Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Perspective

Pharmacokinetics-based Chronotherapy

Author(s): Danyi Lu, Zhigang Wang* and Baojian Wu*

Volume 23, Issue 1, 2022

Published on: 21 February, 2022

Page: [2 - 7] Pages: 6

DOI: 10.2174/1389200223666220106124218

Abstract

Dosing time-dependency of pharmacokinetics (or chronopharmacokinetics) has been long recognized. Studies in recent years have revealed that daily rhythmicity in expression of drug-metabolizing enzymes and transporters (DMETs) are key factors determining chronopharmacokinetics. In this article, we briefly summarize current knowledge with respect to circadian mechanisms of DMETs and discuss how rhythmic DMETs are translated to drug chronoeffects. More importantly, we present our perspectives on pharmacokinetics-based chronotherapy.

Keywords: Chronopharmacokinetics, chronotherapy, drug-metabolizing enzymes, drug transporters, circadian rhythms, chronopharmacology.

Graphical Abstract

[1]
Koukkari, W.L.; Sothern, R.B. Introducing biological rhythms: A primer on the temporal organization of life, with implications for health, society, reproduction, and the natural environment; Springer Science & Business Media, 2007.
[2]
Patke, A.; Young, M.W.; Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol., 2020, 21(2), 67-84.
[http://dx.doi.org/10.1038/s41580-019-0179-2] [PMID: 31768006]
[3]
Bass, J.; Lazar, M.A. Circadian time signatures of fitness and disease. Science, 2016, 354(6315), 994-999.
[http://dx.doi.org/10.1126/science.aah4965] [PMID: 27885004]
[4]
Koronowski, K.B.; Sassone-Corsi, P. Communicating clocks shape circadian homeostasis. Science, 2021, 371(6530)eabd0951
[http://dx.doi.org/10.1126/science.abd0951] [PMID: 33574181]
[5]
Mohawk, J.A.; Green, C.B.; Takahashi, J.S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci., 2012, 35, 445-462.
[http://dx.doi.org/10.1146/annurev-neuro-060909-153128] [PMID: 22483041]
[6]
Berson, D.M.; Dunn, F.A.; Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science, 2002, 295(5557), 1070-1073.
[http://dx.doi.org/10.1126/science.1067262] [PMID: 11834835]
[7]
Hastings, M.H.; Maywood, E.S.; Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci., 2018, 19(8), 453-469.
[http://dx.doi.org/10.1038/s41583-018-0026-z] [PMID: 29934559]
[8]
Dibner, C.; Schibler, U.; Albrecht, U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol., 2010, 72, 517-549.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135821] [PMID: 20148687]
[9]
Allada, R.; Bass, J. Circadian mechanisms in medicine. N. Engl. J. Med., 2021, 384(6), 550-561.
[http://dx.doi.org/10.1056/NEJMra1802337] [PMID: 33567194]
[10]
Takahashi, J.S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet., 2017, 18(3), 164-179.
[http://dx.doi.org/10.1038/nrg.2016.150] [PMID: 27990019]
[11]
Narasimamurthy, R.; Virshup, D.M. The phosphorylation switch that regulates ticking of the circadian clock. Mol. Cell, 2021, 81(6), 1133-1146.
[http://dx.doi.org/10.1016/j.molcel.2021.01.006] [PMID: 33545069]
[12]
Zhang, R.; Lahens, N.F.; Ballance, H.I.; Hughes, M.E.; Hogenesch, J.B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl. Acad. Sci. USA, 2014, 111(45), 16219-16224.
[http://dx.doi.org/10.1073/pnas.1408886111] [PMID: 25349387]
[13]
Ruben, M.D.; Wu, G.; Smith, D.F.; Schmidt, R.E.; Francey, L.J.; Lee, Y.Y.; Anafi, R.C.; Hogenesch, J.B. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci. Transl. Med., 2018, 10(458), 10.
[http://dx.doi.org/10.1126/scitranslmed.aat8806] [PMID: 30209245]
[14]
Mure, L.S.; Le, H.D.; Benegiamo, G.; Chang, M.W.; Rios, L.; Jillani, N.; Ngotho, M.; Kariuki, T.; Dkhissi-Benyahya, O.; Cooper, H.M.; Panda, S. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science, 2018, 359(6381), 359.
[http://dx.doi.org/10.1126/science.aao0318] [PMID: 29439024]
[15]
Ruben, M.D.; Smith, D.F.; FitzGerald, G.A.; Hogenesch, J.B. Dosing time matters. Science, 2019, 365(6453), 547-549.
[http://dx.doi.org/10.1126/science.aax7621] [PMID: 31395773]
[16]
Walton, J.C.; Walker, W.H., II; Bumgarner, J.R.; Meléndez-Fernández, O.H.; Liu, J.A.; Hughes, H.L.; Kaper, A.L.; Nelson, R.J. Circadian variation in efficacy of medications. Clin. Pharmacol. Ther., 2021, 109(6), 1457-1488.
[http://dx.doi.org/10.1002/cpt.2073] [PMID: 33025623]
[17]
Nahmias, Y.; Androulakis, I.P. Circadian effects of drug responses. Annu. Rev. Biomed. Eng., 2021, 23, 203-224.
[http://dx.doi.org/10.1146/annurev-bioeng-082120-034725] [PMID: 33788580]
[18]
Dallmann, R.; Okyar, A.; Lévi, F. Dosing-time makes the poison: Circadian regulation and pharmacotherapy. Trends Mol. Med., 2016, 22(5), 430-445.
[http://dx.doi.org/10.1016/j.molmed.2016.03.004] [PMID: 27066876]
[19]
Lévi, F.; Zidani, R.; Misset, J.L. International Organization for Cancer Chronotherapy. Randomised multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer. Lancet, 1997, 350(9079), 681-686.
[http://dx.doi.org/10.1016/S0140-6736(97)03358-8] [PMID: 9291901]
[20]
Saito, Y.; Yoshida, S.; Nakaya, N.; Hata, Y.; Goto, Y. Comparison between morning and evening doses of simvastatin in hyperlipidemic subjects. A double-blind comparative study. Arterioscler. Thromb., 1991, 11(4), 816-826.
[http://dx.doi.org/10.1161/01.ATV.11.4.816] [PMID: 2065035]
[21]
Lee, Y.; Fong, S.Y.; Shon, J.; Zhang, S.L.; Brooks, R.; Lahens, N.F.; Chen, D.; Dang, C.V.; Field, J.M.; Sehgal, A. Time-of-day specificity of anticancer drugs may be mediated by circadian regulation of the cell cycle. Sci. Adv., 2021, 7(7), 7.
[http://dx.doi.org/10.1126/sciadv.abd2645] [PMID: 33579708]
[22]
Lu, D.; Wang, Y.; Chen, M. Role of pharmacokinetics in chronotherapeutics.Circadian Pharmacokinetics; Springer, 2020, pp. 187-237.
[http://dx.doi.org/10.1007/978-981-15-8807-5_9]
[23]
Bicker, J.; Alves, G.; Falcão, A.; Fortuna, A. Timing in drug absorption and disposition: The past, present, and future of chronopharmacokinetics. Br. J. Pharmacol., 2020, 177(10), 2215-2239.
[http://dx.doi.org/10.1111/bph.15017] [PMID: 32056195]
[24]
Lu, D.; Zhao, M.; Chen, M.; Wu, B. Circadian clock-controlled drug metabolism: Implications for chronotherapeutics. Drug Metab. Dispos., 2020, 48(5), 395-406.
[http://dx.doi.org/10.1124/dmd.120.090472] [PMID: 32114506]
[25]
Pácha, J.; Balounová, K.; Soták, M. Circadian regulation of transporter expression and implications for drug disposition. Expert Opin. Drug Metab. Toxicol., 2021, 17(4), 425-439.
[http://dx.doi.org/10.1080/17425255.2021.1868438] [PMID: 33353445]
[26]
Wu, B.; Lu, D.; Dong, D., Eds.; Circadian Pharmacokinetics; Springer: Singapore, 2020.
[http://dx.doi.org/10.1007/978-981-15-8807-5]
[27]
Lin, Y.; Wang, S.; Zhou, Z.; Guo, L.; Yu, F.; Wu, B. Bmal1 regulates circadian expression of cytochrome P450 3a11 and drug metabolism in mice. Commun. Biol., 2019, 2, 378.
[http://dx.doi.org/10.1038/s42003-019-0607-z] [PMID: 31633069]
[28]
Lin, Y.; Zhou, Z.; Yang, Z.; Gao, L.; Wang, S.; Yu, P.; Wu, B. Circadian Cyp3a11 metabolism contributes to chronotoxicity of hypaconitine in mice. Chem. Biol. Interact., 2019, 308, 288-293.
[http://dx.doi.org/10.1016/j.cbi.2019.05.049] [PMID: 31150629]
[29]
Zhou, Z.; Lin, Y.; Gao, L.; Yang, Z.; Wang, S.; Wu, B. Cyp3a11 metabolism-based chronotoxicity of brucine in mice. Toxicol. Lett., 2019, 313, 188-195.
[http://dx.doi.org/10.1016/j.toxlet.2019.07.007] [PMID: 31284022]
[30]
Guo, L.; Zhang, L.; Xu, H.; Yu, P.; Wang, Z.; Lu, D.; Chen, M.; Wu, B. Diurnal hepatic CYP3A11 contributes to chronotoxicity of the pyrrolizidine alkaloid retrorsine in mice. Xenobiotica, 2021, 51(9), 1019-1028.
[http://dx.doi.org/10.1080/00498254.2021.1950867] [PMID: 34311664]
[31]
Zhang, T.; Yu, F.; Guo, L.; Chen, M.; Yuan, X.; Wu, B. Small heterodimer partner regulates circadian cytochromes p450 and drug-induced hepatotoxicity. Theranostics, 2018, 8(19), 5246-5258.
[http://dx.doi.org/10.7150/thno.28676] [PMID: 30555544]
[32]
Zhao, M.; Zhao, H.; Deng, J.; Guo, L.; Wu, B. Role of the CLOCK protein in liver detoxification. Br. J. Pharmacol., 2019, 176(24), 4639-4652.
[http://dx.doi.org/10.1111/bph.14828] [PMID: 31404943]
[33]
Zhou, C.; Yu, F.; Zeng, P.; Zhang, T.; Huang, H.; Chen, W.; Wu, B. Circadian sensitivity to the cardiac glycoside oleandrin is associated with diurnal intestinal P-glycoprotein expression. Biochem. Pharmacol., 2019, 169113622
[http://dx.doi.org/10.1016/j.bcp.2019.08.024] [PMID: 31472126]
[34]
Yu, F.; Zhang, T.; Zhou, C.; Xu, H.; Guo, L.; Chen, M.; Wu, B. The circadian clock gene Bmal1 controls intestinal exporter MRP2 and drug disposition. Theranostics, 2019, 9(10), 2754-2767.
[http://dx.doi.org/10.7150/thno.33395] [PMID: 31244920]
[35]
Oda, M.; Koyanagi, S.; Tsurudome, Y.; Kanemitsu, T.; Matsunaga, N.; Ohdo, S. Renal circadian clock regulates the dosing-time dependency of cisplatin-induced nephrotoxicity in mice. Mol. Pharmacol., 2014, 85(5), 715-722.
[http://dx.doi.org/10.1124/mol.113.089805] [PMID: 24567546]
[36]
Yang, Z.; Lin, Y.; Gao, L.; Zhou, Z.; Wang, S.; Dong, D.; Wu, B. Circadian clock regulates metabolism and toxicity of Fuzi(lateral root of Aconitum carmichaeli Debx) in mice. Phytomedicine, 2020, 67153161
[http://dx.doi.org/10.1016/j.phymed.2019.153161] [PMID: 31911401]
[37]
Zhao, H.; Tong, Y.; Lu, D.; Wu, B. Circadian clock regulates hepatotoxicity of Tripterygium wilfordii through modulation of metabolism. J. Pharm. Pharmacol., 2020, 72(12), 1854-1864.
[http://dx.doi.org/10.1111/jphp.13299] [PMID: 32478421]
[38]
Gao, L.; Lin, Y.; Wang, S.; Lin, L.; Lu, D.; Zhao, Y.; Xing, H.; Wu, B. Chronotoxicity of semen strychni is associated with circadian metabolism and transport in mice. J. Pharm. Pharmacol., 2021, 73(3), 398-409.
[http://dx.doi.org/10.1093/jpp/rgaa007] [PMID: 33793874]
[39]
Lin, J.; Gao, L.; Lin, Y.; Wang, S.; Yang, Z.; Ren, S.; Chen, M.; Wu, B. Pharmacokinetics-based chronoefficacy of Semen Strychni and tripterygium glycoside tablet against rheumatoid arthritis. Front. Pharmacol., 2021, 12673263
[http://dx.doi.org/10.3389/fphar.2021.673263] [PMID: 34108880]
[40]
Yang, Z.; Lin, Y.; Su, C.; Wang, S.; Gao, L.; Lin, J.; Wang, Z.; Wu, B. Pharmacokinetics-based chronoefficacy of Fuzi against chronic kidney disease. J. Pharm. Pharmacol., 2021, 73(4), 535-544.
[http://dx.doi.org/10.1093/jpp/rgaa060] [PMID: 33793835]
[41]
Kervezee, L.; Hartman, R.; van den Berg, D.J.; Shimizu, S.; Emoto-Yamamoto, Y.; Meijer, J.H.; de Lange, E.C. Diurnal variation in P-glycoprotein-mediated transport and cerebrospinal fluid turnover in the brain. AAPS J., 2014, 16(5), 1029-1037.
[http://dx.doi.org/10.1208/s12248-014-9625-4] [PMID: 24917180]
[42]
Takiguchi, T.; Tomita, M.; Matsunaga, N.; Nakagawa, H.; Koyanagi, S.; Ohdo, S. Molecular basis for rhythmic expression of CYP3A4 in serum-shocked HepG2 cells. Pharmacogenet. Genomics, 2007, 17(12), 1047-1056.
[http://dx.doi.org/10.1097/FPC.0b013e3282f12a61] [PMID: 18004209]
[43]
Fujimura, A.; Shiga, T.; Ohashi, K.; Ebihara, A. Chronopharmacokinetic study of a new immunosuppressive agent, FK 506, in mice. Jpn. J. Pharmacol., 1993, 61(2), 137-139.
[http://dx.doi.org/10.1254/jjp.61.137] [PMID: 7681489]
[44]
Min, D.I.; Chen, H.Y.; Lee, M.K.; Ashton, K.; Martin, M.F. Time-dependent disposition of tacrolimus and its effect on endothelin-1 in liver allograft recipients. Pharmacotherapy, 1997, 17(3), 457-463.
[PMID: 9165550]
[45]
Hishikawa, S.; Kobayashi, E.; Sugimoto, K.; Miyata, M.; Fujimura, A. Diurnal variation in the biliary excretion of flomoxef in patients with percutaneous transhepatic biliary drainage. Br. J. Clin. Pharmacol., 2001, 52(1), 65-68.
[http://dx.doi.org/10.1046/j.0306-5251.2001.01418.x] [PMID: 11453891]
[46]
Hishikawa, S.; Sugimoto, K.; Kobayashi, E.; Kumagai, Y.; Fujimura, A. Dosing-time-dependent variation in biliary excretion of flomoxef in rats. Chronobiol. Int., 2003, 20(3), 463-471.
[http://dx.doi.org/10.1081/CBI-120020421] [PMID: 12868541]
[47]
Gumustekin, M.; Kalkan, S.; Murat, N. The role of circadian rhythm on the pharmacokinetic of methotrexate in streptozotocin-induced diabetes mellitus rats. Biol. Rhythm Res., 2005, 36, 277-285.
[http://dx.doi.org/10.1080/09291010500079692]
[48]
Ferrazzini, G.; Sohl, H.; Robieux, I.; Johnson, D.; Giesbrecht, E.; Koren, G. Diurnal variation of methotrexate disposition in children with acute leukaemia. Eur. J. Clin. Pharmacol., 1991, 41(5), 425-427.
[http://dx.doi.org/10.1007/BF00626363] [PMID: 1761069]
[49]
Kai, Y.; Wei, G.; Mo-yi, S. Chinese expert consensus on chrono-chemotherapy for oral squamous cell carcinoma. Zhongguo Kouqiang Hemian Waike Zazhi, 2019, 17, 7.

© 2024 Bentham Science Publishers | Privacy Policy