Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Chemical Constituents of Clusia nemorosa Fruits and Evaluation of Antioxidant and Antimicrobial Activity

Author(s): Rafaela Oliveira Ferreira*, Jéssica Colodette Galo, Paula Monteiro Lopes, Daniela Sales Alviano Moreno, Tania Maria Sarmento da Silva and Mário Geraldo de Carvalho

Volume 12, Issue 6, 2022

Published on: 28 March, 2022

Article ID: e270122200602 Pages: 6

DOI: 10.2174/2210315512666220127125359

Price: $65

conference banner
Abstract

Background: Clusia nemorosa, popularly known as pororoca, is used in folk medicine to treat inflammation.

Objective: The current study was conducted to isolate and identify bioactive compounds from C. nemorosa fruits and to investigate their antimicrobial and antioxidant activities.

Methods: The isolation and structural elucidation of the substances were carried out by usual chromatographic techniques and spectroscopic methods, respectively. The antioxidant activity of extracts of C. nemorosa fruits was measured by DPPH assay and antimicrobial activity was evaluated against the microorganisms Staphylococcus aureus, Candida albicans, Cryptococcus neoformans, and Rhizopus oryzae.

Results: The chemical investigation of the fruit extract of C. nemorosa led to the identification of two phenolic acids, protocatechuic acid (1) and coumaric acid (6), a flavonoid apigenin (7), glycosyl-β- sitosterol (4), glycosyl-stigmasterol (5), citric acid (3), and the trimethyl citrate ester (2). The fraction in AcOET showed the best scavenging activity of the DPPH radical, with IC50 = 23.50±1.7 μg. mL-1. The extracts were inactive against the tested microorganisms up to 2500 μg. mL-1.

Conclusion: With the exception of the steroid glycosyl-β-sitosterol, the substances are described for the first time in the species, and, in addition, we report the promising free radical scavenging activity showing its potential in the treatment of diseases related to oxidative stress.

Keywords: Clusiaceae, flavonoids, phenolic acids, DPPH, antioxidants, microorganisms.

Graphical Abstract

[1]
APG IVAn update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc., 2016, 181(1), 1-20.
[http://dx.doi.org/10.1111/boj.12385]
[2]
BFG - The Brazil Flora Group Growing knowledge: an overview of seed plant diversity in Brazil. Rodriguésia, 2015, 66(4), 1085-1113.
[http://dx.doi.org/10.1590/2175-7860201566411]
[3]
Judd, W.S.; Campbell, C.S.; Kellogg, E.A.; Stevens, P.F.; Donoghu, M.J. Sistemática Vegetal - Um enfoque filogenético; Editora Artmed: Brazil, 2009.
[4]
Farias, J.A.C.; Ferro, J.N.S.; Silva, J.P.; Agra, I.K.R.; Oliveira, F.M.; Candea, A.L.P.; Conte, F.P.; Ferraris, F.K.; Henriques, Md.; Conserva, L.M.; Barreto, E. Modulation of inflammatory processes by leaves extract from Clusia nemorosa both in vitro and in vivo animal models. Inflammation, 2012, 35(2), 764-771.
[http://dx.doi.org/10.1007/s10753-011-9372-y] [PMID: 21842373]
[5]
Silva, K.M.M.D.; Nóbrega, A.B.D.; Lessa, B.; Anholeti, M.C.; Lobão, A.Q.; Valverde, A.L.; Paiva, S.R.; Joffily, A. Clusia criuva Cambess. (Clusiaceae): Anatomical characterization, chemical prospecting and antioxidant activity. An. Acad. Bras. Cienc., 2017, 89(3), 1565-1578.
[http://dx.doi.org/10.1590/0001-3765201720160286] [PMID: 28767887]
[6]
Ferreira, R.O.; Carvalho, M.G.; Silva, T.M.S. Ocorrência de biflavonoides em Clusiaceae: Aspectos químicos e farmacológicos. Quim. Nova, 2012, 35, 2271-2277.
[http://dx.doi.org/10.1590/S0100-40422012001100035]
[7]
Anholeti, M.C.; Paiva, S.R.; Figueiredo, M.R.; Kaplan, M.A.C. Chemosystematic aspects of polyisoprenylated benzophenones from the genus Clusia. An. Acad. Bras. Cienc., 2015, 87(1), 289-301.
[http://dx.doi.org/10.1590/0001-3765201520140564] [PMID: 25806988]
[8]
Ferreira, R.O.; Carvalho, A.R. Junior; Riger, C.J.; Castro, R.N.; Silva, T.M.S.; Carvalho, M.G. Constituintes químicos e atividade antioxi-dante in vivo de flavonoides isolados de Clusia lanceolata (Clusiaceae). Quim. Nova, 2016, 39(9), 1093-1097.
[http://dx.doi.org/10.21577/0100-4042.20160131]
[9]
Ribeiro, P.R.; Ferraz, C.G.; Cruz, F.G. New steroid and other compounds from non-polar extracts of Clusia burle-marxii and their chemo-taxonomic significance. Biochem. Syst. Ecol., 2019, 82, 31-34.
[http://dx.doi.org/10.1016/j.bse.2018.12.001]
[10]
Ribeiro, P.R.; Ferraz, C.G.; Guedes, M.L.S.; Martins, D.; Cruz, F.G. A new biphenyl and antimicrobial activity of extracts and compounds from Clusia burlemarxii. Fitoterapia, 2011, 82(8), 1237-1240.
[http://dx.doi.org/10.1016/j.fitote.2011.08.012] [PMID: 21893172]
[11]
Ribeiro, M.M.J.; Silva, K.M.M.; Palavecino, L.A.; Pinto, L.C.; Ferreira, B.L.A.; Lobão, A.Q.; Castro, H.C.; Montenegro, R.C.; Barros, C.F.; Joffily, A.; Valverde, A.L.; Paiva, S.R. Anatomical, histochemical and biological studies of Clusia grandiflora Splitg. (Clusiaceae). Braz. Arch. Biol. Technol., 2020, 63, e20190674.
[http://dx.doi.org/10.1590/1678-4324-2020190674]
[12]
Melo, M.S.; Quintans, J.S.S.; Araújo, A.A.S.; Duarte, M.C.; Bonjardim, L.R.; Nogueira, P.C.L.; Moraes, V.R.S.; Araújo-Júnior, J.X.; Ribei-ro, E.A.N.; Quintans-Júnior, L.J. A Systematic review for anti-inflammatory property of Clusiaceae family: A preclinical approach. Evid.-. Based Compl. Alt. Med., 2014, 2014, 960258.
[13]
Bailón-Moscoso, N.; Romero-Benavides, J.C.; Sordo, M.; Villacís, J.; Silva, R.; Celi, L.; Martínez-Vázquez, M.; Ostrosky-Wegman, P. Phytochemical study and evaluation of cytotoxic and genotoxic properties of extracts from Clusia latipes leaves. Rev. Bras. Farmacogn., 2016, 26(1), 44-49.
[http://dx.doi.org/10.1016/j.bjp.2015.08.014]
[14]
de Souza Ferro, J.N.; da Silva, J.P.; Conserva, L.M.; Barreto, E. Leaf extract from Clusia nemorosa induces an antinociceptive effect in mice via a mechanism that is adrenergic systems dependent. Chin. J. Nat. Med., 2013, 11(4), 385-390.
[http://dx.doi.org/10.1016/S1875-5364(13)60056-4] [PMID: 23845547]
[15]
World Health Organization (WHO). A crescente ameaça da resistência antimicrobiana: opções de ação. Sumário executivo; OMS: Brasília, 2012.
[16]
Van Vuuren, S.; Holl, D. Antimicrobial natural product research: A review from a South African perspective for the years 2009-2016. J. Ethnopharmacol., 2017, 208, 236-252.
[http://dx.doi.org/10.1016/j.jep.2017.07.011] [PMID: 28694104]
[17]
Suffredini, I.B.; Paciencia, M.L.B.; Nepomuceno, D.C.; Younes, R.N.; Varella, A.D. Antibacterial and cytotoxic activity of Brazilian plant extracts--Clusiaceae. Mem. Inst. Oswaldo Cruz, 2006, 101(3), 287-290.
[http://dx.doi.org/10.1590/S0074-02762006000300011] [PMID: 16862324]
[18]
Salehi, B.; Martorell, M.; Arbiser, J.L.; Sureda, A.; Martins, N.; Maurya, P.K.; Sharifi-Rad, M.; Kumar, P.; Sharifi-Rad, J. Antioxidants: Positive or negative actors? Biomolecules, 2018, 8(4), 124-135.
[http://dx.doi.org/10.3390/biom8040124] [PMID: 30366441]
[19]
Baineni, R.; Gulati, R.; Delhi, C.K. Vitamin A toxicity presenting as bone pain. Arch. Dis. Child., 2017, 102(6), 556-558.
[http://dx.doi.org/10.1136/archdischild-2016-310631] [PMID: 27272974]
[20]
Andrade, M.R.; Almeida, E.X.; Conserva, L.M. Alkyl chromone and other compounds from Clusia nemorosa. Phytochemistry, 1998, 47, 1431-1433.
[http://dx.doi.org/10.1016/S0031-9422(97)00746-2]
[21]
Monache, F.D.; Monache, G.D.; Gacs-Baitz, E. Two new polyisoprenylated ketones from Clusia nemorosa. Phytochemistry, 1991, 30, 703-705.
[http://dx.doi.org/10.1016/0031-9422(91)83760-I]
[22]
Ferreira, R.O.; da Silva, T.M.; de Carvalho, M.G. New polyprenylated phloroglucinol and other compounds isolated from the fruits of Clusia nemorosa (clusiaceae). Molecules, 2015, 20(8), 14326-14333.
[http://dx.doi.org/10.3390/molecules200814326] [PMID: 26287129]
[23]
Arora, M.; Kalia, A.N. Isolation and characterization of stigmasterol and β-sitosterol-D-glycoside from ethanolic extract of the stems of Salvadora pérsica Linn. Int. J. Pharm. Pharm. Sci., 2013, 5, 245-249.
[24]
Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests, 2008.
[25]
Zhang, D.; Hamazu, Y. Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chem., 2004, 88, 503-509.
[http://dx.doi.org/10.1016/j.foodchem.2004.01.065]
[26]
Xu, S.; Shang, M-Y.; Liu, G-X.; Xu, F.; Wang, X.; Shou, C-C.; Cai, S-Q. Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity. Molecules, 2013, 18(5), 5265-5287.
[http://dx.doi.org/10.3390/molecules18055265] [PMID: 23698042]
[27]
Hawranik, D.J.; Sorensen, J.L. The isolation of citric acid derivatives from Aspergillus niger. FEMS Microbiol. Lett., 2010, 306(2), 122-126.
[http://dx.doi.org/10.1111/j.1574-6968.2010.01941.x] [PMID: 20345375]
[28]
Sagner, S.; Kneer, R.; Wanner, G.; Cosson, J-P.; Deus-Neumann, B.; Zenk, M.H. Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. Phytochemistry, 1998, 47(3), 339-347.
[http://dx.doi.org/10.1016/S0031-9422(97)00593-1] [PMID: 9433812]
[29]
Kort, R.; Vonk, H.; Xu, X.; Hoff, W.D.; Crielaard, W.; Hellingwerf, K.J. Evidence for trans-cis isomerization of the p-coumaric acid chro-mophore as the photochemical basis of the photocycle of photoactive yellow protein. FEBS Lett., 1996, 382(1-2), 73-78.
[http://dx.doi.org/10.1016/0014-5793(96)00149-4] [PMID: 8612767]
[30]
Faidi, K.; Hammami, S.; Salem, A.B.; Mokni, R.E.; Garrab, M.; Mastouri, M.; Gorcii, M.; Ayedi, M.T.; Taglialatela-Scafati, O.; Mighri, Z. Polyphenol derivatives from bioactive butanol phase of the Tunisian narrow-leaved asphodel (Asphodelus tenuifolius Cav., Asphodelace-ae). J. Med. Plants Res., 2014, 8(14), 550-557.
[http://dx.doi.org/10.5897/JMPR2014.5370]
[31]
Lüttge, U. Photosynthetic flexibility and ecophysiological plasticity: Questions and lessons from Clusia, the only CAM tree, in the neo-tropics. New Phytol., 2006, 171(1), 7-25.
[http://dx.doi.org/10.1111/j.1469-8137.2006.01755.x] [PMID: 16771979]
[32]
Gogoi, A.; Gogoi, N.; Neog, B. Estimation of (-)-hydroxycitric acid (HCA) in Garcinia lanceaefolia roxb. using novel hplc methodology. Int. J. Pharm. Sci. Res., 2014, 5(11), 4993-4997.
[33]
Mazza, K.E.L.; Santiago, M.C.P.A.; Pacheco, S.; Nascimento, L.S.M.; Braga, E.C.O.; Martins, V.C.; Cunha, C.P.; Godoy, R.L.O.; Borguini, R.G. Determinação de substâncias bioativas em arilos dos frutos de Clusia fluminensis Planch. & Triana. Rev Virtual de Química, 2019, 11(1), 3-17.
[http://dx.doi.org/10.21577/1984-6835.20190002]
[34]
Houghton, P.J.; Howes, M.J. LEE, C.C.; Steventon, G. Uses and abuses of in vitro tests in ethnopharmacology: Visualising an elephant. J. Ethnopharmacol., 2007, 110, 391-400.
[http://dx.doi.org/10.1016/j.jep.2007.01.032] [PMID: 17317057]
[35]
Oliveira, H.; Andrade, A.O.; Vandesmet, A.C.S.; Silva, L.P.; Melo, M.A.; Coutinho, H.D.; Santos, M.A.F. Atividade moduladora de extra-tos etanólico das folhas de Clusia nemorosa G. Mey. (Clusiaceae) sobre drogas antimicrobianas. Rev. Cuba. Plantas Med., 2016, 21(1), 1-8.
[36]
Kumar, P.; Chand, S.; Maurya, P.K. Quercetin-modulated erythrocyte membrane sodium-hydrogen exchanger during human aging: Corre-lation with ATPase’s. Arch. Physiol. Biochem., 2016, 122(3), 141-147.
[http://dx.doi.org/10.3109/13813455.2016.1150299] [PMID: 26835548]
[37]
Rivas, R.S.; Moscoso, N.B.; Cartuche, L.; Benavides, J.C.R. The antioxidant and hypoglycemic properties and phytochemical profile of Clusia latipes extracts. Pharmacogn. J., 2020, 12(1), 144-149.
[http://dx.doi.org/10.5530/pj.2020.12.21]
[38]
Oliveira, R.F.; Camara, C.A.; de Agra, M.F.; Silva, T.M.S. Biflavonoids from the unripe fruits of Clusia paralicola and their antioxidant activity. Nat. Prod. Commun., 2012, 7(12), 1597-1600.
[http://dx.doi.org/10.1177/1934578X1200701215] [PMID: 23413562]
[39]
Ferreira, R.O.; Carvalho, A.R. Junior; Silva, T.M.G.; Castro, R.N.; Silva, T.M.S.; Carvalho, M.G. Distribution of metabolites in galled and non-galled leaves of Clusia lanceolata and its antioxidant activity. Rev. Bras. Farmacogn., 2014, 24, 617-625.
[http://dx.doi.org/10.1016/j.bjp.2014.11.005]
[40]
Silva, M.C.; Paiva, S.R. Antioxidant activity and flavonoid content of Clusia fluminensis Planch. &. Triana. An. Acad. Bras. Cienc., 2012, 84(3), 609-616.
[http://dx.doi.org/10.1590/S0001-37652012000300004] [PMID: 22886157]
[41]
Liu, J.; Meng, C.G.; Yan, Y.H.; Shan, Y.N.; Kan, J.; Jin, C.H. Protocatechuic acid grafted onto chitosan: Characterization and antioxidant activity. Int. J. Biol. Macromol., 2016, 89, 518-526.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.04.089] [PMID: 27164501]
[42]
Pei, K.; Ou, J.; Huang, J.; Ou, S. p-Coumaric acid and its conjugates: Dietary sources, pharmacokinetic properties and biological activities. J. Sci. Food Agric., 2016, 96(9), 2952-2962.
[http://dx.doi.org/10.1002/jsfa.7578] [PMID: 26692250]
[43]
Telange, D.R.; Patil, A.T.; Pethe, A.M.; Fegade, H.; Anand, S.; Dave, V.S. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur. J. Pharm. Sci., 2017, 108(108), 36-49.
[http://dx.doi.org/10.1016/j.ejps.2016.12.009] [PMID: 27939619]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy