Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Gut Microbiota as the Potential Mechanism to Mediate Drug Metabolism Under High-altitude Hypoxia

Author(s): Xue Bai, Guiqin Liu, Jianxin Yang, Junbo Zhu and Xiangyang Li*

Volume 23, Issue 1, 2022

Published on: 21 February, 2022

Page: [8 - 20] Pages: 13

DOI: 10.2174/1389200223666220128141038

Price: $65

Abstract

Background: The characteristics of pharmacokinetics and the activity and expression of drugmetabolizing enzymes and transporters significantly change under a high-altitude hypoxic environment. Gut microbiota is an important factor affecting the metabolism of drugs through direct or indirect effects, changing the bioavailability, biological activity, or toxicity of drugs and further affecting the efficacy and safety of drugs in vivo. A high-altitude hypoxic environment significantly changes the structure and diversity of gut microbiota, which may play a key role in drug metabolism under a high-altitude hypoxic environment.

Methods: An investigation was carried out by reviewing published studies to determine the role of gut microbiota in the regulation of drug-metabolizing enzymes and transporters. Data and information on expression change in gut microbiota, drug-metabolizing enzymes, and transporters under a high-altitude hypoxic environment were explored and proposed.

Results: High-altitude hypoxia is an important environmental factor that can adjust the structure of the gut microbiota and change the diversity of intestinal microbes. It was speculated that the gut microbiota could regulate drugmetabolizing enzymes through two potential mechanisms, the first being through direct regulation of the metabolism of drugs in vivo and the second being indirect, i.e., through the regulation of drug-metabolizing enzymes and transporters, thereby affecting the activity of drugs.

Conclusion: This article reviews the effects of high-altitude hypoxia on the gut microbiota and the effects of these changes on drug metabolism.

Keywords: High-altitude hypoxia, drug metabolism, gut microbiota, cytochrome P450, drug transporters, mechanism.

Graphical Abstract

[1]
Li, X.Y.; Liu, Y.N.; Li, Y.P.; Yuan, M.; Zhu, J.B. Pharmacokinetics of sulfamethoxazole in healthy Han volunteers living at plain and in native Han and Tibetan healthy volunteers living at high altitude. Yao Xue Xue Bao, 2011, 46(9), 1117-1122.
[PMID: 22121785]
[2]
Zhang, J.L.; Li, X.Y. A review of drug metabolism under hypoxia environment at high altitude. Yao Xue Xue Bao, 2015, 50(9), 1073-1079.
[PMID: 26757541]
[3]
Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489(7415), 220-230.
[http://dx.doi.org/10.1038/nature11550] [PMID: 22972295]
[4]
Willyard, C. When drugs unintentionally affect gut bugs. Nat. Rev. Drug Discov., 2018, 17(6), 383-384.
[http://dx.doi.org/10.1038/nrd.2018.88] [PMID: 29844598]
[5]
Shreiner, A.B.; Kao, J.Y.; Young, V.B.; Young, V.B. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol., 2015, 31(1), 69-75.
[http://dx.doi.org/10.1097/MOG.0000000000000139] [PMID: 25394236]
[6]
Xing, J.; Ying, Y.; Mao, C.; Liu, Y.; Wang, T.; Zhao, Q.; Zhang, X.; Yan, F.; Zhang, H. Hypoxia induces senescence of bone marrow mesenchymal stem cells via altered gut microbiota. Nat. Commun., 2018, 9(1), 2020-2033.
[http://dx.doi.org/10.1038/s41467-018-04453-9] [PMID: 29789585]
[7]
Sun, C.; Chen, L.; Shen, Z. Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice. Saudi Pharm. J., 2019, 27(8), 1146-1156.
[http://dx.doi.org/10.1016/j.jsps.2019.09.011] [PMID: 31885474]
[8]
Liu, G.Q.; Bai, X.; Duan, Y.B.; Zhu, J.B.; Yang, J.X.; Wang, Q.; Zhou, Y.; Gu, W.Q.; Li, X.Y. Changes in the intestinal flora of rats under high altitude hypoxia. Yao Xue Xue Bao, 2021, 56, 1100-1108.
[9]
Choi, M.S.; Yu, J.S.; Yoo, H.H.; Kim, D.H. The role of gut microbiota in the pharmacokinetics of antihypertensive drugs. Pharmacol. Res., 2018, 130, 164-171.
[http://dx.doi.org/10.1016/j.phrs.2018.01.019] [PMID: 29391236]
[10]
Magne, F.; Gotteland, M.; Gauthier, L.; Zazueta, A.; Pesoa, S.; Navarrete, P.; Balamurugan, R. The Firmicutes/Bacteroidetes ratio: A relevant marker of gut dysbiosis in obese patients. Nutrients, 2020, 12(5), 1474.
[http://dx.doi.org/10.3390/nu12051474] [PMID: 32438689]
[11]
Benson, A.K.; Kelly, S.A.; Legge, R.; Ma, F.; Low, S.J.; Kim, J.; Zhang, M.; Oh, P.L.; Nehrenberg, D.; Hua, K.; Kachman, S.D.; Moriyama, E.N.; Walter, J.; Peterson, D.A.; Pomp, D. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc. Natl. Acad. Sci. USA, 2010, 107(44), 18933-18938.
[http://dx.doi.org/10.1073/pnas.1007028107] [PMID: 20937875]
[12]
Carmody, R.N.; Turnbaugh, P.J. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J. Clin. Invest., 2014, 124(10), 4173-4181.
[http://dx.doi.org/10.1172/JCI72335] [PMID: 25105361]
[13]
Li, H.; He, J.; Jia, W. The influence of gut microbiota on drug metabolism and toxicity. Expert Opin. Drug Metab. Toxicol., 2016, 12(1), 31-40.
[http://dx.doi.org/10.1517/17425255.2016.1121234] [PMID: 26569070]
[14]
Malfatti, M.A.; Kuhn, E.A.; Murugesh, D.K.; Mendez, M.E.; Hum, N.; Thissen, J.B.; Jaing, C.J.; Loots, G.G.; Loots, G.G. Manipulation of the gut microbiome alters acetaminophen biodisposition in mice. Sci. Rep., 2020, 10(1), 4571.
[http://dx.doi.org/10.1038/s41598-020-60982-8] [PMID: 32165665]
[15]
Haiser, H.J.; Gootenberg, D.B.; Chatman, K.; Sirasani, G.; Balskus, E.P.; Turnbaugh, P.J. Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science, 2013, 341(6143), 295-298.
[http://dx.doi.org/10.1126/science.1235872] [PMID: 23869020]
[16]
Klatt, N.R.; Cheu, R.; Birse, K.; Zevin, A.S.; Perner, M.; Noël-Romas, L.; Grobler, A.; Westmacott, G.; Xie, I.Y.; Butler, J.; Mansoor, L.; McKinnon, L.R.; Passmore, J.S.; Abdool Karim, Q.; Abdool Karim, S.S.; Burgener, A.D. Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women. Science, 2017, 356(6341), 938-945.
[http://dx.doi.org/10.1126/science.aai9383] [PMID: 28572388]
[17]
Elmer, G.W.; Remmel, R.P. Role of the intestinal microflora in clonazepam metabolism in the rat. Xenobiotica, 1984, 14(11), 829-840.
[http://dx.doi.org/10.3109/00498258409151481] [PMID: 6506755]
[18]
Maini Rekdal, V.; Bess, E.N.; Bisanz, J.E.; Turnbaugh, P.J.; Balskus, E.P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science, 2019, 364(6445), 6445.
[http://dx.doi.org/10.1126/science.aau6323] [PMID: 31196984]
[19]
Fu, Z.D.; Selwyn, F.P.; Cui, J.Y.; Klaassen, C.D. RNA-Seq profiling of intestinal expression of xenobiotic processing genes in Germ-Free mice. Drug Metab. Dispos., 2017, 45(12), 1225-1238.
[http://dx.doi.org/10.1124/dmd.117.077313] [PMID: 28939687]
[20]
Pellock, S.J.; Redinbo, M.R. Glucuronides in the gut: Sugar-driven symbioses between microbe and host. J. Biol. Chem., 2017, 292(21), 8569-8576.
[http://dx.doi.org/10.1074/jbc.R116.767434] [PMID: 28389557]
[21]
Dabek, M.; McCrae, S.I.; Stevens, V.J.; Duncan, S.H.; Louis, P. Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol. Ecol., 2008, 66(3), 487-495.
[http://dx.doi.org/10.1111/j.1574-6941.2008.00520.x] [PMID: 18537837]
[22]
Yip, L.Y.; Aw, C.C.; Lee, S.H.; Hong, Y.S.; Ku, H.C.; Xu, W.H.; Chan, J.M.X.; Cheong, E.J.Y.; Chng, K.R.; Ng, A.H.Q.; Nagarajan, N.; Mahendran, R.; Lee, Y.K.; Browne, E.R.; Chan, E.C.Y. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat. Hepatology, 2018, 67(1), 282-295.
[http://dx.doi.org/10.1002/hep.29327] [PMID: 28646502]
[23]
Tobin, P.; Clarke, S.; Seale, J.P.; Lee, S.; Solomon, M.; Aulds, S.; Crawford, M.; Gallagher, J.; Eyers, T.; Rivory, L. The in vitro metabolism of irinotecan (CPT-11) by carboxylesterase and beta-glucuronidase in human colorectal tumours. Br. J. Clin. Pharmacol., 2006, 62(1), 122-129.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02477.x] [PMID: 16842384]
[24]
Kim, I.S.; Yoo, D.H.; Jung, I.H.; Lim, S.; Jeong, J.J.; Kim, K.A.; Bae, O.N.; Yoo, H.H.; Kim, D.H. Reduced metabolic activity of gut microbiota by antibiotics can potentiate the antithrombotic effect of aspirin. Biochem. Pharmacol., 2016, 122, 72-79.
[http://dx.doi.org/10.1016/j.bcp.2016.09.023] [PMID: 27687643]
[25]
Chung, K.T.; Stevens, S.E., Jr; Cerniglia, C.E. The reduction of azo dyes by the intestinal microflora. Crit. Rev. Microbiol., 1992, 18(3), 175-190.
[http://dx.doi.org/10.3109/10408419209114557] [PMID: 1554423]
[26]
Zhang, J.; Zhang, J.; Wang, R. Gut microbiota modulates drug pharmacokinetics. Drug Metab. Rev., 2018, 50(3), 357-368.
[http://dx.doi.org/10.1080/03602532.2018.1497647] [PMID: 30227749]
[27]
Alexander, C.; Swanson, K.S.; Fahey, G.C.; Garleb, K.A. Perspective: physiologic importance of short-chain fatty acids from nondigestible carbohydrate fermentation. Adv. Nutr., 2019, 10(4), 576-589.
[http://dx.doi.org/10.1093/advances/nmz004] [PMID: 31305907]
[28]
He, Y.; Fu, L.; Li, Y.; Wang, W.; Gong, M.; Zhang, J.; Dong, X.; Huang, J.; Wang, Q.; Mackay, C.R.; Fu, Y.X.; Chen, Y.; Guo, X. Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab., 2021, 33(5), 988-1000.e7.
[http://dx.doi.org/10.1016/j.cmet.2021.03.002] [PMID: 33761313]
[29]
Poesen, R.; Evenepoel, P.; de Loor, H.; Kuypers, D.; Augustijns, P.; Meijers, B. Metabolism, protein binding, and renal clearance of microbiota-derived p-Cresol in patients with CKD. Clin. J. Am. Soc. Nephrol., 2016, 11(7), 1136-1144.
[http://dx.doi.org/10.2215/CJN.00160116] [PMID: 27084876]
[30]
Clayton, T.A.; Baker, D.; Lindon, J.C.; Everett, J.R.; Nicholson, J.K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc. Natl. Acad. Sci. USA, 2009, 106(34), 14728-14733.
[http://dx.doi.org/10.1073/pnas.0904489106] [PMID: 19667173]
[31]
Pavlović, N.; Goločorbin-Kon, S.; Ðanić, M.; Stanimirov, B.; Al-Salami, H.; Stankov, K.; Mikov, M. Bile acids and their derivatives as potential modifiers of drug release and pharmacokinetic profiles. Front. Pharmacol., 2018, 9, 1283-1305.
[http://dx.doi.org/10.3389/fphar.2018.01283] [PMID: 30467479]
[32]
Zarrinpar, A.; Chaix, A.; Xu, Z.Z.; Chang, M.W.; Marotz, C.A.; Saghatelian, A.; Knight, R.; Panda, S. Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat. Commun., 2018, 9(1), 2872.
[http://dx.doi.org/10.1038/s41467-018-05336-9] [PMID: 30030441]
[33]
Toda, T.; Saito, N.; Ikarashi, N.; Ito, K.; Yamamoto, M.; Ishige, A.; Watanabe, K.; Sugiyama, K. Intestinal flora induces the expression of Cyp3a in the mouse liver. Xenobiotica, 2009, 39(4), 323-334.
[http://dx.doi.org/10.1080/00498250802651984] [PMID: 19350455]
[34]
Toda, T.; Ohi, K.; Kudo, T.; Yoshida, T.; Ikarashi, N.; Ito, K.; Sugiyama, K. Ciprofloxacin suppresses Cyp3a in mouse liver by reducing lithocholic acid-producing intestinal flora. Drug Metab. Pharmacokinet., 2009, 24(3), 201-208.
[http://dx.doi.org/10.2133/dmpk.24.201] [PMID: 19571431]
[35]
Morgan, E.T.; Dempsey, J.L.; Mimche, S.M.; Lamb, T.J.; Kulkarni, S.; Cui, J.Y.; Jeong, H.; Slitt, A.L. Physiological regulation of drug metabolism and transport: pregnancy, microbiome, inflammation, infection, and fasting. Drug Metab. Dispos., 2018, 46(5), 503-513.
[http://dx.doi.org/10.1124/dmd.117.079905] [PMID: 29514828]
[36]
Illés, P.; Krasulová, K.; Vyhlídalová, B.; Poulíková, K.; Marcalíková, A.; Pečinková, P.; Sirotová, N.; Vrzal, R.; Mani, S.; Dvořák, Z. Indole microbial intestinal metabolites expand the repertoire of ligands and agonists of the human pregnane X receptor. Toxicol. Lett., 2020, 334, 87-93.
[http://dx.doi.org/10.1016/j.toxlet.2020.09.015] [PMID: 33002526]
[37]
Selwyn, F.P.; Cui, J.Y.; Klaassen, C.D. RNA-Seq quantification of hepatic drug processing genes in Germ-Free mice. Drug Metab. Dispos., 2015, 43(10), 1572-1580.
[http://dx.doi.org/10.1124/dmd.115.063545] [PMID: 25956306]
[38]
Kuno, T.; Hirayama-Kurogi, M.; Ito, S.; Ohtsuki, S. Effect of intestinal flora on protein expression of drug-metabolizing enzymes and transporters in the liver and kidney of Germ-Free and antibiotics-treated mice. Mol. Pharm., 2016, 13(8), 2691-2701.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00259] [PMID: 27376980]
[39]
Mu, C.; Zhu, W. Antibiotic effects on gut microbiota, metabolism, and beyond. Appl. Microbiol. Biotechnol., 2019, 103(23-24), 9277-9285.
[http://dx.doi.org/10.1007/s00253-019-10165-x] [PMID: 31701196]
[40]
Loiacono, L.A.; Shapiro, D.S. Detection of hypoxia at the cellular level. Crit. Care Clin., 2010, 26(2), 409-421.
[http://dx.doi.org/10.1016/j.ccc.2009.12.001] [PMID: 20381729]
[41]
Anand, A.C.; Sashindran, V.K.; Mohan, L. Gastrointestinal problems at high altitude. Trop. Gastroenterol., 2006, 27(4), 147-153.
[PMID: 17542291]
[42]
Adak, A.; Maity, C.; Ghosh, K.; Mondal, K.C. Alteration of predominant gastrointestinal flora and oxidative damage of large intestine under simulated hypobaric hypoxia. Z. Gastroenterol., 2014, 52(2), 180-186.
[http://dx.doi.org/10.1055/s-0033-1336007] [PMID: 24526402]
[43]
Zhang, W.; Jiao, L.; Liu, R.; Zhang, Y.; Ji, Q.; Zhang, H.; Gao, X.; Ma, Y.; Shi, H.N. The effect of exposure to high altitude and low oxygen on intestinal microbial communities in mice. PLoS One, 2018, 13(9)e0203701
[http://dx.doi.org/10.1371/journal.pone.0203701] [PMID: 30208088]
[44]
Ma, Y.; Ma, S.; Shang, C.X.; Ge, R.L. Effects of hypoxic exposure on rats’ gut microbiota. Microbiol China, 2019, 46, 120-129.
[45]
Li, L.; Zhao, X. Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing. Sci. Rep., 2015, 5, 14682.
[http://dx.doi.org/10.1038/srep14682] [PMID: 26443005]
[46]
Li, K.; Dan, Z.; Gesang, L.; Wang, H.; Zhou, Y.; Du, Y.; Ren, Y.; Shi, Y.; Nie, Y. Comparative analysis of gut microbiota of native Tibetan and Han populations living at different altitudes. PLoS One, 2016, 11(5)e0155863
[http://dx.doi.org/10.1371/journal.pone.0155863] [PMID: 27232599]
[47]
Moeller, A.H.; Li, Y.; Mpoudi Ngole, E.; Ahuka-Mundeke, S.; Lonsdorf, E.V.; Pusey, A.E.; Peeters, M.; Hahn, B.H.; Ochman, H. Rapid changes in the gut microbiome during human evolution. Proc. Natl. Acad. Sci. USA, 2014, 111(46), 16431-16435.
[http://dx.doi.org/10.1073/pnas.1419136111] [PMID: 25368157]
[48]
Lan, D.; Ji, W.; Lin, B.; Chen, Y.; Huang, C.; Xiong, X.; Fu, M.; Mipam, T.D.; Ai, Y.; Zeng, B.; Li, Y.; Cai, Z.; Zhu, J.; Zhang, D.; Li, J. Correlations between gut microbiota community structures of Tibetans and geography. Sci. Rep., 2017, 7(1), 16982.
[http://dx.doi.org/10.1038/s41598-017-17194-4] [PMID: 29209019]
[49]
Jia, Z.; Zhao, X.; Liu, X.; Zhao, L.; Jia, Q.; Shi, J.; Xu, X.; Hao, L.; Xu, Z.; Zhong, Q.; Yu, K.; Cui, S.; Chen, H.; Guo, J.; Li, X.; Han, Y.; Song, X.; Zhao, C.; Bo, X.; Tian, Y.; Wang, W.; Xie, G.; Feng, Q.; He, K. Impacts of the plateau environment on the gut microbiota and blood clinical indexes in Han and Tibetan individuals. mSystems, 2020, 5(1), e00660-e19.
[http://dx.doi.org/10.1128/mSystems.00660-19] [PMID: 31964769]
[50]
Zhang, Y.T.; Huang, L.J.; Zhao, A.P.; Sun, Y.M.; Li, W.B.; Zhang, J.H.; Wang, R. The effect of acute hypobaric hypoxia on bile acid composition in the small intestine of rats., https://kns.cnki.net/kcms/detail/11.2163.R.20210526.1338.008.html
[51]
Xue, J.; Allaband, C.; Zhou, D.; Poulsen, O.; Martino, C.; Jiang, L.; Tripathi, A.; Elijah, E.; Dorrestein, P.C.; Knight, R.; Zarrinpar, A.; Haddad, G.G. Tripathi1, A.; Elijah, E.; Dorrestein, P.C.; Knight, R.; Zarrinpar, A.; Haddad, G.G. Influence of intermittent hypoxia/hypercapnia on atherosclerosis, gut microbiome, and metabolome. Front. Physiol., 2021, 12663950
[http://dx.doi.org/10.3389/fphys.2021.663950] [PMID: 33897472]
[52]
Kelly, C.J.; Zheng, L.; Campbell, E.L.; Saeedi, B.; Scholz, C.C.; Bayless, A.J.; Wilson, K.E.; Glover, L.E.; Kominsky, D.J.; Magnuson, A.; Weir, T.L.; Ehrentraut, S.F.; Pickel, C.; Kuhn, K.A.; Lanis, J.M.; Nguyen, V.; Taylor, C.T.; Colgan, S.P. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe, 2015, 17(5), 662-671.
[http://dx.doi.org/10.1016/j.chom.2015.03.005] [PMID: 25865369]
[53]
Li, X.Y.; Gao, F.; Li, Z.Q.; Guan, W.; Feng, W.L.; Ge, R.L. Comparison of the pharmacokinetics of sulfamethoxazole in male chinese volunteers at low altitude and acute exposure to high altitude versus subjects living chronically at high altitude: an open-label, controlled, prospective study. Clin. Ther., 2009, 31(11), 2744-2754.
[http://dx.doi.org/10.1016/j.clinthera.2009.11.019] [PMID: 20110016]
[54]
Zhu, J.B.; Yang, J.X.; Nian, Y.Q.; Liu, G.Q.; Duan, Y.B.; Bai, X.; Wang, Q.; Zhou, Y.; Wang, X.J.; Qu, N.; Li, X.Y. Pharmacokinetics of acetaminophen and metformin hydrochloride in rats after exposure to simulated high altitude hypoxia. Front. Pharmacol., 2021, 12692349
[http://dx.doi.org/10.3389/fphar.2021.692349] [PMID: 34220516]
[55]
Gong, W.; Liu, S.; Xu, P.; Fan, M.; Xue, M. Simultaneous quantification of diazepam and dexamethasone in plasma by high-performance liquid chromatography with tandem mass spectrometry and its application to a pharmacokinetic comparison between normoxic and hypoxic rats. Molecules, 2015, 20(4), 6901-6912.
[http://dx.doi.org/10.3390/molecules20046901] [PMID: 25913929]
[56]
Gola, S.; Gupta, A.; Keshri, G.K.; Nath, M.; Velpandian, T. Evaluation of hepatic metabolism and pharmacokinetics of ibuprofen in rats under chronic hypobaric hypoxia for targeted therapy at high altitude. J. Pharm. Biomed. Anal., 2016, 121, 114-122.
[http://dx.doi.org/10.1016/j.jpba.2016.01.018] [PMID: 26799979]
[57]
Webster, L.K.; Jones, D.B.; Mihaly, G.W.; Morgan, D.J.; Smallwood, R.A. Effect of hypoxia on oxidative and reductive pathways of omeprazole metabolism by the isolated perfused rat liver. Biochem. Pharmacol., 1985, 34(8), 1239-1245.
[http://dx.doi.org/10.1016/0006-2952(85)90501-5] [PMID: 3994745]
[58]
Ritschel, W.A.; Paulos, C.; Arancibia, A.; Pezzani, M.; Agrawal, M.A.; Wetzelsberger, K.M.; Lücker, P.W. Pharmacokinetics of meperidine in healthy volunteers after short- and long-term exposure to high altitude. J. Clin. Pharmacol., 1996, 36(7), 610-616.
[http://dx.doi.org/10.1002/j.1552-4604.1996.tb04225.x] [PMID: 8844443]
[59]
Zhang, J.; Wang, R.; Xie, H.; Yin, Q.; Jia, Z.; Li, W. Effect of acute exposure to high altitude on pharmacokinetics of propranolol and metoprolol in rats. Nan Fang Yi Ke Da Xue Xue Bao, 2014, 34(11), 1616-1620.
[PMID: 25413060]
[60]
Zhang, J.H.; Wang, R.; Xie, H.; Jia, Z.P.; Li, W.B.; Lu, H.; Wang, C.; Sun, Y.H.; Wang, Y.L.; Zhang, X.H.; Hao, Y. Effects of aminophylline on the pharmacokinetic parameters at high altitude. Pharm. J. Chin. PLA, 2014, 30, 125-131.
[61]
Vij, A.G.; Kishore, K.; Dey, J. Effect of intermittent hypobaric hypoxia on efficacy & clearance of drugs. Indian J. Med. Res., 2012, 135, 211-216.
[PMID: 22446863]
[62]
Luo, B.; Wang, R.; Li, W.; Yang, T.; Wang, C.; Lu, H.; Zhao, A.; Zhang, J.; Jia, Z. Pharmacokinetic changes of norfloxacin based on expression of MRP2 after acute exposure to high altitude at 4300m. Biomed. Pharmacother., 2017, 89, 1078-1085.
[http://dx.doi.org/10.1016/j.biopha.2017.02.092] [PMID: 28292016]
[63]
Richer, M.; Lam, Y.W. Hypoxia, arterial pH and theophylline disposition. Clin. Pharmacokinet., 1993, 25(4), 283-299.
[http://dx.doi.org/10.2165/00003088-199325040-00004] [PMID: 8261713]
[64]
du Souich, P.; Hartemann, D.; Saunier, C. Effect of acute and chronic moderate hypoxia on diltiazem kinetics and metabolism in the dog. Pharmacology, 1993, 47(6), 378-385.
[http://dx.doi.org/10.1159/000139121] [PMID: 8278460]
[65]
Fradette, C.; Batonga, J.; Teng, S.; Piquette-Miller, M.; du Souich, P. Animal models of acute moderate hypoxia are associated with a down-regulation of CYP1A1, 1A2, 2B4, 2C5, and 2C16 and up-regulation of CYP3A6 and P-glycoprotein in liver. Drug Metab. Dispos., 2007, 35(5), 765-771.
[http://dx.doi.org/10.1124/dmd.106.013508] [PMID: 17303624]
[66]
Kurdi, J.; Maurice, H.; El-Kadi, A.O.; Ong, H.; Dalkara, S.; Bélanger, P.M.; Souich, P. Effect of hypoxia alone or combined with inflammation and 3-methylcholanthrene on hepatic cytochrome P450 in conscious rabbits. Br. J. Pharmacol., 1999, 128(2), 365-373.
[http://dx.doi.org/10.1038/sj.bjp.0702795] [PMID: 10510446]
[67]
Li, X.; Wang, X.; Li, Y.; Yuan, M.; Zhu, J.; Su, X.; Yao, X.; Fan, X.; Duan, Y. Effect of exposure to acute and chronic high-altitude hypoxia on the activity and expression of CYP1A2, CYP2D6, CYP2C9, CYP2C19 and NAT2 in rats. Pharmacology, 2014, 93(1-2), 76-83.
[http://dx.doi.org/10.1159/000358128] [PMID: 24557547]
[68]
Suzuki, E.; Matsunaga, T.; Aonuma, A.; Sasaki, T.; Nagata, K.; Ohmori, S. Effects of hypoxia-inducible factor-1α chemical stabilizer, CoCl(2) and hypoxia on gene expression of CYP3As in human fetal liver cells. Drug Metab. Pharmacokinet., 2012, 27(4), 398-404.
[http://dx.doi.org/10.2133/dmpk.DMPK-11-RG-074] [PMID: 22277676]
[69]
Legendre, C.; Hori, T.; Loyer, P.; Aninat, C.; Ishida, S.; Glaise, D.; Lucas-Clerc, C.; Boudjema, K.; Guguen-Guillouzo, C.; Corlu, A.; Morel, F. Drug-metabolising enzymes are down-regulated by hypoxia in differentiated human hepatoma HepaRG cells: HIF-1α involvement in CYP3A4 repression. Eur. J. Cancer, 2009, 45(16), 2882-2892.
[http://dx.doi.org/10.1016/j.ejca.2009.07.010] [PMID: 19695866]
[70]
du Souich, P.; Fradette, C. The effect and clinical consequences of hypoxia on cytochrome P450, membrane carrier proteins activity and expression. Expert Opin. Drug Metab. Toxicol., 2011, 7(9), 1083-1100.
[http://dx.doi.org/10.1517/17425255.2011.586630] [PMID: 21619472]
[71]
Li, W.B.; Luo, B.F.; Wang, R.; Lu, H.; Wang, C.; Zhao, A.P.; Jia, Z.P. Changes of P-gp expression in rats’ small intestine and effects on uptake of levofloxacin after acute exposure to hypoxia. Yao Xue Xue Bao, 2016, 51(9), 1412-1416.
[PMID: 29924524]
[72]
Luo, B.F.; Yin, Q.; Wang, R.; Li, W.B.; Lu, H.; Jia, Z.P. Effect of hypoxia on expressions of MDR1 and MRP2 in rats. Nan Fang Yi Ke Da Xue Xue Bao, 2016, 36(9), 1169-1172.
[PMID: 27687645]
[73]
Jin, T.; Luo, B.F.; Zhang, X.Y.; Li, W.B.; Zhang, J.H.; Zhang, M.X.; Wang, C.; Zhao, A.P.; Wang, R. Difference in effects of hypoxia on gene expressions of six drug transporters in rats. Pharm J Chin PLA, 2017, 4, 297-301.
[74]
Wojtal, K.A.; Cee, A.; Lang, S.; Götze, O.; Frühauf, H.; Geier, A.; Pastor-Anglada, M.; Torres-Torronteras, J.; Martí, R.; Fried, M.; Lutz, T.A.; Maggiorini, M.; Gassmann, M.; Rogler, G.; Vavricka, S.R. Downregulation of duodenal SLC transporters and activation of proinflammatory signaling constitute the early response to high altitude in humans. Am. J. Physiol. Gastrointest. Liver Physiol., 2014, 307(7), G673-G688.
[http://dx.doi.org/10.1152/ajpgi.00353.2013] [PMID: 24970780]
[75]
Zhang, J.; Sun, Y.; Wang, R.; Zhang, J. Gut microbiota-mediated drug-drug interaction between amoxicillin and aspirin. Sci. Rep., 2019, 9(1), 16194.
[http://dx.doi.org/10.1038/s41598-019-52632-5] [PMID: 31700098]
[76]
Kim, J.K.; Choi, M.S.; Jeong, J.J.; Lim, S.M.; Kim, I.S.; Yoo, H.H.; Kim, D.H. Effect of probiotics on pharmacokinetics of orally administered acetaminophen in mice. Drug Metab. Dispos., 2018, 46(2), 122-130.
[http://dx.doi.org/10.1124/dmd.117.077222] [PMID: 29212822]
[77]
Sun, Y.; Zhang, J.; Zhao, A.; Li, W.; Feng, Q.; Wang, R. Effects of intestinal flora on the pharmacokinetics and pharmacodynamics of aspirin in high-altitude hypoxia. PLoS One, 2020, 15(3)e0230197
[http://dx.doi.org/10.1371/journal.pone.0230197] [PMID: 32163488]
[78]
Zhou, X.; Nian, Y.; Qiao, Y.; Yang, M.; Xin, Y.; Li, X. Hypoxia plays a key role in the pharmacokinetic changes of drugs at high altitude. Curr. Drug Metab., 2018, 19(11), 960-969.
[http://dx.doi.org/10.2174/1389200219666180529112913] [PMID: 29807512]
[79]
Fradette, C.; Bleau, A.M.; Pichette, V.; Chauret, N.; Du Souich, P. Hypoxia-induced down-regulation of CYP1A1/1A2 and up-regulation of CYP3A6 involves serum mediators. Br. J. Pharmacol., 2002, 137(6), 881-891.
[http://dx.doi.org/10.1038/sj.bjp.0704933] [PMID: 12411420]
[80]
Rahman, M.S.; Thomas, P. Effects of hypoxia exposure on hepatic cytochrome P450 1A (CYP1A) expression in Atlantic croaker: molecular mechanisms of CYP1A down-regulation. PLoS One, 2012, 7(7)e40825
[http://dx.doi.org/10.1371/journal.pone.0040825] [PMID: 22815834]
[81]
Duan, Y.B.; Zhu, J.B.; Yang, J.X.; Liu, G.Q.; Bai, X.; Qu, N.; Wang, X.J.; Li, X.Y. Regulation of high-altitude hypoxia on the transcription of CYP450 and UGT1A1 Mediated by PXR and CAR. Front. Pharmacol., 2020, 11574176
[http://dx.doi.org/10.3389/fphar.2020.574176] [PMID: 33041817]
[82]
Duan, Y.; Zhu, J.; Yang, J.; Gu, W.; Bai, X.; Liu, G.; Xiangyang, L. A decade’s review of miRNA: a center of transcriptional regulation of drug-metabolizing enzymes and transporters under hypoxia. Curr. Drug Metab., 2021, 22(9), 709-725.
[http://dx.doi.org/10.2174/1389200222666210514011313] [PMID: 33992050]
[83]
Yan, R.; Yang, Y.; Chen, Y. Pharmacokinetics of Chinese medicines: strategies and perspectives. Chin. Med., 2018, 13, 24.
[http://dx.doi.org/10.1186/s13020-018-0183-z] [PMID: 29743935]
[84]
Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R.; Goodman, A.L. Separating host and microbiome contributions to drug pharmacokinetics and toxicity. Science, 2019, 363(6427), 6427.
[http://dx.doi.org/10.1126/science.aat9931] [PMID: 30733391]
[85]
Lagier, J.C.; Khelaifia, S.; Alou, M.T.; Ndongo, S.; Dione, N.; Hugon, P.; Caputo, A.; Cadoret, F.; Traore, S.I.; Seck, E.H.; Dubourg, G.; Durand, G.; Mourembou, G.; Guilhot, E.; Togo, A.; Bellali, S.; Bachar, D.; Cassir, N.; Bittar, F.; Delerce, J.; Mailhe, M.; Ricaboni, D.; Bilen, M.; Dangui Nieko, N.P.; Dia Badiane, N.M.; Valles, C.; Mouelhi, D.; Diop, K.; Million, M.; Musso, D.; Abrahão, J.; Azhar, E.I.; Bibi, F.; Yasir, M.; Diallo, A.; Sokhna, C.; Djossou, F.; Vitton, V.; Robert, C.; Rolain, J.M.; La Scola, B.; Fournier, P.E.; Levasseur, A.; Raoult, D. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol, 2016, 1, 16203.
[http://dx.doi.org/10.1038/nmicrobiol.2016.203] [PMID: 27819657]
[86]
Jia, Y.F.; Wang, P.P.; Chen, Y.J.; Yan, R. Advances in gut microbial drug metabolism. Prog Pharm Sci., 2020, 44, 83-99.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy