.; Sarasini, A.; Terres, J.A.R.; Nickoloff, B.J.; Higgs, R.E.; Rocha, G.; Byers, N.L.; Schlichting, D.E.; Nirula, A.; Cardoso, A.; Corbellino, M. Sacco Baricitinib Study Group. Mechanism of baricitinib supports artificial intelligence-predicted testing in COVID-19 patients. EMBO Mol. Med., 2020, 12(8), e12697-e12711.
[http://dx.doi.org/10.15252/emmm.202012697] [PMID: 32473600]
[110]
Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; Norris, A.; Sanseau, P.; Cavalla, D.; Pirmohamed, M. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov., 2019, 18(1), 41-58.
[http://dx.doi.org/10.1038/nrd.2018.168] [PMID: 30310233]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy