Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

2,3-Diaminomaleonitrile: A Multifaceted Synthon in Organic Synthesis

Author(s): Ankita Chaudhary*

Volume 19, Issue 5, 2022

Published on: 12 April, 2022

Page: [616 - 642] Pages: 27

DOI: 10.2174/1570179419666220107155346

Price: $65

Abstract

2,3-Diaminomaleonitrile (DAMN), a tetramer of hydrogen cyanide, displays weakly basic properties and has reactivity comparable to o-phenylenediamine. It has emerged as a versatile, cheap as well as a readily accessible building block towards the synthesis of a variety of organic compounds. The present review focuses on the applications of 2,3-diaminomaleonitrile for the synthesis of Schiff’s base, imidazoles, pyrazines, quinoxolines, benzodiazocines, 1,4-diazepines, purines, pyrimidines, pyrazine-tetrazole hybrids, triazoles, thiadiazole, thiazolidines, porphyrazines, formamidines, 1,3,5-triazepines, pyrrolo[3,4-b][1,4]diazepin-6(3H)-ones, triaza[22]annulenes, pyrrolo[3,4-f][1,3,5]triazepines, spiro compounds, pyrazoles and 2,3-dicyano-5,7- bismethylthieno[3,4-b]pyrazine.

Keywords: 2, 3-Diaminomaleonitrile, organic synthesis, synthon, heterocycles, pyrazine, Schiff's base.

Graphical Abstract

[1]
Lange, O. About a new connection of the composition of hydrocyanic acid. Eur. J. Inorg. Chem., 1873, 6, 99-101.
[2]
Bedel, C. On a polymer of hydrocyanic acid. Reports of the Academy of Sciences, 1923, 176, 168-171.
[3]
Bredereck, H.; Schmötzer, G.; Becher, H-J. Constitution of tetrameric hydrocyanic acid and its acyl derivatives. Eur. J. Org. Chem., 1956, 600, 87-95.
[4]
Webb, R.L.; Frank, S.; Schneider, W.C. The structure of HCN tetramer. J. Am. Chem. Soc., 1955, 77, 3491-3493.
[http://dx.doi.org/10.1021/ja01618a021]
[5]
Gryszkiewicz-Trochimowski, E. Composition and structure of the polymer of hydrocyanic acid. Roczniki Chem, 1928, 8, 165-174.
[6]
Penfold, B.R.; Lipscomb, W. The molecular and crystal structure of hydrogen cyanide tetramer (diaminomaleonitrile). Acta Crystallogr., 1961, 14, 589-597.
[http://dx.doi.org/10.1107/S0365110X61001881]
[7]
Al-Azmi, A. Recent developments in the chemistry of diaminomaleonitrile. Curr. Org. Synth., 2015, 12, 110-135.
[http://dx.doi.org/10.2174/1570179412666141226190750]
[8]
Al-Azmi, A.; Elassar, A-Z.A.; Booth, B.L. The chemistry of diaminomaleonitrile and its utility in heterocyclic synthesis. Tetrahedron, 2003, 59, 2749-2763.
[http://dx.doi.org/10.1016/S0040-4020(03)00153-4]
[9]
Hu, J.; Jin, X.; Peng, D.; Xie, Q.; Liu, Y.; Liao, Y.; Zhu, C.; Zhong, C. Novel D–π–A dye sensitizers of polymeric metal complexes based on Cd(II) with salicylaldehyde and diaminomaleonitrile: synthesis, characterization, and photovoltaic performance for dye-sensitized solar cells. Res. Chem. Intermed., 2015, 41, 8327-8342.
[http://dx.doi.org/10.1007/s11164-014-1895-z]
[10]
Rajasekar, M.; Sreedaran, S.; Prabu, R.; Narayanan, V.; Jegadeesh, R.; Raaman, N.; Rahiman, A.K. Synthesis, characterization, and anti-microbial activities of nickel(II) and copper(II) Schiff-base complexes. J. Coord. Chem., 2010, 63, 136-146.
[http://dx.doi.org/10.1080/00958970903296362]
[11]
Wöhrle, D.; Bohlen, H.; Rothkopf, H-W. Polymeric Schiff’s base chelates and their precursors, 4 synthesis of schiff’s base chelates from diaminomaleonitrile and investigation of their activity for the valence isomerisation of quadricyclane to norbornadien. Macromol. Chem. Phys., 1983, 184, 763-778.
[http://dx.doi.org/10.1002/macp.1983.021840411]
[12]
Wöhrle, D.; Buttner, P. Polymeric schiff’s base chelates and their precursors 8a), some cobalt chelates as catalysts for the isomerization of quadrycyclane to norbornadiene. Polym. Bull., 1985, 13, 57-64.
[13]
MacLachlan, M.J.; Park, M.K.; Thompson, L.K. Coordination compounds of schiff-base ligands derived from diaminomaleonitrile (DMN): Mononuclear, dinuclear, and macrocyclic derivatives. Inorg. Chem., 1996, 35(19), 5492-5499.
[http://dx.doi.org/10.1021/ic960237p] [PMID: 11666735]
[14]
Shirai, K.; Matsuoka, M.; Fukunishi, K. New syntheses and solid state fluorescence of azomethine dyes derived from diaminomale-onitrile and 2,5-diamino-3,6-dicyanopyrazine. Dyes Pigm., 2000, 47, 107-115.
[http://dx.doi.org/10.1016/S0143-7208(00)00068-1]
[15]
Yang, J.; Shi, R.; Zhou, P.; Qiu, Q.; Li, H. Asymmetric Schiff bases derived from diaminomaleonitrile and their metal complexes. J. Mol. Struct., 2016, 1106, 242-258.
[http://dx.doi.org/10.1016/j.molstruc.2015.10.092]
[16]
Nesterov, V.V.; Antipin, M.Y.; Nesterov, V.N.; Penn, B.G.; Frazier, D.O.; Timofeeva, T.V. Thermally stable imines as new potential nonlinear optical materials. Cryst. Growth Des., 2004, 4, 521-531.
[http://dx.doi.org/10.1021/cg034068c]
[17]
Anitha, C.; Sheela, C.D.; Tharmaraj, P.; Shanmugakala, R. Studies on synthesis and spectral characterization of some transition metal complexes of Azo-Azomethine derivative of diaminomaleonitrile. Int. J. Inorg. Chem., 2013, 2013, Article ID 436275.
[http://dx.doi.org/10.1155/2013/436275]
[18]
Johnson, D.M.; Reybuck, S.E.; Lawton, R.G.; Rasmussen, P.G. Condensation of DAMN with conjugated aldehydes and polymerizations of the corresponding imines. Macromolecules, 2005, 38, 3615-3621.
[http://dx.doi.org/10.1021/ma047918l]
[19]
Ruiz-Bermejo, M.; de la Fuente, J.L.; Carretero-González, J.; García-Fernández, L.; Aguilar, M.R. A Comparative study on HCN poly-mers synthesized by polymerization of NH4 CN or diaminomaleonitrile in aqueous media: New perspectives for prebiotic chemistry and materials science. Chemistry, 2019, 25(49), 11437-11455.
[http://dx.doi.org/10.1002/chem.201901911] [PMID: 31373416]
[20]
Aruna; Rani, B.; Swami, S.; Agarwala, A.; Behera, D.; Shrivastava, R. Recent progress in development of 2,3- diaminomaleonitrile (DAMN) based chemosensors for sensing of ionic and reactive oxygen species. RSC Advances, 2019, 9, 30599-30614.
[http://dx.doi.org/10.1039/C9RA05298D]
[21]
Derstine, B.P.; Tomlin, J.W.; Peck, C.L.; Dietz, J-P.; Herrera, B.T.; Cardoso, F.S.P.; Paymode, D.J.; Yue, A.C.; Arduengo, A.J., III; Opatz, T.; Snead, D.R.; Stringham, R.W.; McQuade, D.T.; Gupton, B.F. An efficient synthesis of tenofovir (PMPA): A key intermediate leading to tenofovir-based HIV medicines. Org. Process Res. Dev., 2020, 24, 1420-1427.
[http://dx.doi.org/10.1021/acs.oprd.0c00078]
[22]
Popp, F.D. Synthesis of potential antineoplastic agents. XXIV. Reaction of diaminomaleonitrile with 1,2-diones. J. Heterocycl. Chem., 1974, 11, 79-82.
[http://dx.doi.org/10.1002/jhet.5570110118]
[23]
Heidenreich, H.; Becker, B. 2,3-Diaminomaleonitrile derivatives. Eur. Pat., EP0312908A1, 1989., 312908.
[24]
Fujiyoshi, N.; Oshima, K. Diaminomaleonitrile as a nematocide and insecticide. JP Pat., 54076822, 1979.
[25]
Okuma, T.; Kojima, K.; Matsuzaki, Y. Jet-printing inks showing vivid color and good storage stability and azo compounds with good solvent solubility therefor. JP Pat, 2005120235. 2005.
[26]
Kalhor, M.; Seyedzade, Z. Rapid synthesis of 2-amino maleonitrile Schiff bases in aqueous media catalyzed by cerium(IV) ammonium nitrate (CAN) and a new method for the one-pot preparation of their dicyano imidazoles (DCI). Res. Chem. Intermed., 2017, 43, 3349-3360.
[http://dx.doi.org/10.1007/s11164-016-2829-8]
[27]
Keshav, K.; Torawane, P.; Kumar Kumawat, M.; Tayade, K.; Sahoo, S.K.; Srivastava, R.; Kuwar, A. Highly selective optical and re-versible dual-path chemosensor for cyanide detection and its application in live cells imaging. Biosens. Bioelectron., 2017, 92, 95-100.
[http://dx.doi.org/10.1016/j.bios.2017.02.006] [PMID: 28189907]
[28]
Jeyanthi, D.; Iniya, M.; Krishnaveni, K.; Chellappa, D. Novel indole based dual responsive “turn-on” chemosensor for fluoride ion de-tection. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 136(Pt C), 1269-1274.
[http://dx.doi.org/10.1016/j.saa.2014.10.013] [PMID: 25456669]
[29]
Zhou, H.; Wang, J.; Chen, Y.; Xi, W.; Zheng, Z.; Xu, D.; Cao, Y.; Liu, G.; Zhu, W.; Tian, Y. New diaminomaleonitrile derivatives con-taining aza-crown ether: Selective, sensitive and colorimetric chemosensors for Cu(II). Dyes Pigm., 2013, 98, 1-10.
[http://dx.doi.org/10.1016/j.dyepig.2013.01.018]
[30]
Xue, X-Y.; Jiang, D-Y.; Feng, C.; Zhang, H.; Wang, Z-F.; Zhao, H. A highly selective and sensitive turn-on fluorescent probe for cop-per(II) ion with a large Stokes shift. Inorg. Chem. Commun., 2017, 86, 258-261.
[http://dx.doi.org/10.1016/j.inoche.2017.10.019]
[31]
Bing, Q.; Wang, L.; Li, D.; Wang, G. A new high selective and sensitive turn-on fluorescent and ratiometric absorption chemosensor for Cu2+ based on benzimidazole in aqueous solution and its application in live cell. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 202, 305-313.
[http://dx.doi.org/10.1016/j.saa.2018.05.045] [PMID: 29800894]
[32]
Erdemir, S.; Malkondu, S. Dual-emissive fluorescent probe based on phenolphthalein appended diaminomaleonitrile for Al3+ and the colorimetric recognition of Cu2+. Dyes Pigm., 2019, 163, 330-336.
[http://dx.doi.org/10.1016/j.dyepig.2018.12.017]
[33]
He, Y.; Yin, J.; Wang, G. New selective “on-off” fluorescence chemosensor based on carbazole Schiff base for Fe3+ detection. Chem. Heterocycl. Compd., 2018, 54, 146-152.
[http://dx.doi.org/10.1007/s10593-018-2246-6]
[34]
Goswami, S.; Das, S.; Aich, K. An ICT based highly selective and sensitive sulfur-free sensor for naked eye as well as fluorogenic de-tection of Hg2+ in mixed aqueous media. Tetrahedron Lett., 2013, 54, 4620-4623.
[http://dx.doi.org/10.1016/j.tetlet.2013.06.035]
[35]
Patil, S.R.; Choudhary, A.S.; Sekar, N. A Lawsone–DAMN based colorimetric chemosensor for rapid naked-eye detection of mercu-ry(II). New J. Chem., 2016, 40, 6803-6811.
[http://dx.doi.org/10.1039/C6NJ00430J]
[36]
Wu, C.; Wang, J.; Shen, J.; Zhang, C.; Wu, Z.; Zhou, H. A colorimetric quinoline-based chemosensor for sequential detection of copper ion and cyanide anions. Tetrahedron, 2017, 73, 5715-5719.
[http://dx.doi.org/10.1016/j.tet.2017.08.010]
[37]
Vengaian, K.M.; Britto, C.D.; Sekar, K.; Sivaraman, G.; Singaravadivel, S. Fluorescence “on–off–on” chemosensor for selective detec-tion of Hg2+ and S2− application to bioimaging in living cells. RSC Advances, 2016, 6, 7668-7673.
[http://dx.doi.org/10.1039/C5RA26281J]
[38]
Goswami, S.; Maity, S.; Maity, A.C.; Das, A.K. Fluorometric and naked-eye detectable dual signaling chemodosimeter for hypochlorite. Sens. Actuators B Chem., 2014, 204, 741-745.
[http://dx.doi.org/10.1016/j.snb.2014.08.024]
[39]
Yuan, L.; Lin, W.; Song, J.; Yang, Y. Development of an ICT-based ratiometric fluorescent hypochlorite probe suitable for living cell imaging. Chem. Commun. (Camb.), 2011, 47(47), 12691-12693.
[http://dx.doi.org/10.1039/c1cc15762k] [PMID: 22037995]
[40]
Chen, L.; Park, S.J.; Wu, D.; Kim, H.M.; Yoon, J. A two-photon ESIPT based fluorescence probe for specific detection of hypochlorite. Dyes Pigm., 2018, 158, 526-532.
[http://dx.doi.org/10.1016/j.dyepig.2018.01.027]
[41]
Zhang, Y.; Ma, L.; Tang, C.; Pan, S.; Shi, D.; Wang, S.; Li, M.; Guo, Y. A highly sensitive and rapidly responding fluorescent probe based on a rhodol fluorophore for imaging endogenous hypochlorite in living mice. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(5), 725-731.
[http://dx.doi.org/10.1039/C7TB02862H] [PMID: 32254259]
[42]
Karuppusamy, P.; Sarveswari, S. A simple diaminomaleonitrile based molecular probe for selective detection of Cu(II) and Zn(II) ions in semi-aqueous medium. Inorg. Chim. Acta, 2021, 515, 120073.
[http://dx.doi.org/10.1016/j.ica.2020.120073]
[43]
Liu, X.; Liu, H.; Tang, X.; Liu, G.; Pu, S. A highly selective colorimetric and fluorescent probe for Cu2+ based diarylethene with a dia-minomaleonitrile unit. Tetrahedron, 2021, 78, 131788.
[http://dx.doi.org/10.1016/j.tet.2020.131788]
[44]
Wang, Z.; Zhang, Y.; Yin, J.; Li, M.; Luo, H.; Yang, Y.; Xu, X.; Yong, Q.; Wang, S. An easily available camphor-derived ratiometric flu-orescent probe with AIE feature for sequential Ga3+ and ATP sensing in a near-perfect aqueous media and its bio-imaging in living cells and mice. Sens. Actuators B Chem., 2020, 320, 128249.
[http://dx.doi.org/10.1016/j.snb.2020.128249]
[45]
Zhang, H.; Zhong, T.; Jiang, N.; Zhang, Z.; Gong, X.; Wang, G. Study on the photochromism, photochromic fluorescence switch, fluo-rescent and colorimetric sensing for Cu2+ of naphthopyran-diaminomaleonitrile dyad and recognition Cu2+ in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 233, 118191.
[http://dx.doi.org/10.1016/j.saa.2020.118191] [PMID: 32135501]
[46]
Li, Y.; Liu, L.; Tang, Y.; Wang, Y.; Han, J.; Ni, L. A new colorimetric and ratiometric probe for highly selective recognition and bioim-aging of ClO- and Al3. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 232, 118154.
[http://dx.doi.org/10.1016/j.saa.2020.118154] [PMID: 32106027]
[47]
Li, X.; Wen, Q.; Gu, J.; Liu, W.; Wang, Q.; Zhou, G.; Gao, J.; Zheng, Y. Diverse reactivity to hypochlorite and copper ions based on a novel Schiff base derived from vitamin B6 cofactor. J. Mol. Liq., 2020, 319, 114124.
[http://dx.doi.org/10.1016/j.molliq.2020.114124]
[48]
Malkondu, S.; Erdemir, S.; Karakurt, S. Red and blue emitting fluorescent probe for cyanide and hypochlorite ions: Biological sensing and environmental analysis. Dyes Pigm., 2020, 174, 108019.
[http://dx.doi.org/10.1016/j.dyepig.2019.108019]
[49]
Zare, N.; Zabardasti, A.; Dusek, M.; Eigner, V. New asymmetric and symmetric 2-((pyridin-4-yl)methylenamino)-3 aminomaleo nitrile and 2,3-bis((pyridin-4-yl)methylenamino)maleonitrile Schiff bases: Synthesis, experimental characterization along with theoretical stud-ies. J. Mol. Struct., 2018, 1163, 388-396.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.024]
[50]
Ferris, J.P.; Orgel, L.E. An unusual photochemical rearrangement in the synthesis of adenine from hydrogen cyanide. J. Am. Chem. Soc., 1966, 88, 1074.
[http://dx.doi.org/10.1021/ja00957a050]
[51]
Ohtsuka, Y. Chemistry of diaminomaleonitrile. I. Selective preparations of monoformyldiaminomaleonitrile and imidazoles by reaction with formic acid. J. Org. Chem., 1976, 41, 713-714.
[http://dx.doi.org/10.1021/jo00866a032]
[52]
El-Shaieb, K.M. Microwave irradiation assisted facile synthesis of new imidazole, pyrazine, and benzodiazocine derivatives using dia-minomaleonitrile. Heteroatom Chem., 2006, 17, 365-368.
[http://dx.doi.org/10.1002/hc.20212]
[53]
Kalhor, M.; Seyedzade, Z.; Zarnegar, Z. (NH4)2Ce(NO3)6/HNO3 as a high-performance oxidation catalyst for the one-step, solvent-free synthesis of dicyano imidazoles. Polycycl. Aromat. Compd., 2021, 41, 1506-1514.
[http://dx.doi.org/10.1080/10406638.2019.1686402]
[54]
O’Connell, J.F.; Parquette, J.; Yelle, W.E.; Wang, W.; Rapoport, H. Convenient synthesis of methyl 1-Methyl-2,4-dibromo-5-imidazolecarboxylate. Synthesis, 1988, 767-771.
[http://dx.doi.org/10.1055/s-1988-27702]
[55]
Sheppard, W.A.; Webster, O.W. Hydrogen cyanide chemistry. V. Diazodicyanoimidazole and dicyanoimidazole halonium ylides. J. Am. Chem. Soc., 1973, 95, 2695-2697.
[http://dx.doi.org/10.1021/ja00789a054]
[56]
Merchán, F.L.; Garín, J.; Tejero, T. Synthesis of 2-Sulfonylaminobenzimidazoles and 4,5-Dicyano-2-sulfonylaminoimidazoles from N-Dichloromethylenesulfonamides. Synthesis, 1982, 984-986.
[http://dx.doi.org/10.1055/s-1982-30036]
[57]
Doomanlou, M.; Kabirifard, H.; Asadi, M.; Moloudi, M.; Mirfazli, S.S. Diaminomaleonitrile as a versatile building block for the synthe-sis of 4,4′-biimidazolidinylidenes and 4,4′-bithia-zolidinylidenes. Heterocycl. Commun., 2018, 24, 303-306.
[http://dx.doi.org/10.1515/hc-2018-0127]
[58]
Chmovzh, T.N.; Knyazeva, E.A.; Lyssenko, K.A.; Popov, V.V.; Rakitin, O.A. Safe Synthesis of 4,7-dibromo[1,2,5] thiadiazolo[3,4-d]pyridazine and its SNAr reactions. Molecules, 2018, 23(10), 2576.
[http://dx.doi.org/10.3390/molecules23102576] [PMID: 30304797]
[59]
Al-Azmi, A.; Kalarikkal, A.K. Synthesis of 1,4,5-trisubstituted-1,2,3-triazoles via coupling reaction of diaminomaleonitrile with aro-matic diazonium salts. Tetrahedron, 2013, 69, 11122-11129.
[http://dx.doi.org/10.1016/j.tet.2013.11.003]
[60]
Shaabani, A.; Hajishaabanha, F.; Mofakham, H.; Mahyari, M.; Lali, B. Isocyanide-based three-component synthesis of highly substitut-ed 1,6-dihydro-6,6-dimethylpyrazine-2,3-dicarbonitrile, 3,4-dihydrobenzo[g]quinoxalin-2-amine, and 3,4-dihydro-3,3-dimethylquinoxalin-2-amine derivatives. Helv. Chim. Acta, 2012, 95, 246-254.
[http://dx.doi.org/10.1002/hlca.201100270]
[61]
Shaabani, A.; Maleki, A.; Moghimi-Rad, J. A novel isocyanide-based three-component reaction: synthesis of highly substituted 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. J. Org. Chem., 2007, 72(16), 6309-6311.
[http://dx.doi.org/10.1021/jo0707131] [PMID: 17608537]
[62]
Bhosale, S.M.; Naik, N.H.; Kusurkar, R.S. AlCl3 as an efficient catalyst toward the synthesis of 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. Synth. Commun., 2013, 43, 3163-3169.
[http://dx.doi.org/10.1080/00397911.2013.769602]
[63]
Ghorbani-Vaghei, R.; Amiri, M.; Karimi-Nami, R.; Toghraei-Semiromi, Z.; Ghavidel, M.N. N, N′ N′-Tetrabromobenzene-1,3-disulfonamide and poly (N-bromo-N-ethylbenzene-1,3-disulfonamide) as new and efficient catalysts for the synthesis of highly substi-tuted 1,6-dihydropyrazine-2,3-dicarbonitrile derivatives. Mol. Divers., 2013, 17(2), 251-259.
[http://dx.doi.org/10.1007/s11030-013-9427-0] [PMID: 23412753]
[64]
Jasouri, S.; Khalafy, J.; Badali, M.; Prager, R.H. Synthesis of 9H-Indeno[1,2-b] pyrazine and 11H-indeno [1,2-b] quinoxaline deriva-tives in one-step reaction from 2-bromo-4-chloro-1-indanone. S. Afr. J. Chem., 2011, 64, 105-107.
[65]
Moloudi, M.; Kabirifard, H.; Kabirifard, R.; Mahdikhani, M. Reactions of 4-benzoyl-5-phenylamino-2,3-dihydrothiophene-2,3-dione and diaminomaleonitrile in the presence of alcohols as reactant and solvent. J. Sulphur Chem., 2017, 38, 347-356.
[http://dx.doi.org/10.1080/17415993.2017.1307983]
[66]
Shahnaei, R.; Kabirifard, H.; Fathololoomi, P. Synthesis of pyrazine-2,3-dicarbonitriles via the one-pot three-component reaction of 4-benzoyl-5-phenylamino-2,3-dihydrothiophene-2,3-dione, diaminomaleonitrile, and functionalized alcohols in acetonitrile. J. Heterocycl. Chem., 2020, 57, 550-555.
[http://dx.doi.org/10.1002/jhet.3761]
[67]
Rothkopf, H.W.; Wöhrle, D.; Müller, R.; Koßmehl, G. Di- and Tetracyanpyrazine. Chem. Ber., 1975, 108, 875-886.
[http://dx.doi.org/10.1002/cber.19751080320]
[68]
Takahashi, K.; Aoki, Y.; Sugitani, T.; Moriyama, F.; Tomita, Y.; Handa, M.; Kasuga, K.; Sogabe, K. Preparation and spectral and elec-trochemical properties of the nickel(II), palladium(II) and platinum(II) complexes of 2,3,9,10,16,17,23,24-octapropyltetrapyrazinoporphyrazine. Inorg. Chim. Acta, 1992, 201, 247-249.
[http://dx.doi.org/10.1016/S0020-1693(00)85340-2]
[69]
Novakova, V.; Zimcik, P.; Miletin, M.; Kopecky, K.; Musil, Z. Tetra[6,7]quinoxalinoporphyrazines: The effect of an additional benzene ring on photophysical and photochemical properties. Eur. J. Org. Chem., 2010, 2010, 732-739.
[http://dx.doi.org/10.1002/ejoc.200901149]
[70]
Tsuda, T.; Fujishima, K.; Ueda, H. Synthesis of pyrazinedicarboximides from diaminomaleonitrile. Agric. Biol. Chem., 1981, 45, 2129-2130.
[71]
Kleinwächter, J.; Subramanian, L.R.; Hanack, M. Synthesis of silicon tetrapyrazinoporphyrazines. J. Porphyr. Phthalocyanines, 2000, 4, 498-504.
[http://dx.doi.org/10.1002/1099-1409(200008)4:5<498:AID-JPP277>3.0.CO;2-F]
[72]
Ohta, K.; Watanabe, T.; Hasebe, H.; Morizumi, Y.; Fujimoto, T.; Yamamoto, I.; Lelièvre, D.; Simon, J. Discotic liquid crystals of transi-tion metal complexes 9: synthesis and properties of discotic liquid crystals of tetrapyrazinoporphyrazine derivatives. Mol. Cryst. Liq. Cryst. (Phila. Pa.), 1991, 196, 13-26.
[http://dx.doi.org/10.1080/00268949108029683]
[73]
Jaung, J.; Matsuoka, M.; Fukunishi, K. Syntheses and characterization of new styryl fluorescent dyes from DAMN. Part II. Dyes Pigm., 1997, 34, 255-266.
[http://dx.doi.org/10.1016/S0143-7208(96)00086-1]
[74]
Mitzel, F.; FitzGerald, S.; Beeby, A.; Faust, R. The synthesis of arylalkyne-substituted tetrapyrazinoporphyrazines and an evaluation of their potential as photosensitisers for photodynamic therapy. Eur. J. Org. Chem., 2004, 2004, 1136-1142.
[http://dx.doi.org/10.1002/ejoc.200300566]
[75]
Jaung, J.Y.; Matsuoka, M.; Fukunishi, K. Dicyanopyrazine studies. Part VI: Absorption spectra and aggregation behaviour of tetrapyra-zinoporphyrazines with long alkyl groups. Dyes Pigm., 1999, 40, 73-81.
[http://dx.doi.org/10.1016/S0143-7208(98)00031-X]
[76]
Mørkved, E.H.; Andreassen, T.; Novakova, V.; Zimcik, P. Zinc azaphthalocyanines with thiophen-2-yl, 5-methylthiophen-2-yl and pyr-idin-3-yl peripheral substituents: Additive substituent contributions to singlet oxygen production. Dyes Pigm., 2009, 82, 276-285.
[http://dx.doi.org/10.1016/j.dyepig.2009.01.011]
[77]
Ohta, K.; Azumane, S.; Kawahara, W.; Kobayashi, N.; Yamamoto, I. Discotic liquid crystals of transition metal complexes. Part 26: Su-pramolecular structures of long-chain-substituted octaphenyltetrapyrazinoporphyrazine derivatives. J. Mater. Chem., 1999, 9, 2313-2320.
[http://dx.doi.org/10.1039/a905538j]
[78]
Horiguchi, E.; Matsumoto, S.; Funabiki, K.; Matsui, M. Substituent effect of 2,3-Dicyanopyrazine dyes on solid-state fluorescence. Bull. Chem. Soc. Jpn., 2006, 79, 799-805.
[http://dx.doi.org/10.1246/bcsj.79.799]
[79]
Murthy, S.N.; Madhav, B.; Nageswar, Y.V.D. Revisiting the Hinsberg reaction: Facile and expeditious synthesis of 3-substituted quinoxalin-2(1h)-ones under catalyst-free conditions in water. Helv. Chim. Acta, 2010, 93, 1216-1220.
[http://dx.doi.org/10.1002/hlca.200900358]
[80]
Ali, H.; van Lier, J.E. An easy route for the synthesis of pyrazine-2,3-dicarbonitrile 5,6-bis-substituted derivatives using a palladium catalyst. Tetrahedron Lett., 2012, 53, 4824-4827.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.102]
[81]
Lee, B.H.; Jaung, J.Y.; Jang, S.C.; Yi, S.C. Synthesis and optical properties of push–pull type tetrapyrazinoporphyrazines. Dyes Pigm., 2005, 65, 159-167.
[http://dx.doi.org/10.1016/j.dyepig.2004.06.022]
[82]
Sessler, J.L.; Pantos, G.D.; Katayev, E.; Lynch, V.M. Pyrazine analogues of dipyrrolylquinoxalines. Org. Lett., 2003, 5(22), 4141-4144.
[http://dx.doi.org/10.1021/ol0355635] [PMID: 14572269]
[83]
Suzuki, T.; Nagae, Y.; Mitsuhashi, K. Synthesis of pyrido[1′2′1,2]imidazo[4,5-b]pyrazines from 2,3-dichloro-5,6-dicyanopyrazine with 2-aminopyridines. J. Heterocycl. Chem., 1986, 23, 1419-1421.
[http://dx.doi.org/10.1002/jhet.5570230533]
[84]
Kumar, A.; Kumar, V.; Upadhyay, K.K. A ninhydrin based colorimetric molecular switch for Hg2+ and CH3COO−/F. Tetrahedron Lett., 2011, 52, 6809-6813.
[http://dx.doi.org/10.1016/j.tetlet.2011.10.046]
[85]
Abeywickrama, C.; Baker, A.D. Efficient synthesis of 1,4,5,12-tetraazatriphenylene and derivatives. J. Org. Chem., 2004, 69(22), 7741-7744.
[http://dx.doi.org/10.1021/jo0495283] [PMID: 15498006]
[86]
Kano, S.; Yuasa, Y. Reaction of phenacyldimethylsulfonium iodine with o-phenylenediamines. Heterocycles, 1981, 16, 1449-1452.
[http://dx.doi.org/10.3987/R-1981-09-1449]
[87]
McKillop, A.; Henderson, A.; Ray, P.S.; Avendano, C.; Molinero, E.G. Heterocyclic synthesis using ethyl carboethoxyformimidate. Tetrahedron Lett., 1982, 23, 3357-3360.
[http://dx.doi.org/10.1016/S0040-4039(00)87614-5]
[88]
Moloudi, M.; Kabirifard, H.; Piri, S.; Naghizadeh, E. Synthesis of 2,3-dicyanopyrazine and ethyl 5-amino-4,6-dicyanobiphenyl-3-carboxylate derivatives from ethyl aroylpyruvates. Heterocycl. Commun., 2018, 24, 99-102.
[http://dx.doi.org/10.1515/hc-2017-0190]
[89]
Mamedov, V.A.; Zhukova, N.A.; Beschastnova, T.N.; Zakirova, E.I.; Kadyrova, S.F.; Mironova, E.V.; Nikonova, A.G.; Latypov, S.K.; Litvinov, I.A. An efficient metal-free synthesis of 2-(pyrazin-2-yl)benzimidazoles from quinoxalinones and diaminomaleonitrile via a novel rearrangement. Tetrahedron Lett., 2012, 53, 292-296.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.013]
[90]
Tisseh, Z.N.; Dabiri, M.; Nobahar, M.; Soorki, A.A.; Bazgir, A. Catalyst-free synthesis of N-rich heterocycles via multi-component reac-tions. Tetrahedron, 2012, 68, 3351-3356.
[http://dx.doi.org/10.1016/j.tet.2012.02.051]
[91]
Safaei-Ghomi, J.; Paymard-Samani, S.; Shahbazi-Alavi, H. Ultrasonic accelerated efficient synthesis of (1H-tetrazole-5-yl) pyrazines catalyzed by MgFe2O4 nanoparticles as a reusable heterogeneous catalyst. J. Nanostruct., 2018, 8, 383-390.
[92]
Seikel, E.; Oelkers, B.; Burghaus, O.; Sundermeyer, J. Soluble molybdenum(V) imido phthalocyanines and pyrazinoporphyrazines: crystal structure, UV-vis and electron paramagnetic resonance spectroscopic studies. Inorg. Chem., 2013, 52(8), 4451-4457.
[http://dx.doi.org/10.1021/ic3026914] [PMID: 23537335]
[93]
Kudrevich, S.V.; Galpern, M.G.; Luk’yanets, E.A.; van Lier, J.E. Substituted tetra-2,3-pyrazinoporphyrazines. Part I. Angular annela-tion of tetra-2,3-quinoxalinoporphyrazine. Can. J. Chem., 1996, 74, 508-515.
[http://dx.doi.org/10.1139/v96-055]
[94]
Pickhardt, W.; Wohlgemuth, M.; Grätz, S.; Borchardt, L. Mechanochemically assisted synthesis of hexaazatriphenylenehexacarbonitrile. J. Org. Chem., 2021, 86(20), 14011-14015.
[http://dx.doi.org/10.1021/acs.joc.1c00253] [PMID: 34014673]
[95]
Mørkved, E.H.; Beukes, J.A.; Mo, F. o-Quinonoid heterocycles: synthesis and crystal structure of 2,3-dicyano-5,7-bismethylthieno[3,4-b]pyrazine. Molecules, 2007, 12(8), 1623-1631.
[http://dx.doi.org/10.3390/12081623] [PMID: 17960078]
[96]
Maleki, A. An efficient magnetic heterogeneous nanocatalyst for the synthesis of pyrazinoporphyrazine macrocycles. Polycycl. Aromat. Compd., 2018, 38, 402-409.
[http://dx.doi.org/10.1080/10406638.2016.1221836]
[97]
Maleki, A.; Rezayan, A.H. One-pot synthesis of metallopyrazinoporphyrazines using 2,3-diaminomaleonitrile and 1,2-dicarbonyl com-pounds accelerated by microwave irradiation. Org. Chem. Int., 2014., Article ID 958951.
[http://dx.doi.org/10.1155/2014/958951]
[98]
Wang, D.; Li, H.; Jiang, X.; Zhao, C. A new method for the synthesis of cobalt complex of tetra-2,3-(5-tert-butyl-pyrazino) porphyra-zine. IOP Conf. Ser. Earth Environ. Sci., 2021, 680, 012066.
[http://dx.doi.org/10.1088/1755-1315/680/1/012066]
[99]
Drews, A.; Schönemeier, T.; Seggewies, S.; Breitmaier, E. New porphyrinoid triaza[22]annulenes from 1,9-bis(5-formylpyrrol-2-yl)dipyrrins, diaminomaleonitrile and o-phenylenediamine. Synthesis, 1998, 749-752.
[http://dx.doi.org/10.1055/s-1998-2067]
[100]
Al-Azmi, A.; Booth, B.L.; Pritchard, R.G.; Proença, F.J.R.P. Synthesis of novel 5-amino-6-ethoxy-2-alkylpyrimidine-4-carbonitriles. J. Chem. Soc., Perkin Trans. 1, 2001, 485-486.
[http://dx.doi.org/10.1039/b009804n]
[101]
Wieczorek, E.; Gierszewski, M.; Popenda, L.; Tykarska, E.; Gdaniec, M.; Jurga, S.; Sikorski, M.; Mielcarek, J.; Piskorz, J.; Goslinski, T. Synthesis, characterization and photophysical properties of novel 5,7-disubstituted-1,4-diazepine-2,3-dicarbonitriles. J. Mol. Struct., 2016, 1110, 208-214.
[http://dx.doi.org/10.1016/j.molstruc.2016.01.032]
[102]
Begland, R.W.; Hartter, D.R.; Jones, F.N.; Sam, D.J.; Sheppard, W.A.; Webster, O.W.; Weigert, F.J. Hydrogen cyanide chemistry. VIII. New chemistry of diaminomaleonitrile. Heterocyclic synthesis. J. Org. Chem., 1974, 39, 2341-2350.
[http://dx.doi.org/10.1021/jo00930a004]
[103]
Shaabani, A.; Maleki, A.; Mofakham, H.; Moghimi-Rad, J. A novel one-pot pseudo-five-component synthesis of 4,5,6,7-tetrahydro-1H-1,4-diazepine-5-carboxamide derivatives. J. Org. Chem., 2008, 73(10), 3925-3927.
[http://dx.doi.org/10.1021/jo8002612] [PMID: 18393459]
[104]
Mofakham, H.; Shaabani, A.; Mousavifaraz, S.; Hajishaabanha, F.; Shaabani, S.; Ng, S.W. A novel one-pot pseudo-five-component con-densation reaction towards bifunctional diazepine-tetrazole containing compounds: synthesis of 1H-tetrazolyl-1H-1,4-diazepine-2,3-dicarbonitriles and 1H-tetrazolyl-benzo[b][1,4]diazepines. Mol. Divers., 2012, 16(2), 351-356.
[http://dx.doi.org/10.1007/s11030-012-9371-4] [PMID: 22592603]
[105]
Yahyazadeh, A.; Hadesinea, S.; Daneshmandi, M. Silica sulfuric acid as an efficient and reusable heterogeneous catalyst for the synthesis of formamidines from the diaminomaleonitrile. Iran. J. Catal, 2012, 2, 153-156.
[106]
José Alves, M.; Carvalho, M.A.; Fernanda, M.; Proença, J.R.P.; Booth, B.L. Reactivity studies of ethyl(Z)-N-(2-amino-1,2-dicyanovinyl) formimidate with carbonyl compounds in the presence of base. J. Heterocycl. Chem., 2000, 37, 1041-1048.
[http://dx.doi.org/10.1002/jhet.5570370503]
[107]
Alves, M.J.; Carvalho, M.A.; Fernanda, M.; Proença, J.R.P. Synthesis and mechanism of formation of novel 2,5-dihydro-2,5-diimino-3,4-di[(N,N-dimethylamino)methylideneamino]pyrroles and 5-amino-3,4-di[(N,N-dimethylamino)methylideneamino]-2H-2-iminopyrroles. J. Heterocycl. Chem., 1999, 36, 193-199.
[http://dx.doi.org/10.1002/jhet.5570360129]
[108]
Al-Azmi, A.; Booth, B.L.; Carpenter, R.A.; Carvalho, A.; Marrelec, E.; Pritchard, R.G.; Proenca, M.F.J.R.P. Facile synthesis of 6-cyano-9-substituted-9H-purines and their ring expansion to 8-(arylamino)-4-imino-3-methylpyrimidino[5,4-d]pyrimidines. J. Chem. Soc., Perkin Trans. 1, 2001, 2532-2537.
[http://dx.doi.org/10.1039/b106539b]
[109]
Alves, M.J.; Al-Duaij, O.Kh.; Booth, B.L.; Carvalho, A.; Eastwood, P.R.; Proença, M.F.J.R.P. Synthesis of 4-substituted 8-amino-4,5-dihydro-3H-pyrrolo[3,4-f]-1,3,5-triazepin-6-ones and 5-amino-2-aryl-4-(1-aryl-5-alkylideneaminoimidazol-4-yl)1,3-oxazoles. J. Chem. Soc., Perkin Trans. 1, 1994, 3571-3577.
[http://dx.doi.org/10.1039/P19940003571]
[110]
Aly, A.A.; Hassan, A.A.; Bräse, S.; Gomaa, M.A-M.; Nemr, F.M. Reaction of Amidrazones with Diaminomaleonitrile: Synthesis of 4-Amino-5-Iminopyrazoles. J. Heterocycl. Chem., 2017, 54, 480-483.
[http://dx.doi.org/10.1002/jhet.2607]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy