Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

A Study on Synthesis of Chalcone Derived -5- Membered Isoxazoline and Isoxazole Scaffolds

Author(s): Sakshi Bhardwaj, Anjaneyulu Bendi* and Lakhwinder Singh*

Volume 19, Issue 5, 2022

Published on: 22 April, 2022

Page: [643 - 663] Pages: 21

DOI: 10.2174/1570179419666220127143141

Price: $65

Abstract

Chalcone-derived isoxazole scaffolds remain the central focus due to their greater biological, clinical, and pharmacological properties. The present study reviews the synthesis of various chalcone derived - 5- membered isoxazoline and isoxazole scaffolds with the available literature until 2021.

Keywords: Chalcones, isoxazoles, isoxazolines, biological, properties, pharmacological properties, clinical properties.

Graphical Abstract

[1]
Brandi, A.; Cicchi, S.; Cordero, F.M.; Goti, A. Heterocycles from alkylidenecyclopropanes. Chem. Rev., 2003, 103(4), 1213-1269.
[http://dx.doi.org/10.1021/cr010005u] [PMID: 12683782]
[2]
Chauhan, S.; Paliwal, S.; Chauhan, R. Anticancer activity of pyrazole via different biological mechanisms. Synth. Commun., 2014, 44, 1333.
[http://dx.doi.org/10.1080/00397911.2013.837186]
[3]
Kumari, S.; Paliwal, S.; Chauhan, R. An improved protocol for the synthesis of chalcones containing pyrazole with potential antimicrobial and antioxidant activity. Synth. Commun., 2014, 44, 1521.
[http://dx.doi.org/10.1080/00397911.2013.828757]
[4]
Katritzky, A.R. Introduction: Heterocycles. Chem. Rev., 2004, 104, 2125.
[http://dx.doi.org/10.1021/cr0406413]
[5]
Yu, L.; Liu, M.; Chen, F.; Xu, Q. Heterocycles from methylenecyclopropanes. Org. Biomol. Chem., 2015, 13(31), 8379-8392.
[http://dx.doi.org/10.1039/C5OB00868A] [PMID: 26086203]
[6]
Katsori, A.M.; Hadjipavlou-Litina, D. Recent progress in therapeutic applications of chalcones. Expert Opin. Ther. Pat., 2011, 21(10), 1575-1596.
[http://dx.doi.org/10.1517/13543776.2011.596529] [PMID: 21711087]
[7]
Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Differential effects of synthesized 2′-oxygenated chalcone derivatives: modulation of human cell cycle phase distribution. Bioorg. Med. Chem., 2004, 12(10), 2679-2686.
[http://dx.doi.org/10.1016/j.bmc.2004.03.014] [PMID: 15110849]
[8]
Ko, H.H.; Tsao, L.T.; Yu, K.L.; Liu, C.T.; Wang, J.P.; Lin, C.N. Structure-activity relationship studies on chalcone derivatives. the potent inhibition of chemical mediators release. Bioorg. Med. Chem., 2003, 11(1), 105-111.
[http://dx.doi.org/10.1016/S0968-0896(02)00312-7] [PMID: 12467713]
[9]
Wang, L.; Chen, G.; Lu, X.; Wang, S.; Han, S.; Li, Y.; Ping, G.; Jiang, X.; Li, H.; Yang, J.; Wu, C. Novel chalcone derivatives as hypoxia-inducible factor (HIF)-1 inhibitor: synthesis, anti-invasive and anti-angiogenic properties. Eur. J. Med. Chem., 2015, 89, 88-97.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.036] [PMID: 25462229]
[10]
Lahtchev, K.L.; Batovska, D.I.; Parushev, S.P.; Ubiyvovk, V.M.; Sibirny, A.A. Antifungal activity of chalcones: A mechanistic study using various yeast strains. Eur. J. Med. Chem., 2008, 43(10), 2220-2228.
[http://dx.doi.org/10.1016/j.ejmech.2007.12.027] [PMID: 18280009]
[11]
Ávila, H.P. Smânia, Ede.F.; Monache, F.D.; Smânia, A., Jr Structure-activity relationship of antibacterial chalcones. Bioorg. Med. Chem., 2008, 16(22), 9790-9794.
[http://dx.doi.org/10.1016/j.bmc.2008.09.064] [PMID: 18951808]
[12]
Go, M.L.; Wu, X.; Liu, X.L. Chalcones: An update on cytotoxic and chemoprotective properties. Curr. Med. Chem., 2005, 12(4), 481-499.
[http://dx.doi.org/10.2174/0929867053363153] [PMID: 15720256]
[13]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[14]
Basappa, V.C. Recent developments on the synthetic and biological applications of chalcones-a review. Platin. Open Acess J., 2021, 12, 180.
[15]
Kumar, K.A.; Govindaraju, M.; Renuka, N.; Vasanth Kumar, G. Isoxazolines: An insight to their synthesis and diverse applications. J. Chem. Pharm. Res., 2015, 7, 250.
[16]
Gardner, S.; Wenis, E.; Lee, J. Roche Inc, H.-L.-; Nutley; N, J. Oxidase Inhibitors-I. 1-Alkyl and l-Aralkyl-2-(picolinoyl and 5-methyl-3-isoxazoly1- carbony1)hydrazines. J. Med. Pharm. Chem., 1960, 2, 133.
[http://dx.doi.org/10.1021/jm50009a002] [PMID: 13826540]
[17]
Talley, J.J.; Bertenshaw, S.R.; Brown, D.L.; Carter, J.S.; Graneto, M.J.; Kellogg, M.S.; Koboldt, C.M.; Yuan, J.; Zhang, Y.Y.; Seibert, K.N. -[[(5-methyl-3-phenylisoxazol-4-yl)-phenyl]sulfonyl]propane-mide, sodium salt, parecoxib sodium: A potent and selective inhibitor of COX-2 for parenteral administration. J. Med. Chem., 2000, 43(9), 1661-1663.
[http://dx.doi.org/10.1021/jm000069h] [PMID: 10794682]
[18]
Murugesan, N.; Gu, Z.; Spergel, S.; Young, M.; Chen, P.; Mathur, A.; Leith, L.; Hermsmeier, M.; Liu, E.C.; Zhang, R.; Bird, E.; Waldron, T.; Marino, A.; Koplowitz, B.; Humphreys, W.G.; Chong, S.; Morrison, R. Biphenylsulfonamide endothelin receptor antagonists. 4. discovery of orally active et a selective antagonist. J. Med. Chem., 2003, 46, 125.
[http://dx.doi.org/10.1021/jm020289q] [PMID: 12502366]
[19]
Kumar, A.; Jayaroopa, P. Isoxazoles: molecules with potential medicinal properties. Int. J. Pharm. Chem. Biol. Sci. Int. J. Pharm. Chem. Biol. Sci., 2013, 3, 294.
[20]
Khobare, R.; Pawar, R.P.; Warad, K.D.; Tayade, A.; Mane, C.B. An efficient synthesis of substituted isoxazole derivatives using ultra sound sonication method. Eur. J. Mol. Clin. Med., 2020, 7, 319.
[21]
Niu, C.; Yin, L.; Nie, L.F.; Dou, J.; Zhao, J.Y.; Li, G.; Aisa, H.A. Synthesis and bioactivity of novel isoxazole chalcone derivatives on tyrosinase and melanin synthesis in murine B16 cells for the treatment of vitiligo. Bioorg. Med. Chem., 2016, 24(21), 5440-5448.
[http://dx.doi.org/10.1016/j.bmc.2016.08.066] [PMID: 27622747]
[22]
Lei, C.; Geng, L.; Xu, X.; Shao, X.; Li, Z. Isoxazole-containing neonicotinoids: Design, synthesis, and insecticidal evaluation. Bioorg. Med. Chem. Lett., 2018, 28(4), 831-833.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.046] [PMID: 29402746]
[23]
Calí, P.; Naerum, L.; Mukhija, S.; Hjelmencrantz, A. Isoxazole-3-hydroxamic acid derivatives as peptide deformylase inhibitors and potential antibacterial agents. Bioorg. Med. Chem. Lett., 2004, 14(24), 5997-6000.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.087] [PMID: 15546716]
[24]
Babahedari, A.K.; Soureshjani, E.H.; Shamsabadi, M.K.; Kabiri, H. The comprehensive evaluation docking of methicillin drug containing isoxazole derivatives, as targeted antibiotics to staphylococcus aureus. J. Bionanoscience, 2013, 7, 288.
[http://dx.doi.org/10.1166/jbns.2013.1119]
[25]
Shen, S.; Hadley, M.; Ustinova, K.; Pavlicek, J.; Knox, T.; Noonepalle, S.; Tavares, M.T.; Zimprich, C.A.; Zhang, G.; Robers, M.B. Bařinka, C.; Kozikowski, A.P.; Villagra, A. Discovery of a new isoxazole-3-hydroxamate-based histone deacetylase 6 inhibitor ss-208 with antitumor activity in syngeneic melanoma mouse models. J. Med. Chem., 2019, 62(18), 8557-8577.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00946] [PMID: 31414801]
[26]
Xie, F.; Ni, T.; Ding, Z.; Hao, Y.; Wang, R.; Wang, R.; Wang, T.; Chai, X.; Yu, S.; Jin, Y.; Jiang, Y.; Zhang, D. Design, synthesis, and in vitro evaluation of novel triazole analogues featuring isoxazole moieties as antifungal agents. Bioorg. Chem., 2020, 101, 103982.
[http://dx.doi.org/10.1016/j.bioorg.2020.103982] [PMID: 32534348]
[27]
Mao, J.; Yuan, H.; Wang, Y.; Wan, B.; Pak, D.; He, R.; Franzblau, S.G. Synthesis and antituberculosis activity of novel mefloquine-isoxazole carboxylic esters as prodrugs. Bioorg. Med. Chem. Lett., 2010, 20(3), 1263-1268.
[http://dx.doi.org/10.1016/j.bmcl.2009.11.105] [PMID: 20022500]
[28]
Saravanan, G.; Alagarsamy, V.; Dineshkumar, P. Synthesis, analgesic, anti-inflammatory and in vitro antimicrobial activities of some novel isoxazole coupled quinazolin-4(3H)-one derivatives. Arch. Pharm. Res., 2013, 44(18), 1-11.
[PMID: 24155019]
[29]
N., B. P.; K. Prathusha, C. T. J.; Sreevani, M. S.; Rani, P. J.; Harini, and P. Characterization and antimicrobial activity of some synthesised isoxazole and pyrazole derivatives. Asian J. Res. Chem, 2011, 4, 301.
[30]
Schmidtke, M.; Wutzler, P.; Zieger, R.; Riabova, O.B.; Makarov, V.A. New pleconaril and [(biphenyloxy)propyl]isoxazole derivatives with substitutions in the central ring exhibit antiviral activity against pleconaril-resistant coxsackievirus B3. Antiviral Res., 2009, 81(1), 56-63.
[http://dx.doi.org/10.1016/j.antiviral.2008.09.002] [PMID: 18840470]
[31]
Joseph, L.; George, M. Anti-bacterial and in vitro anti-diabetic potential of novel isoxazole. Br. J. Pharm. Res., 2016, 9, 1.
[http://dx.doi.org/10.9734/BJPR/2016/21926]
[32]
Sun, C.M.; Lin, L.G.; Yu, H.J.; Cheng, C.Y.; Tsai, Y.C.; Chu, C.W.; Din, Y.H.; Chau, Y.P.; Don, M.J. Synthesis and cytotoxic activities of 4,5-diarylisoxazoles. Bioorg. Med. Chem. Lett., 2007, 17(4), 1078-1081.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.023] [PMID: 17127061]
[33]
Habeeb, A.G.; Praveen Rao, P.N.; Knaus, E.E. Design and synthesis of 4,5-diphenyl-4-isoxazolines: Novel inhibitors of cyclooxygenase-2 with analgesic and antiinflammatory activity. J. Med. Chem., 2001, 44(18), 2921-2927.
[http://dx.doi.org/10.1021/jm0101287] [PMID: 11520200]
[34]
Mondal, P.; Jana, S.; Balaji, A.; Ramakrishna, R.; Kanthal, L. Synthesis of some new isoxazoline derivatives of chalconised indoline 2-one as a potential analgesic, antibacterial and anthelmimtic agents. J. Young Pharm., 2012, 4(1), 38-41.
[http://dx.doi.org/10.4103/0975-1483.93574] [PMID: 22523459]
[35]
Bhavsar, Z.A.; Acharya, P.T.; Jethava, D.J.; Patel, H.D. Recent advances in development of anthelmintic agents: Synthesis and biological screening. Synth. Commun., 2020, 50, 917.
[http://dx.doi.org/10.1080/00397911.2019.1695276]
[36]
De Souza, A.A.N.; Xavier, V.F.; Coelho, G.S.; Romanha, A.J.; Murta, S.M.F.; Taylor, J.G. Synthesis of 3,5-diarylisoxazole derivatives and evaluation of in vitro trypanocidal activity. J. Braz. Chem. Soc., 2018, 29, 269.
[37]
Raghavendra, K.R.; Prabhudeva, M.G.; Dileep Kumar, A.; Ajay Kumar, K.; Jayadevappa, H.P. Isoxazoles-a biocompatible radical scavenging agents: Citrus juice mediated environmentally benign synthesis and characterization. Asian J. Chem., 2020, 32, 2997.
[http://dx.doi.org/10.14233/ajchem.2020.22871]
[38]
Srinivas, A.; Nagaraj, A.; Reddy, C.S. Synthesis and in vitro study of a new class of methylene- bis-4,6-diarylbenzo[d]isoxazoles as potential antifungal agents. J. Heterocycl. Chem., 2009, 46, 497.
[http://dx.doi.org/10.1002/jhet.100]
[39]
Kalirajan, R.; Mohammed Rafick, M.H.; Sankar, S.; Gowramma, B. Green synthesis of some novel chalcone and isoxazole substituted 9-anilinoacridine derivatives and evaluation of their antimicrobial and larvicidal activities. Indian J. Chem. - Sect. B Org. Med. Chem., 2018, 57B, 583.
[40]
Dou, G.; Xu, P.; Li, Q.; Xi, Y.; Huang, Z.; Shi, D. Clean and efficient synthesis of isoxazole derivatives in aqueous media. Molecules, 2013, 18(11), 13645-13653.
[http://dx.doi.org/10.3390/molecules181113645] [PMID: 24196411]
[41]
Conti, P.; De Amici, M.; Grazioso, G.; Roda, G.; Pinto, A.; Hansen, K.B.; Nielsen, B.; Madsen, U.; Bräuner-Osborne, H.; Egebjerg, J.; Vestri, V.; Pellegrini-Giampietro, D.E.; Sibille, P.; Acher, F.C.; De Micheli, C. Synthesis, binding affinity at glutamic acid receptors, neuroprotective effects, and molecular modeling investigation of novel dihydroisoxazole amino acids. J. Med. Chem., 2005, 48(20), 6315-6325.
[http://dx.doi.org/10.1021/jm0504499] [PMID: 16190758]
[42]
Srivastava, S.; Bajpai, L.K.; Batra, S.; Bhaduri, A.P.; Maikhuri, J.P.; Gupta, G.; Dhar, J.D. In search of new chemical entities with spermicidal and anti-HIV activities. Bioorg. Med. Chem., 1999, 7(11), 2607-2613.
[http://dx.doi.org/10.1016/S0968-0896(99)00188-1] [PMID: 10632071]
[43]
Panda, S.S.; Chowdary, P.V.R.; Jayashree, B.S. Synthesis, antiinflammatory and antibacterial activity of novel indolyl-isoxazoles. Indian J. Pharm. Sci., 2009, 71(6), 684-687.
[http://dx.doi.org/10.4103/0250-474X.59554] [PMID: 20376225]
[44]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med., 1962, 111, 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[45]
Galenko, A.V.; Khlebnikov, A.F.; Novikov, M.S.; Pakalnis, V.V.; Rostovskii, N.V. Recent advances in isoxazole chemistry. Russ. Chem. Rev., 2015, 84, 335.
[http://dx.doi.org/10.1070/RCR4503]
[46]
Kumar, G.R.; Kotian, S.Y.N. N. U. K.; Vicas, C. S.; Rai, K. M. L.; Rai, V. R.; Byrappa, K. Synthesis of novel isoxazoline derivatives and evaluation of their antimicrobial activity. J. Chem. Biol. Phys. Sci., 2016, 6, 128.
[47]
Patil, P.O.; Bari, S.B. An efficient method for the synthesis of isoxazolines under microwave irradiation and solvent-free conditions. Asian J. Chem., 2013, 25, 3588.
[http://dx.doi.org/10.14233/ajchem.2013.13662]
[48]
Sharma, P.C.; Sharma, S.V.; Jain, S.; Singh, D.; Suresh, B. Synthesis of some new isoxazoline derivatives as possible anti-Candida agents. Acta Pol. Pharm., 2009, 66(1), 101-104.
[PMID: 19226977]
[49]
Kadnor, V.A.; Pandhare, G.R.; Gadhave, A.G.; Uphade, B.K. Synthesis and antibacterial activity of some fluorinated isoxazoline derivatives. Rasayan J. Chem., 2011, 4, 437.
[50]
Pawar, S.; Chavan, R.; Bhosale, A. Synthesis and biological evaluation of some novel mannich bases of isoxazoline derivatives as possible antimicrobial agents. Eur. J. Chem., 2012, 4, 1760.
[51]
Jadhav, S.B.; Shashtri, R.A.; Gaikwad, K.V.; Gaikwad, S.V. Synthesis and antimicrobial studies of some novel pyrazolines. Eur. J. Chem., 2009, 6, S183.
[http://dx.doi.org/10.1155/2009/361564]
[52]
Kalirajan, R.; Sivakumar, S.U.; Jubie, S.; Gowramma, B.; Suresh, B. Synthesis and biological evaluation of some heterocyclic derivatives of chalcones. Int. J. Chemtech Res., 2009, 1, 27.
[53]
Voskienè, A. Mickevičius, V. Cyclization of chalcones to isoxazole and pyrazole derivatives. Khimiya Geterotsiklicheskikh Soedin, 2009, 45, 1842.
[http://dx.doi.org/10.1007/s10593-010-0455-8]
[54]
Cipagauta Esquivel, E.C.; Rufino, V.C.; Trindade Nogueira, M.H.; Carbonaro Souza, A.C.; Pliego Júnior, J.R.; Valle, M.S. Synthesis and characterization of 1,3,5-triarylpyrazol-4-ols and 3,5-diarylisoxazol-4-ols from chalcones and theoretical studies of the stability of pyrazol-4-ol toward acid dehydration. J. Mol. Struct., 2020, 1204, 127536.
[http://dx.doi.org/10.1016/j.molstruc.2019.127536]
[55]
Hamid, A.M.A.; El-Sayed, H.A.; Mohammed, S.M.; Moustafa, A.H.; Morsy, H.A. Functionalization of 1,2,3-triazole to pyrimidine, pyridine, pyrazole, and isoxazole fluorophores with antimicrobial activity. Russ. J. Gen. Chem., 2020, 90, 476.
[http://dx.doi.org/10.1134/S1070363220030226]
[56]
Sowmya, P.T.; Lokanatha Rai, K.M. Synthesis and characterization of new homologous series of unsymmetrical liquid crystalline compounds based on chalcones and 3, 5-disubstituted isoxazoles. J. Chem. Sci., 2017, 129, 67.
[http://dx.doi.org/10.1007/s12039-016-1205-y]
[57]
Abbas, A.F.; Turki, A.A.; Hameed, A.J. Synthesis, characterization and computational study of some new heterocyclic derived from 1-(biphenyl-4-yl)-3-(furan-2-yl)prop-2-en-1-one. J. Mater. Environ. Sci., 2012, 3, 1071.
[58]
Bhaskar, V.H.; Mohite, P.B. Synthesis, characterization and evaluation of anticancer activity of some tetrazole derivatives. J. Optoelectron. Biomed. Mater, 2010, 2, 249.
[59]
Saadi, L.; Adnan, S. Synthesis and characterization of (five, six) hetrocycyclic derivatives from imidazole and studying of their biological activity. J. Glob. Pharma Technol., 2018, 10, 89.
[60]
Kutafh, M.K.; Abbas, A.F.; Ali Al-Assadi, K.A.R. synthesis and characterization of some new 1-(3-(heterocyclic-2-yl)-4,5-dihydroisoxazol-5-yl)pentane-1,2,3,4,5-pentaol derivatives from new chalcone. Chem. Mater. Res., 2020, 12, 15.
[61]
Khanage, S.; Mohite, P.; Pandhare, R.; Raju, A. Synthesis and pharmacological evaluation of isoxazole derivatives containing 1,2,4-triazole Moiety. Marmara Pharm. J., 2012, 16, 134.
[http://dx.doi.org/10.12991/201216411]
[62]
Ablajan, K.; Xiamuxi, H. Efficient one-pot synthesis of β-unsaturated isoxazol-5-ones and pyrazol-5-ones under ultrasonic irradiation. Synth. Commun., 2012, 42, 1128.
[http://dx.doi.org/10.1080/00397911.2010.535949]
[63]
Azarifar, D.; Shaebanzadeh, M. Synthesis and characterization of new 3,5-dinaphthyl substituted 2-pyrazolines and study of their antimicrobial activity. Molecules, 2002, 7, 885.
[http://dx.doi.org/10.3390/71200885]
[64]
Hamada, N.M.M.; Sharshira, E.M. Synthesis and antimicrobial evaluation of some heterocyclic chalcone derivatives. Molecules, 2011, 16(3), 2304-2312.
[http://dx.doi.org/10.3390/molecules16032304] [PMID: 21389908]
[65]
Schelz, Z.; Molnar, J.; Hohmann, J. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia, 2006, 77(4), 279-285.
[http://dx.doi.org/10.1016/j.fitote.2006.03.013] [PMID: 16690225]
[66]
Wang, G.; Liu, W.; Huang, Y.; Li, Y.; Peng, Z. Design, synthesis and biological evaluation of isoxazole-naphthalene derivatives as anti-tubulin agents. Asian J. Chem., 2020, 13, 5765.
[67]
Kumar, J.; Akhtar, M.; Ranjan, C.; Chawla, G. Synthesis and neuropharmacological evaluation of thiophene incorporated isoxazole derivatives as antidepressant and antianxiety agents. Int. J. Pharm. Chem. Anal, 2015, 2, 74.
[68]
Kandeel, M.M.; Abdou, N.A.; Kadry, H.H.; El-Masry, R.M. Synthesis and antitumor activity of some novel heterocyclic compounds derived from chalcone analogues. Org. Chem. An Indian J., 2014, 10, 295.
[69]
Gupta, R.A.; Kaskhedikar, S.G. Synthesis, antitubercular activity, and QSAR analysis of substituted nitroaryl analogs: Chalcone, pyrazole, isoxazole, and pyrimidines. Med. Chem. Res., 2013, 22, 3863.
[http://dx.doi.org/10.1007/s00044-012-0385-3]
[70]
Tiwari, V.; Parvez, A.; Meshram, J. Benign methodology and improved synthesis of 5-(2-chloroquinolin-3-yl)-3-phenyl-4,5-dihydroisoxazoline using acetic acid aqueous solution under ultrasound irradiation. Ultrason. Sonochem., 2011, 18(5), 911-916.
[http://dx.doi.org/10.1016/j.ultsonch.2010.12.003] [PMID: 21227731]
[71]
Roman, G. Critical assessment of two classical synthetic methods for preparation of thiophene-substituted isoxazoles. Res. Chem. Intermed., 2014, 40(5), 2039-2057.
[http://dx.doi.org/10.1007/s11164-013-1101-8]
[72]
Mistry, B.D.; Desai, K.R.; Rana, P.B. Conventional and microwave induced synthesis of various pyrimidine and isoxazole nyl) prop-2-en-1-one and studies of their antimicrobial activity. Indian J. Chem., 2011, 50, 627.
[73]
Kaur, N.; Kishore, D. Application of chalcones in heterocycles synthesis: Synthesis of 2-(isoxazolo, pyrazolo and pyrimido) substituted analogues of 1,4-benzodiazepin-5-carboxamides linked through an oxyphenyl bridge. J. Chem. Sci., 2013, 125, 555.
[http://dx.doi.org/10.1007/s12039-013-0412-z]
[74]
Kumari, S.; Paliwal, S.K.; Chauhan, R. An improved protocol for the synthesis of chalcones containing pyrazole with potential antimicrobial and antioxidant activity. Curr. Bioact. Compd., 2018, 14, 39.
[http://dx.doi.org/10.2174/1573407212666161101152735]
[75]
Gonçalves, I.L. Machado das Neves, G.; Porto Kagami, L.; Eifler-Lima, V.L.; Merlo, A.A. Discovery, development, chemical diversity and design of isoxazoline-based insecticides. Bioorg. Med. Chem., 2021, 30, 115934.
[http://dx.doi.org/10.1016/j.bmc.2020.115934] [PMID: 33360575]
[76]
Mastachi-Loza, S.; Ramírez-Candelero, T.I.; Tapia-Bustamante, A.; González-Romero, C.; Díaz-Torres, E.; Tamariz, J.; Toscano, R.A.; Fuentes-Benítes, A. Synthesis of 4,5,6,7-tetrahydrobenzoxazol-2-ones by a highly regioselective Diels-Alder cycloaddition of exo-oxazolidin-2-one dienes with chalcones. Tetrahedron Lett., 2019, 60, 1370.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.027]
[77]
Ajay Kumar, K.; Lokanatha Rai, K. M.; Umesha, K. B. Synthesis and evaluation of antifungal and antibacterial activity of ethyl 3,5- diarylisoxazole-4-carboxylates. J. Chem. Res.-Part S, 2001, 436-438.
[78]
Ueda, M.; Sato, A.; Ikeda, Y.; Miyoshi, T.; Naito, T.; Miyata, O. Direct synthesis of trisubstituted isoxazoles through gold-catalyzed domino reaction of alkynyl oxime ethers. Org. Lett., 2010, 12(11), 2594-2597.
[http://dx.doi.org/10.1021/ol100803e] [PMID: 20441182]
[79]
Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V.V.; Noodleman, L.; Sharpless, K.B.; Fokin, V.V. Copper(I)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc., 2005, 127(1), 210-216.
[http://dx.doi.org/10.1021/ja0471525] [PMID: 15631470]
[80]
da Rosa, R.; de Moraes, M.H.; Zimmermann, L.A.; Schenkel, E.P.; Steindel, M.; Bernardes, L.S.C. Design and synthesis of a new series of 3,5-disubstituted isoxazoles active against Trypanosoma cruzi and Leishmania amazonensis. Eur. J. Med. Chem., 2017, 128, 25-35.
[http://dx.doi.org/10.1016/j.ejmech.2017.01.029] [PMID: 28152426]
[81]
Umesha, K.B.; Ajay Kumar, K.; Lokanatha Rai, K.M. A novel synthesis of isoxazoles via 1,3-dipolar cycloaddition of nitrile oxides to acetyl acetone. Synth. Commun., 2002, 32, 1841.
[http://dx.doi.org/10.1081/SCC-120004066]
[82]
Pérez, J.M.; Ramón, D. Synthesis of 3,5-disubstituted isoxazoles and isoxazolines in deep eutectic solvents. ACS Sustain. Chem.& Eng., 2015, 3, 2343.
[http://dx.doi.org/10.1021/acssuschemeng.5b00689]
[83]
Minakata, S.; Okumura, S.; Nagamachi, T.; Takeda, Y. Generation of nitrile oxides from oximes using t-BuOI and their cycloaddition. Org. Lett., 2011, 13(11), 2966-2969.
[http://dx.doi.org/10.1021/ol2010616] [PMID: 21561108]
[84]
Crossley, J.A.; Browne, D.L. An alkynyliodide cycloaddition strategy for the construction of iodoisoxazoles. J. Org. Chem., 2010, 75(15), 5414-5416.
[http://dx.doi.org/10.1021/jo1011174] [PMID: 20608670]
[85]
Azarifar, D.; Khosravi, K.; Veisi, R.A. An efficient oxidation of 2-pyrazolines and isoxazolines by bis-bromine-1,4-diazabicyclo[2.2.2]octane complex (DABCO-Br2). ARKIVOC, 2010, 2010, 178.
[http://dx.doi.org/10.3998/ark.5550190.0011.917]
[86]
Shah, T.; Desai, V. Synthesis and antibacterial studies of some novel isoxazoline derivatives. J. Serb. Chem. Soc., 2007, 72, 443.
[http://dx.doi.org/10.2298/JSC0705443S]
[87]
Jadhav, R.D.; Mistry, H.D.; Motiwala, H.; Kadam, K.S.; Kandre, S.; Gupte, A.; Gangopadhyay, A.K.; Sharma, R. A facile one-pot synthesis of 3,5-disubstituted isoxazole derivatives using hydroxy (tosy- loxy) iodobenzene. J. Heterocycl. Chem., 2013, 50, 774-780.
[http://dx.doi.org/10.1002/jhet.1556]
[88]
Laamari, Y.; Aziz, A.; Saadi, M.; El Ammari, L.; Khouili, M.; Ait Itto, M.Y.; Auhmani, A.; Ketatni, E.M. Synthesis, crystal structure, DFT studies and Hirshfeld surface analysis of novel isoxazole derivatives. J. Mol. Struct., 2021, 1228, 129450.
[http://dx.doi.org/10.1016/j.molstruc.2020.129450]
[89]
Andrzejak, V.; Millet, R.; Bakali, J.; Guelzim, A.; Gluszok, S.; Chavatte, P.; Bonte, J-P.; Vaccher, C. Lipka, Synthesis of 2,3 and 4,5-Dihydro-hydroxy-isoxazoles and isoxazoles under different ph conditions. E. Lett. Org. Chem, 2010, 7, 32.
[http://dx.doi.org/10.2174/157017810790533922]
[90]
Kamal, A.; Viswanath, A.; Janaki Ramaiah, M.; Murty, J.N.S.R.C.; Sultana, F.; Ramakrishna, G.; Tamboli, J.R.; Pushpavalli, S.N.C.V.L.; Pal, D.; Kishor, C.; Addlagatta, A.; Bhadra, M.P. Synthesis of tetrazole-isoxazoline hybrids as a new class of tubulin polymerization inhibitors. MedChemComm, 2012, 3, 1386.
[http://dx.doi.org/10.1039/c2md20085f]
[91]
Samai, S.; Chanda, T.; Ila, H.; Singh, M.S. One-pot three-component heteroannulation of β-oxo dithioesters, amines and hydroxylamine: Regioselective, facile and straightforward entry to 5-substituted 3-aminoisoxazoles. Eur. J. Org. Chem., 19, 2013, 4026-4031.
[http://dx.doi.org/10.1002/ejoc.201300038]
[92]
Liu, T.; Dong, X.; Xue, N.; Wu, R.; He, Q.; Yang, B.; Hu, Y. Synthesis and biological evaluation of 3,4-diaryl-5-aminoisoxazole derivatives. Bioorg. Med. Chem., 2009, 17(17), 6279-6285.
[http://dx.doi.org/10.1016/j.bmc.2009.07.040] [PMID: 19665898]
[93]
Schmidt, E.Y.; Tatarinova, I.V.; Ivanova, E.V.; Zorina, N.V.; Ushakov, I.A.; Trofimov, B.A. A one-pot approach to Δ2-isoxazolines from ketones and arylacetylenes. Org. Lett., 2013, 15(1), 104-107.
[http://dx.doi.org/10.1021/ol303132u] [PMID: 23237647]
[94]
Valizadeh, H.; Amiri, M.; Gholipur, H. Efficient and convenient method for the synthesis of isoxazoles in ionic liquid. J. Heterocycl. Chem., 2009, 46, 108.
[http://dx.doi.org/10.1002/jhet.20]
[95]
Allegretti, P.A.; Ferreira, E.M. Platinum-catalyzed cyclizations via carbene intermediates: syntheses of complementary positional isomers of isoxazoles. Chem. Sci. (Camb.), 2012, 68, 42.
[96]
Gayon, E.; Quinonero, O.; Lemouzy, S.; Vrancken, E.; Campagne, J.M. Transition-metal-catalyzed uninterrupted four-step sequence to access trisubstituted isoxazoles. Org. Lett., 2011, 13(24), 6418-6421.
[http://dx.doi.org/10.1021/ol202719n] [PMID: 22098636]
[97]
Machetti, F.; Cecchi, L.; Trogu, E.; De Sarlo, F. Isoxazoles and isoxazolines by 1,3-dipolar cycloaddition: Base-catalysed condensation of primary nitro compounds with dipolarophiles. Eur. J. Org. Chem., 2007, 4352.
[http://dx.doi.org/10.1002/ejoc.200700276]
[98]
Govindappa, V.K.; Nagamallu, R.; Ajay Kumar, K. Synthesis of new 3, 5-diaryl-4, 5-dihydroisoxazole-4- carbonitriles via 1, 3-dipolar cycloaddition reaction. IOSR J. Appl. Chem, 2012, 1, 20.
[http://dx.doi.org/10.9790/5736-0142023]
[99]
Cecchi, L.; De Sarlo, F.; Machetti, F. 1,4-Diazabicyclo[2.2.2]octane (DABCO) as an efficient reagent for the synthesis of isoxazole derivatives from primary nitro compounds and dipolarophiles: The role of the base. Eur. J. Org. Chem., 2006, 21, 4852-4860.
[http://dx.doi.org/10.1002/ejoc.200600475]
[100]
Safaei-Ghomi, J.; Ghasemzadeh, M.A. Synthesis of some 3,5-diaryl-2-isoxazoline derivatives in ionic liquids media. J. Serb. Chem. Soc., 2012, 77, 733.
[http://dx.doi.org/10.2298/JSC110831001S]
[101]
Knight, D.W.; Proctor, A.J.; Clough, J.M. ChemInform abstract: new regiospecific catalytic approaches to 4,5-dihydroisoxazoles and 2,5-dihydroisoxazoles from o-propargylic hydroxylamines. Synlett, 2010, 4, 628-632.
[http://dx.doi.org/10.1055/s-0029-1219365]
[102]
Harigae, R.; Moriyama, K.; Togo, H. Preparation of 3,5-disubstituted pyrazoles and isoxazoles from terminal alkynes, aldehydes, hydrazines, and hydroxylamine. J. Org. Chem., 2014, 79(5), 2049-2058.
[http://dx.doi.org/10.1021/jo4027116] [PMID: 24512630]
[103]
Pennicott, L.; Lindell, S. The preparation of 2-isoxazolines from O-propargylic hydroxylamines via a tandem rearrangement-cyclisation reaction. Synlett, 2006, 3, 463-465.
[104]
Saad, A.; Vaultier, M.; Derdour, A. One step regioselective synthesis of 5-aminoisoxazoles from nitrile oxides and α-cyanoenamines. Molecules, 2004, 9(7), 527-534.
[http://dx.doi.org/10.3390/90700527] [PMID: 18007452]
[105]
Hansen, T.V.; Wu, P.; Fokin, V.V. One-pot copper(I)-catalyzed synthesis of 3,5-disubstituted isoxazoles. J. Org. Chem., 2005, 70(19), 7761-7764.
[http://dx.doi.org/10.1021/jo050163b] [PMID: 16149810]
[106]
Ajay Kumar, K.; Rai, K.M.L.; Umesha, K.B.; Prasad, K.R. Synthesis of pyrrolo (3,4- d)-3-aryl-5N-aryl-4,6-dioxoisoxazolines via 1,3-diplolar cycloaddition reaction. Indian J. Chem. Sect. B, 2001, 40B, 274-277.
[107]
Valizadeh, H.; Dinparast, L. Rapid, highly efficient, and room-temperature TiCl4-catalyzed synthesis of 4-Isoxazolines under Solvent-Free Conditions. Synth. Commun., 2011, 41, 291.
[http://dx.doi.org/10.1080/00397910903537349]
[108]
Denmark, S.E.; Kallemeyn, J.M. Synthesis of 3,4,5-trisubstituted isoxazoles via sequential [3 + 2] cycloaddition/silicon-based cross-coupling reactions. J. Org. Chem., 2005, 70(7), 2839-2842.
[http://dx.doi.org/10.1021/jo047755z] [PMID: 15787583]
[109]
Bhosale, S.; Kurhade, S.; Prasad, U.V.; Palle, V.P.; Bhuniya, D. Efficient synthesis of isoxazoles and isoxazolines from aldoximes using MagtrieveTM (CrO2). Tetrahedron Lett., 2009, 50(27), 3948-3951.
[http://dx.doi.org/10.1016/j.tetlet.2009.04.073]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy