Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Evaluation of the Effect of Isobutyl Paraben and 2-ethyl Hexyl Paraben on P-glycoprotein Functional Expression in Rats: A Pharmacokinetic Study

Author(s): Osama Y. Alshogran*, Nour F. Al Ghraiybah and Sayer I. Al-Azzam

Volume 15, Issue 7, 2022

Published on: 30 March, 2022

Article ID: e270122200592 Pages: 9

DOI: 10.2174/1874467215666220127121817

Price: $65

Abstract

Background: Pharmaceutical excipients have been shown to influence drug disposition through modulating transport protein.

Objectives: This study assessed the effect of single dose administration of parabens on the pharmacokinetics (PK) of digoxin, a probe substrate of p-glycoprotein (p-gp), in vivo. Also, the effect of multiple dosing of parabens on p-gp expression was examined.

Methods: Rats were randomized into four groups that received either the vehicle, 25 mg/ kg verapamil, 100 mg/ kg isobutyl paraben, or 100 mg/ kg 2-ethyl hexyl paraben, which was followed by giving 0.2 mg/ kg digoxin via oral gavage. Blood samples were collected at different time points, digoxin concentration was measured using LC/MS-MS, and digoxin PK parameters were estimated. Another set of rats received multiple doses of parabens for 14 days, followed by measuring intestinal and hepatic mRNA expression of p-gp using qRT-PCR.

Results: Single dose administration of verapamil significantly increased Cmax (by 60.4 %) and AUC0-t (by 61.7 %) of digoxin compared to the control group, while the PK parameters of digoxin in rats exposed to parabens were not significantly different from the control. Consistently, the mRNA expression of p-gp in the intestine and liver was not affected by parabens treatment.

Conclusions: The lack of isobutylparaben and 2-ethylhexyl paraben effect on p-gp may suggest the insignificant interaction of parabens with p-gp drug substrates, which could be considered for safety when designing pharmaceutical formulations.

Keywords: Drug-excipient interaction, drug transport, parabens, p-glycoprotein, pharmacokinetics, polymerase chain reaction.

Graphical Abstract

[1]
Sharom, F.J. The P-glycoprotein multidrug transporter. Essays Biochem., 2011, 50(1), 161-178.
[http://dx.doi.org/10.1042/bse0500161] [PMID: 21967057]
[2]
Ambudkar, S.V.; Kimchi-Sarfaty, C.; Sauna, Z.E.; Gottesman, M.M. P-glycoprotein: From genomics to mechanism. Oncogene, 2003, 22(47), 7468-7485.
[http://dx.doi.org/10.1038/sj.onc.1206948] [PMID: 14576852]
[3]
Chin, J.E.; Soffir, R.; Noonan, K.E.; Choi, K.; Roninson, I.B. Structure and expression of the human MDR (P-glycoprotein) gene family. Mol. Cell. Biol., 1989, 9(9), 3808-3820.
[PMID: 2571078]
[4]
Endicott, J.A.; Ling, V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu. Rev. Biochem., 1989, 58(1), 137-171.
[http://dx.doi.org/10.1146/annurev.bi.58.070189.001033] [PMID: 2570548]
[5]
Cordon-Cardo, C.; O’Brien, J.P.; Boccia, J.; Casals, D.; Bertino, J.R.; Melamed, M.R. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J. Histochem. Cytochem., 1990, 38(9), 1277-1287.
[http://dx.doi.org/10.1177/38.9.1974900] [PMID: 1974900]
[6]
Zhou, S.F. Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition. Xenobiotica, 2008, 38(7-8), 802-832.
[http://dx.doi.org/10.1080/00498250701867889] [PMID: 18668431]
[7]
Ceckova-Novotna, M.; Pavek, P.; Staud, F. P-glycoprotein in the placenta: Expression, localization, regulation and function. Reprod. Toxicol., 2006, 22(3), 400-410.
[http://dx.doi.org/10.1016/j.reprotox.2006.01.007] [PMID: 16563694]
[8]
Aller, S.G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P.M.; Trinh, Y.T.; Zhang, Q.; Urbatsch, I.L.; Chang, G. Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding. Science, 2009, 323(5922), 1718-1722.
[http://dx.doi.org/10.1126/science.1168750] [PMID: 19325113]
[9]
Srivalli, K.M.R.; Lakshmi, P.K. Overview of P-glycoprotein inhibitors: A rational outlook. Braz. J. Pharm. Sci., 2012, 48, 353-367.
[http://dx.doi.org/10.1590/S1984-82502012000300002]
[10]
Cornaire, G.; Woodley, J.; Hermann, P.; Cloarec, A.; Arellano, C.; Houin, G. Impact of excipients on the absorption of P-glycoprotein substrates in vitro and in vivo. Int. J. Pharm., 2004, 278(1), 119-131.
[http://dx.doi.org/10.1016/j.ijpharm.2004.03.001] [PMID: 15158955]
[11]
Al-Ali, A.A.A.; Quach, J.R.C.; Bundgaard, C.; Steffansen, B.; Holm, R.; Nielsen, C.U. Polysorbate 20 alters the oral bioavailability of etoposide in wild type and mdr1a deficient Sprague-Dawley rats. Int. J. Pharm., 2018, 543(1-2), 352-360.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.006] [PMID: 29635055]
[12]
Bogman, K.; Zysset, Y.; Degen, L.; Hopfgartner, G.; Gutmann, H.; Alsenz, J.; Drewe, J. P-glycoprotein and surfactants: Effect on intestinal talinolol absorption. Clin. Pharmacol. Ther., 2005, 77(1), 24-32.
[http://dx.doi.org/10.1016/j.clpt.2004.09.001] [PMID: 15637528]
[13]
Aubert, N.; Ameller, T.; Legrand, J-J. Systemic exposure to parabens: pharmacokinetics, tissue distribution, excretion balance and plasma metabolites of [14C]-methyl-, propyl- and butylparaben in rats after oral, topical or subcutaneous administration. Food Chem. Toxicol., 2012, 50(3-4), 445-454.
[http://dx.doi.org/10.1016/j.fct.2011.12.045] [PMID: 22265941]
[14]
Tade, R. Safety and toxicity assessment of parabens in pharmaceutical and food products. 2018.
[15]
Philippat, C.; Heude, B.; Botton, J.; Alfaidy, N.; Calafat, A.M.; Slama, R. EDEN Mother-Child Cohort Study Group. Prenatal exposure to select phthalates and phenols and associations with fetal and placental weight among male births in the EDEN Cohort (France). Environ. Health Perspect., 2019, 127(1), 17002.
[http://dx.doi.org/10.1289/EHP3523] [PMID: 30624098]
[16]
Dodge, L.E.; Kelley, K.E.; Williams, P.L.; Williams, M.A.; Hernández-Díaz, S.; Missmer, S.A.; Hauser, R. Medications as a source of paraben exposure. Reprod. Toxicol., 2015, 52, 93-100.
[http://dx.doi.org/10.1016/j.reprotox.2015.02.002] [PMID: 25728410]
[17]
Smarr, M.M.; Honda, M.; Kannan, K.; Chen, Z.; Kim, S.; Louis, G.M.B. Male urinary biomarkers of antimicrobial exposure and bi-directional associations with semen quality parameters. Reprod. Toxicol., 2018, 77, 103-108.
[http://dx.doi.org/10.1016/j.reprotox.2018.02.008] [PMID: 29474822]
[18]
Ozaki, H.; Sugihara, K.; Watanabe, Y.; Ohta, S.; Kitamura, S. Cytochrome P450-inhibitory activity of parabens and phthalates used in consumer products. J. Toxicol. Sci., 2016, 41(4), 551-560.
[http://dx.doi.org/10.2131/jts.41.551] [PMID: 27432241]
[19]
Bajaj, R; Chong, LB; Zou, L; Tsakalozou, E; Ni, Z; Giacomini, K.M. In vitro evaluation of excipients as inhibitors of human intestinal P-glycoprotein. FASEB J, 2019, 33(S1), 814.
[http://dx.doi.org/10.1096/fasebj.2019.33.1_supplement.814.3]
[20]
Hinohara, Y; Yamazaki, T; Kuromaru, O; Homma, N; Sakai, K Effects of nicorandil and verapamil, antianginal agents, on plasma digoxin concentrations in rats and dogs. J. Pharm. Pharmacol., 1987, 39(7), 512-526.
[21]
Neerati, P.; Ganji, D.; Bedada, S.K. Study on in situ and in vivo absorption kinetics of phenytoin by modulating P-glycoprotein with verapamil in rats. Eur. J. Pharm. Sci., 2011, 44(1-2), 27-31.
[http://dx.doi.org/10.1016/j.ejps.2011.05.005] [PMID: 21640186]
[22]
Zhang, H.; Yao, M.; Morrison, R.A.; Chong, S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch. Pharm. Res., 2003, 26(9), 768-772.
[http://dx.doi.org/10.1007/BF02976689] [PMID: 14560928]
[23]
Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PK. Solver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed., 2010, 99(3), 306-314.
[http://dx.doi.org/10.1016/j.cmpb.2010.01.007] [PMID: 20176408]
[24]
Yao, M.; Zhang, H.; Chong, S.; Zhu, M.; Morrison, R.A. A rapid and sensitive LC/MS/MS assay for quantitative determination of digoxin in rat plasma. J. Pharm. Biomed. Anal., 2003, 32(6), 1189-1197.
[http://dx.doi.org/10.1016/S0731-7085(03)00050-5] [PMID: 12907263]
[25]
Zhang, L.L.; Lu, L.; Jin, S.; Jing, X.Y.; Yao, D.; Hu, N.; Liu, L.; Duan, R.; Liu, X.D.; Wang, G.J.; Xie, L. Tissue-specific alterations in expression and function of P-glycoprotein in streptozotocin-induced diabetic rats. Acta Pharmacol. Sin., 2011, 32(7), 956-966.
[http://dx.doi.org/10.1038/aps.2011.33] [PMID: 21685928]
[26]
Bansal, T.; Akhtar, N.; Jaggi, M.; Khar, R.K.; Talegaonkar, S. Novel formulation approaches for optimising delivery of anticancer drugs based on P-glycoprotein modulation. Drug Discov. Today, 2009, 14(21-22), 1067-1074.
[http://dx.doi.org/10.1016/j.drudis.2009.07.010] [PMID: 19647803]
[27]
Patel, R; Barker, J; ElShaer, A. Pharmaceutical excipients and drug metabolism: A mini-review. 2020, 21(21), 8224.
[http://dx.doi.org/10.3390/ijms21218224]
[28]
Lo, Y.L. Relationships between the hydrophilic-lipophilic balance values of pharmaceutical excipients and their multidrug resistance modulating effect in Caco-2 cells and rat intestines. J. Control. Release, 2003, 90(1), 37-48.
[http://dx.doi.org/10.1016/S0168-3659(03)00163-9] [PMID: 12767705]
[29]
Nielsen, C.U.; Abdulhussein, A.A.; Colak, D.; Holm, R. Polysorbate 20 increases oral absorption of digoxin in wild-type Sprague Dawley rats, but not in mdr1a(-/-) Sprague Dawley rats. Int. J. Pharm., 2016, 513(1-2), 78-87.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.011] [PMID: 27601334]
[30]
Schinkel, A.H.; Wagenaar, E.; van Deemter, L.; Mol, C.A.; Borst, P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J. Clin. Invest., 1995, 96(4), 1698-1705.
[http://dx.doi.org/10.1172/JCI118214] [PMID: 7560060]
[31]
Nader, A.M.; Foster, D.R. Suitability of digoxin as a P-glycoprotein probe: implications of other transporters on sensitivity and specificity. J. Clin. Pharmacol., 2014, 54(1), 3-13.
[http://dx.doi.org/10.1002/jcph.200] [PMID: 24166743]
[32]
Sababi, M.; Borgå, O.; Hultkvist-Bengtsson, U. The role of P-glycoprotein in limiting intestinal regional absorption of digoxin in rats. Eur. J. Pharm. Sci., 2001, 14(1), 21-27.
[http://dx.doi.org/10.1016/S0928-0987(01)00161-0] [PMID: 11457646]
[33]
Klein, H.O.; Lang, R.; Weiss, E.; Di Segni, E.; Libhaber, C.; Guerrero, J.; Kaplinsky, E. The influence of verapamil on serum digoxin concentration. Circulation, 1982, 65(5), 998-1003.
[http://dx.doi.org/10.1161/01.CIR.65.5.998] [PMID: 7074765]
[34]
Hedman, A.; Angelin, B.; Arvidsson, A.; Beck, O.; Dahlqvist, R.; Nilsson, B.; Olsson, M.; Schenck-Gustafsson, K. Digoxin-verapamil interaction: Reduction of biliary but not renal digoxin clearance in humans. Clin. Pharmacol. Ther., 1991, 49(3), 256-262.
[http://dx.doi.org/10.1038/clpt.1991.26] [PMID: 2007320]
[35]
Kuhlmann, J.; Marcin, S. Effects of verapamil on pharmacokinetics and pharmacodynamics of digitoxin in patients. Am. Heart J., 1985, 110(6), 1245-1250.
[http://dx.doi.org/10.1016/0002-8703(85)90021-3] [PMID: 4072882]
[36]
Jalali, A.; Ghasemian, S.; Najafzadeh, H.; Galehdari, H.; Seifi, M.R.; Zangene, F. Verapamil and rifampin effect on p-glycoprotein expression in hepatocellular carcinoma. Jundishapur J. Nat. Pharm. Prod., 2014, 9(4), e17741-e.
[http://dx.doi.org/10.17795/jjnpp-17741]
[37]
Muller, C.; Bailly, J-D.; Goubin, F.; Laredo, J.; Jaffrézou, J-P.; Bordier, C.; Laurent, G. Verapamil decreases P-glycoprotein expression in multidrug-resistant human leukemic cell lines. Int. J. Cancer, 1994, 56(5), 749-754.
[http://dx.doi.org/10.1002/ijc.2910560523] [PMID: 7906257]
[38]
Theile, D.; Schmidt, T.T.; Haefeli, W.E.; Weiss, J. In vitro evaluation of chronic alcohol effects on expression of drug-metabolizing and drug-transporting proteins. J. Pharm. Pharmacol., 2013, 65(10), 1518-1525.
[http://dx.doi.org/10.1111/jphp.12124] [PMID: 24028619]
[39]
Lakeram, M.; Lockley, D.J.; Sanders, D.J.; Pendlington, R.; Forbes, B. Paraben transport and metabolism in the biomimetic artificial membrane permeability assay (BAMPA) and 3-day and 21-day Caco-2 cell systems. J. Biomol. Screen., 2007, 12(1), 84-91.
[http://dx.doi.org/10.1177/1087057106295383] [PMID: 17099244]
[40]
Berry, L.M.; Wollenberg, L.; Zhao, Z. Esterase activities in the blood, liver and intestine of several preclinical species and humans. Drug Metab. Lett., 2009, 3(2), 70-77.
[http://dx.doi.org/10.2174/187231209788654081] [PMID: 19601867]
[41]
Tang, Y-H.; Wang, J-Y.; Hu, H-H.; Yao, T-W.; Zeng, S. Analysis of species-dependent hydrolysis and protein binding of esmolol enantiomers. J. Pharm. Anal., 2012, 2(3), 220-225.
[http://dx.doi.org/10.1016/j.jpha.2012.01.007] [PMID: 29403746]
[42]
Hodaei, D.; Baradaran, B.; Valizadeh, H.; Mohammadnejad, L.; Zakeri, P. The effect of tween excipients on expression and activity of P-glycoprotein in Caco-2 cells. Pharm. Ind., 2014, 76, 788-794.
[43]
Thakkar, H.; Desai, J. Influence of excipients on drug absorption via modulation of intestinal transporters activity. Asian J. Pharm., 2015, 9(2), 69-82.
[http://dx.doi.org/10.4103/0973-8398.154688]
[44]
Sachs-Barrable, K; Thamboo, A; Lee, SD; Wasan, KM Lipid excipients Peceol and Gelucire 44/14 decrease P-glycoprotein mediated efflux of rhodamine 123 partially due to modifying P-glycoprotein protein expression within Caco-2 cells. J. Pharm. Pharma. Sci., 2007, 10(3), 319-331.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy