Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Multi-target Approaches of Epigallocatechin-3-O-gallate (EGCG) and its Derivatives against Influenza Viruses

Author(s): Edeildo Ferreira da Silva-Júnior* and Leandro Rocha Silva

Volume 22, Issue 18, 2022

Published on: 16 February, 2022

Page: [1485 - 1500] Pages: 16

DOI: 10.2174/1568026622666220127112056

Price: $65

Abstract

Influenza viruses (INFV), the Orthomyxoviridae family, are mainly transmitted among humans via aerosols or droplets from the respiratory secretions. However, fomites could be a potential transmission pathway. Annually, seasonal INFV infections account for 290-650 thousand deaths worldwide. Currently, there are two classes of approved drugs to treat INFV infections, being neuraminidase (NA) inhibitors and blockers of matrix-2 (M2) ion channel. However, cases of resistance have been observed for both chemical classes, reducing the efficacy of treatment. The emergence of influenza outbreaks and pandemics calls for new antiviral molecules that are more effective, and that could overcome the current resistance to anti-influenza drugs. In this context, polyphenolic compounds are found in various plants, and these have displayed different multi-target approaches against diverse pathogens. Among these, green tea (Camellia sinensis) catechins, in special epigallocatechin-3-O-gallate (EGCG), have demonstrated significant activities against the two most relevant human INFV, subtypes A and lineages B. In this sense, EGCG has been found to be a promising multi-target agent against INFV since it can act inhibiting NA, hemagglutination (HA), RNA-dependent RNA polymerase (RdRp), and viral entry/adsorption. In general, the lack of knowledge about potential multi-target natural products prevents an adequate exploration of them, increasing the time for developing multi-target drugs. Then, this review aimed to compile most relevant studies showing the anti-INFV effects of EGCG and its derivatives, which could become antiviral drug prototypes in the future.

Keywords: Natural product, EGCG, Antiviral, Influenza, Multi-target, Nature-based compounds.

Graphical Abstract

[1]
WHO. Vaccines against influenza WHO position paper – November 2012. Wkly. Epidemiol. Rec., 2012, 87(47), 461-476.
[PMID: 23210147]
[2]
WHO. Vaccine-Preventable Diseases: Surveillance Standards, 2018.
[3]
Nair, H.; Brooks, W.A.; Katz, M.; Roca, A.; Berkley, J.A.; Madhi, S.A.; Simmerman, J.M.; Gordon, A.; Sato, M.; Howie, S.; Krishnan, A.; Ope, M.; Lindblade, K.A.; Carosone-Link, P.; Lucero, M.; Ochieng, W.; Kamimoto, L.; Dueger, E.; Bhat, N.; Vong, S.; Theodoratou, E.; Chittaganpitch, M.; Chimah, O.; Balmaseda, A.; Buchy, P.; Harris, E.; Evans, V.; Katayose, M.; Gaur, B.; O’Callaghan-Gordo, C.; Goswami, D.; Arvelo, W.; Venter, M.; Briese, T.; Tokarz, R.; Widdowson, M-A.; Mounts, A.W.; Breiman, R.F.; Feikin, D.R.; Klugman, K.P.; Olsen, S.J.; Gessner, B.D.; Wright, P.F.; Rudan, I.; Broor, S.; Simões, E.A.; Campbell, H. Global burden of respiratory infections due to seasonal influenza in young children: A systematic review and meta-analysis. Lancet, 2011, 378(9807), 1917-1930.
[http://dx.doi.org/10.1016/S0140-6736(11)61051-9] [PMID: 22078723]
[4]
Iuliano, A.D.; Roguski, K.M.; Chang, H.H.; Muscatello, D.J.; Palekar, R.; Tempia, S.; Cohen, C.; Gran, J.M.; Schanzer, D.; Cowling, B.J.; Wu, P.; Kyncl, J.; Ang, L.W.; Park, M.; Redlberger-Fritz, M.; Yu, H.; Espenhain, L.; Krishnan, A.; Emukule, G.; van Asten, L.; Pereira da Silva, S.; Aungkulanon, S.; Buchholz, U.; Widdowson, M-A.; Bresee, J.S.; Azziz-Baumgartner, E.; Cheng, P-Y.; Dawood, F.; Foppa, I.; Olsen, S.; Haber, M.; Jeffers, C.; MacIntyre, C.R.; Newall, A.T.; Wood, J.G.; Kundi, M.; Popow-Kraupp, T.; Ahmed, M.; Rahman, M.; Marinho, F.; Sotomayor Proschle, C.V.; Vergara Mallegas, N.; Luzhao, F.; Sa, L.; Barbosa-Ramírez, J.; Sanchez, D.M.; Gomez, L.A.; Vargas, X.B.; Acosta Herrera, A.; Llanés, M.J.; Fischer, T.K.; Krause, T.G.; Mølbak, K.; Nielsen, J.; Trebbien, R.; Bruno, A.; Ojeda, J.; Ramos, H.; an der Heiden, M.; del Carmen Castillo Signor, L.; Serrano, C.E.; Bhardwaj, R.; Chadha, M.; Narayan, V.; Kosen, S.; Bromberg, M.; Glatman-Freedman, A.; Kaufman, Z.; Arima, Y.; Oishi, K.; Chaves, S.; Nyawanda, B.; Al-Jarallah, R.A.; Kuri-Morales, P.A.; Matus, C.R.; Corona, M.E.J.; Burmaa, A.; Darmaa, O.; Obtel, M.; Cherkaoui, I.; van den Wijngaard, C.C.; van der Hoek, W.; Baker, M.; Bandaranayake, D.; Bissielo, A.; Huang, S.; Lopez, L.; Newbern, C.; Flem, E.; Grøneng, G.M.; Hauge, S.; de Cosío, F.G.; de Moltó, Y.; Castillo, L.M.; Cabello, M.A.; von Horoch, M.; Medina Osis, J.; Machado, A.; Nunes, B.; Rodrigues, A.P.; Rodrigues, E.; Calomfirescu, C.; Lupulescu, E.; Popescu, R.; Popovici, O.; Bogdanovic, D.; Kostic, M.; Lazarevic, K.; Milosevic, Z.; Tiodorovic, B.; Chen, M.; Cutter, J.; Lee, V.; Lin, R.; Ma, S.; Cohen, A.L.; Treurnicht, F.; Kim, W.J.; Delgado-Sanz, C.; de mateo Ontañón, S.; Larrauri, A.; León, I.L.; Vallejo, F.; Born, R.; Junker, C.; Koch, D.; Chuang, J-H.; Huang, W-T.; Kuo, H-W.; Tsai, Y-C.; Bundhamcharoen, K.; Chittaganpitch, M.; Green, H.K.; Pebody, R.; Goñi, N.; Chiparelli, H.; Brammer, L.; Mustaquim, D. Estimates of global seasonal influenza-associated respiratory mortality: A modelling study. Lancet, 2018, 391(10127), 1285-1300.
[http://dx.doi.org/10.1016/S0140-6736(17)33293-2] [PMID: 29248255]
[5]
WHO. Influenza (Seasonal).
[6]
Shie, J.J.; Fang, J.M. Development of effective anti-influenza drugs: Congeners and conjugates - a review. J. Biomed. Sci., 2019, 26(1), 84.
[http://dx.doi.org/10.1186/s12929-019-0567-0] [PMID: 31640786]
[7]
Kumar, S.; Goicoechea, S.; Kumar, S.; Pearce, C.M.; Durvasula, R.; Kempaiah, P.; Rathi, B.; Poonam. Oseltamivir analogs with potent anti-influenza virus activity. Drug Discov. Today, 2020, 25, 1389-1402.
[http://dx.doi.org/10.1016/j.drudis.2020.06.004] [PMID: 32554062]
[8]
Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev., 1992, 56(1), 152-179.
[http://dx.doi.org/10.1128/mr.56.1.152-179.1992] [PMID: 1579108]
[9]
Kuiken, T.; Holmes, E.C.; McCauley, J.; Rimmelzwaan, G.F.; Williams, C.S.; Grenfell, B.T. Host species barriers to influenza virus infections. Science (80), 2006, 312, 394-397.
[10]
WHO. Influenza.
[11]
WHO. Annex 3 - Recommendations for the Production and Control of Influenza Vaccine; Inactivated, 2005.
[12]
O’Hanlon, R.; Shaw, M.L. Baloxavir marboxil: The new influenza drug on the market. Curr. Opin. Virol., 2019, 35, 14-18.
[http://dx.doi.org/10.1016/j.coviro.2019.01.006] [PMID: 30852344]
[13]
Tejus, A.; Mathur, A.G.; Pradhan, S.; Malik, S. Drug update - Baloxavir marboxil: Latest entrant into the arena of pharmacotherapy of influenza. Med. J. Armed Forces India, 2021. [In press].
[14]
Kuo, Y.C.; Lai, C.C.; Wang, Y.H.; Chen, C.H.; Wang, C.Y. Clinical efficacy and safety of Baloxavir marboxil in the treatment of influenza: A systematic review and meta-analysis of randomized controlled trials. J. Microbiol. Immunol. Infect., 2021, 54(5), 865-875.
[http://dx.doi.org/10.1016/j.jmii.2021.04.002] [PMID: 34020891]
[15]
Todd, B.; Tchesnokov, E.P.; Götte, M. The active form of the influenza cap-snatching endonuclease inhibitor Baloxavir marboxil is a tight binding inhibitor. J. Biol. Chem., 2021, 296, 100486.
[http://dx.doi.org/10.1016/j.jbc.2021.100486] [PMID: 33647314]
[16]
Skrzeczek, A.; Ikeoka, H.; Hirotsu, N.; Ansaripour, A.; Aballéa, S.; Onishi, Y.; Hill, M.; Igarashi, A. Cost-effectiveness of Baloxavir marboxil compared to laninamivir for the treatment of influenza in Japan. J. Infect. Chemother., 2021, 27(2), 296-305.
[http://dx.doi.org/10.1016/j.jiac.2020.10.018] [PMID: 33243614]
[17]
Bright, R.A.; Medina, M.J.; Xu, X.; Perez-Oronoz, G.; Wallis, T.R.; Davis, X.M.; Povinelli, L.; Cox, N.J.; Klimov, A.I. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: A cause for concern. Lancet, 2005, 366(9492), 1175-1181.
[http://dx.doi.org/10.1016/S0140-6736(05)67338-2] [PMID: 16198766]
[18]
Gubareva, L.V.; Besselaar, T.G.; Daniels, R.S.; Fry, A.; Gregory, V.; Huang, W.; Hurt, A.C.; Jorquera, P.A.; Lackenby, A.; Leang, S-K.; Lo, J.; Pereyaslov, D.; Rebelo-de-Andrade, H.; Siqueira, M.M.; Takashita, E.; Odagiri, T.; Wang, D.; Zhang, W.; Meijer, A. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2015-2016. Antiviral Res., 2017, 146, 12-20.
[http://dx.doi.org/10.1016/j.antiviral.2017.08.004] [PMID: 28802866]
[19]
Naesens, L.; Stevaert, A.; Vanderlinden, E. Antiviral therapies on the horizon for influenza. Curr. Opin. Pharmacol., 2016, 30, 106-115.
[http://dx.doi.org/10.1016/j.coph.2016.08.003] [PMID: 27570127]
[20]
Müller, P.; Downard, K.M. Catechin inhibition of influenza neuraminidase and its molecular basis with mass spectrometry. J. Pharm. Biomed. Anal., 2015, 111, 222-230.
[http://dx.doi.org/10.1016/j.jpba.2015.03.014] [PMID: 25910046]
[21]
Hurt, A.C.; Chotpitayasunondh, T.; Cox, N.J.; Daniels, R.; Fry, A.M.; Gubareva, L.V.; Hayden, F.G.; Hui, D.S.; Hungnes, O.; Lackenby, A.; Lim, W.; Meijer, A.; Penn, C.; Tashiro, M.; Uyeki, T.M.; Zambon, M. Antiviral resistance during the 2009 influenza A H1N1 pandemic: Public health, laboratory, and clinical perspectives. Lancet Infect. Dis., 2012, 12(3), 240-248.
[http://dx.doi.org/10.1016/S1473-3099(11)70318-8] [PMID: 22186145]
[22]
van der Vries, E.; Stelma, F.F.; Boucher, C.A.B. Emergence of a multidrug-resistant pandemic influenza A (H1N1) virus. N. Engl. J. Med., 2010, 363(14), 1381-1382.
[http://dx.doi.org/10.1056/NEJMc1003749] [PMID: 20879894]
[23]
Lahlou, M. Screening of natural products for drug discovery. Expert Opin. Drug Discov., 2007, 2(5), 697-705.
[http://dx.doi.org/10.1517/17460441.2.5.697] [PMID: 23488959]
[24]
Patwardhan, B.; Vaidy, A.D.B.; Chorghade, M. Ayurveda and natural products drug discovery. Curr. Sci., 2004, 86, 789-799.
[25]
Harvey, A.L. Natural products in drug discovery. Drug Discov. Today, 2008, 13(19-20), 894-901.
[http://dx.doi.org/10.1016/j.drudis.2008.07.004] [PMID: 18691670]
[26]
Koeberle, A.; Werz, O. Multi-target approach for natural products in inflammation. Drug Discov. Today, 2014, 19(12), 1871-1882.
[http://dx.doi.org/10.1016/j.drudis.2014.08.006] [PMID: 25172801]
[27]
Zhang, Z.; Zhang, X.; Bi, K.; He, Y.; Yan, W.; Yang, C.S.; Zhang, J. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends Food Sci. Technol., 2021, 114, 11-24.
[http://dx.doi.org/10.1016/j.tifs.2021.05.023] [PMID: 34054222]
[28]
Zhang, Y.; Lin, H.; Liu, C.; Huang, J.; Liu, Z. A review for physiological activities of EGCG and the role in improving fertility in humans/mammals. Biomed. Pharmacother., 2020, 127, 110186.
[http://dx.doi.org/10.1016/j.biopha.2020.110186] [PMID: 32559843]
[29]
Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol., 2011, 82(12), 1807-1821.
[http://dx.doi.org/10.1016/j.bcp.2011.07.093] [PMID: 21827739]
[30]
Inacio, J.D.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. The antileishmanial activity of epigallocatechin gallate on Leishmania braziliensis occur through reactive oxygen species production and mitochondrial disruption. Free Radic. Biol. Med., 2010, 49, S91.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.10.231]
[31]
Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Menna-Barreto, R.F.; Almeida-Amaral, E.E. Mitochondrial damage contribute to epigallocatechin-3-gallate induced death in Leishmania amazonensis. Exp. Parasitol., 2012, 132(2), 151-155.
[http://dx.doi.org/10.1016/j.exppara.2012.06.008] [PMID: 22735546]
[32]
Güida, M.C.; Esteva, M.I.; Camino, A.; Flawiá, M.M.; Torres, H.N.; Paveto, C. Trypanosoma cruzi: In vitro and in vivo antiproliferative effects of epigallocatechin gallate (EGCg). Exp. Parasitol., 2007, 117(2), 188-194.
[http://dx.doi.org/10.1016/j.exppara.2007.04.015] [PMID: 17673202]
[33]
Vigueira, P.A.; Ray, S.S.; Martin, B.A.; Ligon, M.M.; Paul, K.S. Effects of the green tea catechin (-)-epigallocatechin gallate on Trypanosoma brucei. Int. J. Parasitol. Drugs Drug Res., 2012, 2, 225-229.
[http://dx.doi.org/10.1016/j.ijpddr.2012.09.001] [PMID: 24533284]
[34]
Kaihatsu, K.; Yamabe, M.; Ebara, Y. Antiviral mechanism of action of epigallocatechin-3-O-gallate and its fatty acid esters. Molecules, 2018, 23(10), 2475.
[http://dx.doi.org/10.3390/molecules23102475] [PMID: 30262731]
[35]
He, W.; Li, L.X.; Liao, Q.J.; Liu, C.L.; Chen, X.L. Epigallocatechin gallate inhibits HBV DNA synthesis in a viral replication - inducible cell line. World J. Gastroenterol., 2011, 17(11), 1507-1514.
[http://dx.doi.org/10.3748/wjg.v17.i11.1507] [PMID: 21472112]
[36]
Lyu, S-Y.; Rhim, J-Y.; Park, W-B. Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch. Pharm. Res., 2005, 28(11), 1293-1301.
[http://dx.doi.org/10.1007/BF02978215] [PMID: 16350858]
[37]
Savi, L.A.; Barardi, C.R.M.; Simões, C.M.O. Evaluation of antiherpetic activity and genotoxic effects of tea catechin derivatives. J. Agric. Food Chem., 2006, 54(7), 2552-2557.
[http://dx.doi.org/10.1021/jf052940e] [PMID: 16569042]
[38]
Isaacs, C.E.; Wen, G.Y.; Xu, W.; Jia, J.H.; Rohan, L.; Corbo, C.; Di Maggio, V.; Jenkins, E.C., Jr; Hillier, S. Epigallocatechin gallate inactivates clinical isolates of herpes simplex virus. Antimicrob. Agents Chemother., 2008, 52(3), 962-970.
[http://dx.doi.org/10.1128/AAC.00825-07] [PMID: 18195068]
[39]
Gescher, K.; Hensel, A.; Hafezi, W.; Derksen, A.; Kühn, J. Oligomeric proanthocyanidins from Rumex acetosa L. inhibit the attachment of herpes simplex virus type-1. Antiviral Res., 2011, 89(1), 9-18.
[http://dx.doi.org/10.1016/j.antiviral.2010.10.007] [PMID: 21070811]
[40]
Isaacs, C.E.; Xu, W.; Merz, G.; Hillier, S.; Rohan, L.; Wen, G.Y. Digallate dimers of (-)-epigallocatechin gallate inactivate herpes simplex virus. Antimicrob. Agents Chemother., 2011, 55(12), 5646-5653.
[http://dx.doi.org/10.1128/AAC.05531-11] [PMID: 21947401]
[41]
Colpitts, C.C.; Schang, L.M. A small molecule inhibits virion attachment to heparan sulfate- or sialic acid-containing glycans. J. Virol., 2014, 88(14), 7806-7817.
[http://dx.doi.org/10.1128/JVI.00896-14] [PMID: 24789779]
[42]
Pradhan, P.; Nguyen, M.L. Herpes simplex virus virucidal activity of MST-312 and epigallocatechin gallate. Virus Res., 2018, 249, 93-98.
[http://dx.doi.org/10.1016/j.virusres.2018.03.015] [PMID: 29604359]
[43]
He, L.; Zhang, E.; Shi, J.; Li, X.; Zhou, K.; Zhang, Q.; Le, A.D.; Tang, X. (-)-Epigallocatechin-3-gallate inhibits human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer cells by targeting HIF-1α. Cancer Chemother. Pharmacol., 2013, 71(3), 713-725.
[http://dx.doi.org/10.1007/s00280-012-2063-z] [PMID: 23292117]
[44]
Weber, J.M.; Ruzindana-Umunyana, A.; Imbeault, L.; Sircar, S. Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Res., 2003, 58(2), 167-173.
[http://dx.doi.org/10.1016/S0166-3542(02)00212-7] [PMID: 12742577]
[45]
Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Nogueira, M.L.; Rahal, P. The green tea molecule EGCG inhibits Zika virus entry. Virology, 2016, 496, 215-218.
[http://dx.doi.org/10.1016/j.virol.2016.06.012] [PMID: 27344138]
[46]
Sharma, N.; Murali, A.; Singh, S.K.; Giri, R. Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein. Int. J. Biol. Macromol., 2017, 104(Pt A), 1046-1054.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.105] [PMID: 28666829]
[47]
Vázquez-Calvo, Á.; Jiménez de Oya, N.; Martín-Acebes, M.A.; Garcia-Moruno, E.; Saiz, J-C. Antiviral properties of the natural polyphenols delphinidin and epigallocatechin gallate against the Flaviviruses West Nile Virus, Zika Virus, and Dengue Virus. Front. Microbiol., 2017, 8, 1314.
[http://dx.doi.org/10.3389/fmicb.2017.01314] [PMID: 28744282]
[48]
Raekiansyah, M.; Buerano, C.C.; Luz, M.A.D.; Morita, K. Inhibitory effect of the green tea molecule EGCG against dengue virus infection. Arch. Virol., 2018, 163(6), 1649-1655.
[http://dx.doi.org/10.1007/s00705-018-3769-y] [PMID: 29429035]
[49]
Zuo, G.; Li, Z.; Chen, L.; Xu, X. Activity of compounds from Chinese herbal medicine Rhodiola kirilowii (Regel) Maxim against HCV NS3 serine protease. Antiviral Res., 2007, 76(1), 86-92.
[http://dx.doi.org/10.1016/j.antiviral.2007.06.001] [PMID: 17624450]
[50]
Ciesek, S.; von Hahn, T.; Colpitts, C.C.; Schang, L.M.; Friesland, M.; Steinmann, J.; Manns, M.P.; Ott, M.; Wedemeyer, H.; Meuleman, P.; Pietschmann, T.; Steinmann, E. The green tea polyphenol, epigallocatechin-3-gallate, inhibits hepatitis C virus entry. Hepatology, 2011, 54(6), 1947-1955.
[http://dx.doi.org/10.1002/hep.24610] [PMID: 21837753]
[51]
Calland, N.; Albecka, A.; Belouzard, S.; Wychowski, C.; Duverlie, G.; Descamps, V.; Hober, D.; Dubuisson, J.; Rouillé, Y.; Séron, K. (-)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology, 2012, 55(3), 720-729.
[http://dx.doi.org/10.1002/hep.24803] [PMID: 22105803]
[52]
Bhat, R.; Adam, A.T.; Lee, J.J.; Deloison, G.; Rouillé, Y.; Séron, K.; Rotella, D.P. Structure-activity studies of (-)-epigallocatechin gallate derivatives as HCV entry inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(17), 4162-4165.
[http://dx.doi.org/10.1016/j.bmcl.2014.07.051] [PMID: 25103601]
[53]
Calland, N.; Sahuc, M-E.; Belouzard, S.; Pène, V.; Bonnafous, P.; Mesalam, A.A.; Deloison, G.; Descamps, V.; Sahpaz, S.; Wychowski, C.; Lambert, O.; Brodin, P.; Duverlie, G.; Meuleman, P.; Rosenberg, A.R.; Dubuisson, J.; Rouillé, Y.; Séron, K. Polyphenols inhibit hepatitis C virus entry by a new mechanism of action. J. Virol., 2015, 89(19), 10053-10063.
[http://dx.doi.org/10.1128/JVI.01473-15] [PMID: 26202241]
[54]
Zhao, C.; Liu, S.; Li, C.; Yang, L.; Zu, Y. In vitro evaluation of the antiviral activity of the synthetic epigallocatechin gallate analog-epigallocatechin gallate (EGCG) palmitate against porcine reproductive and respiratory syndrome virus. Viruses, 2014, 6(2), 938-950.
[http://dx.doi.org/10.3390/v6020938] [PMID: 24566281]
[55]
Lu, J.W.; Hsieh, P.S.; Lin, C.C.; Hu, M.K.; Huang, S.M.; Wang, Y.M.; Liang, C.Y.; Gong, Z.; Ho, Y.J. Synergistic effects of combination treatment using EGCG and suramin against the chikungunya virus. Biochem. Biophys. Res. Commun., 2017, 491(3), 595-602.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.157] [PMID: 28760340]
[56]
Reid, S.P.; Shurtleff, A.C.; Costantino, J.A.; Tritsch, S.R.; Retterer, C.; Spurgers, K.B.; Bavari, S. HSPA5 is an essential host factor for Ebola virus infection. Antiviral Res., 2014, 109, 171-174.
[http://dx.doi.org/10.1016/j.antiviral.2014.07.004] [PMID: 25017472]
[57]
Chang, C.W.; Hsu, F.L.; Lin, J.Y. Inhibitory effects of polyphenolic catechins from chinese green tea on HIV reverse transcriptase activity. J. Biomed. Sci., 1994, 1(3), 163-166.
[http://dx.doi.org/10.1007/BF02253344] [PMID: 11725021]
[58]
Tillekeratne, L.M.; Sherette, A.; Grossman, P.; Hupe, L.; Hupe, D.; Hudson, R.A. Simplified catechin-gallate inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett., 2001, 11(20), 2763-2767.
[http://dx.doi.org/10.1016/S0960-894X(01)00577-7] [PMID: 11591519]
[59]
Kawai, K.; Tsuno, N.H.; Kitayama, J.; Okaji, Y.; Yazawa, K.; Asakage, M.; Hori, N.; Watanabe, T.; Takahashi, K.; Nagawa, H. Epigallocatechin gallate, the main component of tea polyphenol, binds to CD4 and interferes with gp120 binding. J. Allergy Clin. Immunol., 2003, 112(5), 951-957.
[http://dx.doi.org/10.1016/S0091-6749(03)02007-4] [PMID: 14610487]
[60]
Liu, S.; Lu, H.; Zhao, Q.; He, Y.; Niu, J.; Debnath, A.K.; Wu, S.; Jiang, S. Theaflavin derivatives in black tea and catechin derivatives in green tea inhibit HIV-1 entry by targeting gp41. Biochim. Biophys. Acta, 2005, 1723(1-3), 270-281.
[http://dx.doi.org/10.1016/j.bbagen.2005.02.012] [PMID: 15823507]
[61]
Williamson, M.P.; McCormick, T.G.; Nance, C.L.; Shearer, W.T. Epigallocatechin gallate, the main polyphenol in green tea, binds to the T-cell receptor, CD4: Potential for HIV-1 therapy. J. Allergy Clin. Immunol., 2006, 118(6), 1369-1374.
[http://dx.doi.org/10.1016/j.jaci.2006.08.016] [PMID: 17157668]
[62]
Nance, C.L.; Siwak, E.B.; Shearer, W.T. Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy. J. Allergy Clin. Immunol., 2009, 123(2), 459-465.
[http://dx.doi.org/10.1016/j.jaci.2008.12.024] [PMID: 19203663]
[63]
Jiang, F.; Chen, W.; Yi, K.; Wu, Z.; Si, Y.; Han, W.; Zhao, Y. The evaluation of catechins that contain a galloyl moiety as potential HIV-1 integrase inhibitors. Clin. Immunol., 2010, 137(3), 347-356.
[http://dx.doi.org/10.1016/j.clim.2010.08.007] [PMID: 20832370]
[64]
Li, S.; Hattori, T.; Kodama, E.N. Epigallocatechin gallate inhibits the HIV reverse transcription step. Antivir. Chem. Chemother., 2011, 21(6), 239-243.
[http://dx.doi.org/10.3851/IMP1774] [PMID: 21730371]
[65]
Hartjen, P.; Frerk, S.; Hauber, I.; Matzat, V.; Thomssen, A.; Holstermann, B.; Hohenberg, H.; Schulze, W.; Schulze Zur Wiesch, J.; van Lunzen, J. Assessment of the range of the HIV-1 infectivity enhancing effect of individual human semen specimen and the range of inhibition by EGCG. AIDS Res. Ther., 2012, 9(1), 2.
[http://dx.doi.org/10.1186/1742-6405-9-2] [PMID: 22260499]
[66]
Castellano, L.M.; Hammond, R.M.; Holmes, V.M.; Weissman, D.; Shorter, J. Epigallocatechin-3-gallate rapidly remodels PAP85-120, SEM1(45-107), and SEM2(49-107) seminal amyloid fibrils. Biol. Open, 2015, 4(9), 1206-1212.
[http://dx.doi.org/10.1242/bio.010215] [PMID: 26319581]
[67]
Xu, M.J.; Liu, B.J.; Wang, C.L.; Wang, G.H.; Tian, Y.; Wang, S.H.; Li, J.; Li, P.Y.; Zhang, R.H.; Wei, D.; Tian, S.F.; Xu, T. Epigallocatechin-3-gallate inhibits TLR4 signaling through the 67-kDa laminin receptor and effectively alleviates acute lung injury induced by H9N2 swine influenza virus. Int. Immunopharmacol., 2017, 52, 24-33.
[http://dx.doi.org/10.1016/j.intimp.2017.08.023] [PMID: 28858723]
[68]
Zhang, T.; Lo, C.Y.; Xiao, M.; Cheng, L.; Pun Mok, C.K.; Shaw, P.C. Anti-influenza virus phytochemicals from Radix Paeoniae Alba and characterization of their neuraminidase inhibitory activities. J. Ethnopharmacol., 2020, 253, 112671.
[http://dx.doi.org/10.1016/j.jep.2020.112671] [PMID: 32081739]
[69]
Taubenberger, J.K.; Morens, D.M. 1918 Influenza: The mother of all pandemics. Emerg. Infect. Dis., 2006, 12(1), 15-22.
[http://dx.doi.org/10.3201/eid1209.05-0979] [PMID: 16494711]
[70]
Kelly, H.; Peck, H.A.; Laurie, K.L.; Wu, P.; Nishiura, H.; Cowling, B.J. The age-specific cumulative incidence of infection with pandemic influenza H1N1 2009 was similar in various countries prior to vaccination. PLoS One, 2011, 6(8), e21828.
[http://dx.doi.org/10.1371/journal.pone.0021828] [PMID: 21850217]
[71]
Dawood, F.S.; Iuliano, A.D.; Reed, C.; Meltzer, M.I.; Shay, D.K.; Cheng, P-Y.; Bandaranayake, D.; Breiman, R.F.; Brooks, W.A.; Buchy, P.; Feikin, D.R.; Fowler, K.B.; Gordon, A.; Hien, N.T.; Horby, P.; Huang, Q.S.; Katz, M.A.; Krishnan, A.; Lal, R.; Montgomery, J.M.; Mølbak, K.; Pebody, R.; Presanis, A.M.; Razuri, H.; Steens, A.; Tinoco, Y.O.; Wallinga, J.; Yu, H.; Vong, S.; Bresee, J.; Widdowson, M-A. Estimated global mortality associated with the first 12 months of 2009 pandemic influenza A H1N1 virus circulation: A modelling study. Lancet Infect. Dis., 2012, 12(9), 687-695.
[http://dx.doi.org/10.1016/S1473-3099(12)70121-4] [PMID: 22738893]
[72]
Kannan, S.; Kolandaivel, P. Antiviral potential of natural compounds against influenza virus hemagglutinin. Comput. Biol. Chem., 2017, 71, 207-218.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.11.001] [PMID: 29149637]
[73]
Song, J.M.; Seong, B.L. Anti-influenza viral activity of catechins and derivatives. Tea Heal. Dis. Prev., 2013, 1918, 1185-1193.
[http://dx.doi.org/10.1016/B978-0-12-384937-3.00099-9]
[74]
Dubois, J.; Terrier, O.; Rosa-Calatrava, M. Influenza viruses and mRNA splicing: Doing more with less. MBio, 2014, 5(3), e00070-e14.
[http://dx.doi.org/10.1128/mBio.00070-14] [PMID: 24825008]
[75]
Adeola, O.A. Treatment of influenza: Prospects of post-transcriptional gene silencing through synthetic SiRNAs. Explor. Res. Hypothesis Med., 2017, 2(1), 1-2.
[http://dx.doi.org/10.14218/ERHM.2016.00013]
[76]
Vasin, A.V.; Petrova, A.V.; Egorov, V.V.; Plotnikova, M.A.; Klotchenko, S.A.; Karpenko, M.N.; Kiselev, O.I. The influenza A virus NS genome segment displays lineage-specific patterns in predicted RNA secondary structure. BMC Res. Notes, 2016, 9(1), 279.
[http://dx.doi.org/10.1186/s13104-016-2083-6] [PMID: 27206548]
[77]
Jackson, D.; Elderfield, R.A.; Barclay, W.S. Molecular studies of influenza B virus in the reverse genetics era. J. Gen. Virol., 2011, 92(Pt 1), 1-17.
[http://dx.doi.org/10.1099/vir.0.026187-0] [PMID: 20926635]
[78]
Samji, T.; Influenza, A. Influenza A: Understanding the viral life cycle. Yale J. Biol. Med., 2009, 82(4), 153-159.
[PMID: 20027280]
[79]
Honda, A.; Mizumoto, K.; Ishihama, A. Minimum molecular architectures for transcription and replication of the influenza virus. Proc. Natl. Acad. Sci. USA, 2002, 99(20), 13166-13171.
[http://dx.doi.org/10.1073/pnas.152456799] [PMID: 12271117]
[80]
Yuan, P.; Bartlam, M.; Lou, Z.; Chen, S.; Zhou, J.; He, X.; Lv, Z.; Ge, R.; Li, X.; Deng, T.; Fodor, E.; Rao, Z.; Liu, Y. Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site. Nature, 2009, 458(7240), 909-913.
[http://dx.doi.org/10.1038/nature07720] [PMID: 19194458]
[81]
Kuzuhara, T.; Kise, D.; Yoshida, H.; Horita, T.; Murazaki, Y.; Nishimura, A.; Echigo, N.; Utsunomiya, H.; Tsuge, H. Structural basis of the influenza A virus RNA polymerase PB2 RNA-binding domain containing the pathogenicity-determinant lysine 627 residue. J. Biol. Chem., 2009, 284(11), 6855-6860.
[http://dx.doi.org/10.1074/jbc.C800224200] [PMID: 19144639]
[82]
Dias, A.; Bouvier, D.; Crépin, T.; McCarthy, A.A.; Hart, D.J.; Baudin, F.; Cusack, S.; Ruigrok, R.W.H. The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature, 2009, 458(7240), 914-918.
[http://dx.doi.org/10.1038/nature07745] [PMID: 19194459]
[83]
Ferro, S.; Gitto, R.; Buemi, M.R.; Karamanou, S.; Stevaert, A.; Naesens, L.; De Luca, L. Identification of influenza PA-Nter endonuclease inhibitors using pharmacophore- and docking-based virtual screening. Bioorg. Med. Chem., 2018, 26(15), 4544-4550.
[http://dx.doi.org/10.1016/j.bmc.2018.07.046] [PMID: 30082105]
[84]
Kuzuhara, T.; Iwai, Y.; Takahashi, H.; Hatakeyama, D.; Echigo, N. Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr., 2009, 1, RRN1052.
[http://dx.doi.org/10.1371/currents.RRN1052] [PMID: 20025206]
[85]
Zhao, C.; Lou, Z.; Guo, Y.; Ma, M.; Chen, Y.; Liang, S.; Zhang, L.; Chen, S.; Li, X.; Liu, Y.; Bartlam, M.; Rao, Z. Nucleoside monophosphate complex structures of the endonuclease domain from the influenza virus polymerase PA subunit reveal the substrate binding site inside the catalytic center. J. Virol., 2009, 83(18), 9024-9030.
[http://dx.doi.org/10.1128/JVI.00911-09] [PMID: 19587036]
[86]
DuBois, R.M.; Slavish, P.J.; Baughman, B.M.; Yun, M-K.; Bao, J.; Webby, R.J.; Webb, T.R.; White, S.W. Structural and biochemical basis for development of influenza virus inhibitors targeting the PA endonuclease. PLoS Pathog., 2012, 8(8), e1002830.
[http://dx.doi.org/10.1371/journal.ppat.1002830] [PMID: 22876176]
[87]
Bauman, J.D.; Patel, D.; Baker, S.F.; Vijayan, R.S.K.; Xiang, A.; Parhi, A.K.; Martínez-Sobrido, L.; LaVoie, E.J.; Das, K.; Arnold, E. Crystallographic fragment screening and structure-based optimization yields a new class of influenza endonuclease inhibitors. ACS Chem. Biol., 2013, 8(11), 2501-2508.
[http://dx.doi.org/10.1021/cb400400j] [PMID: 23978130]
[88]
Kowalinski, E.; Zubieta, C.; Wolkerstorfer, A.; Szolar, O.H.J.; Ruigrok, R.W.H.; Cusack, S. Structural analysis of specific metal chelating inhibitor binding to the endonuclease domain of influenza pH1N1 (2009) polymerase. PLoS Pathog., 2012, 8(8), e1002831.
[http://dx.doi.org/10.1371/journal.ppat.1002831] [PMID: 22876177]
[89]
Stevaert, A.; Naesens, L. The influenza virus polymerase complex: An update on its structure, functions, and significance for antiviral drug design. Med. Res. Rev., 2016, 36(6), 1127-1173.
[http://dx.doi.org/10.1002/med.21401] [PMID: 27569399]
[90]
Ju, H.; Zhang, J.; Huang, B.; Kang, D.; Huang, B.; Liu, X.; Zhan, P. Inhibitors of influenza virus Polymerase Acidic (PA) Endonuclease: Contemporary developments and perspectives. J. Med. Chem., 2017, 60(9), 3533-3551.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01227] [PMID: 28118010]
[91]
Palese, P.; Tobita, K.; Ueda, M.; Compans, R.W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology, 1974, 61(2), 397-410.
[http://dx.doi.org/10.1016/0042-6822(74)90276-1] [PMID: 4472498]
[92]
Ezelle, H.J.; Hassel, B.A. Mechanisms of IFN Resistance by Influenza Virus. In: Combating the Threat of Pandemic Influenza; Torrence, P.F., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 73-97.
[http://dx.doi.org/10.1002/9780470179727.ch3]
[93]
Nakayama, M.; Toda, M.; Okubo, S.; Shimamura, T. Inhibition of influenza virus infection by tea. Lett. Appl. Microbiol., 1990, 11(1), 38-40.
[http://dx.doi.org/10.1111/j.1472-765X.1990.tb00131.x]
[94]
Nakayama, M.; Suzuki, K.; Toda, M.; Okubo, S.; Hara, Y.; Shimamura, T. Inhibition of the infectivity of influenza virus by tea polyphenols. Antiviral Res., 1993, 21(4), 289-299.
[http://dx.doi.org/10.1016/0166-3542(93)90008-7] [PMID: 8215301]
[95]
Zu, M.; Yang, F.; Zhou, W.; Liu, A.; Du, G.; Zheng, L. In vitro anti-influenza virus and anti-inflammatory activities of theaflavin derivatives. Antiviral Res., 2012, 94(3), 217-224.
[http://dx.doi.org/10.1016/j.antiviral.2012.04.001] [PMID: 22521753]
[96]
Song, J-M.; Lee, K-H.; Seong, B-L. Antiviral effect of catechins in green tea on influenza virus. Antiviral Res., 2005, 68(2), 66-74.
[http://dx.doi.org/10.1016/j.antiviral.2005.06.010] [PMID: 16137775]
[97]
Kim, Y.; Narayanan, S.; Chang, K-O. Inhibition of influenza virus replication by plant-derived isoquercetin. Antiviral Res., 2010, 88(2), 227-235.
[http://dx.doi.org/10.1016/j.antiviral.2010.08.016] [PMID: 20826184]
[98]
Gangehei, L.; Ali, M.; Zhang, W.; Chen, Z.; Wakame, K.; Haidari, M. Oligonol a low molecular weight polyphenol of lychee fruit extract inhibits proliferation of influenza virus by blocking reactive oxygen species-dependent ERK phosphorylation. Phytomedicine, 2010, 17(13), 1047-1056.
[http://dx.doi.org/10.1016/j.phymed.2010.03.016] [PMID: 20554190]
[99]
Theisen, L.L.; Muller, C.P. EPs® 7630 (Umckaloabo®), an extract from Pelargonium sidoides roots, exerts anti-influenza virus activity in vitro and in vivo. Antiviral Res., 2012, 94(2), 147-156.
[http://dx.doi.org/10.1016/j.antiviral.2012.03.006] [PMID: 22475498]
[100]
Brendler, T.; van Wyk, B-E.A. A historical, scientific and commercial perspective on the medicinal use of Pelargonium sidoides (Geraniaceae). J. Ethnopharmacol., 2008, 119(3), 420-433.
[http://dx.doi.org/10.1016/j.jep.2008.07.037] [PMID: 18725280]
[101]
Conrad, A.; Kolodziej, H.; Schulz, V. Pelargonium sidoides-extract (EPs 7630): Registration confirms efficacy and safety. Wien. Med. Wochenschr., 2007, 157(13-14), 331-336.
[http://dx.doi.org/10.1007/s10354-007-0434-6] [PMID: 17704982]
[102]
Schoetz, K.; Erdelmeier, C.; Germer, S.; Hauer, H. A detailed view on the constituents of EPs 7630. Planta Med., 2008, 74(6), 667-674.
[http://dx.doi.org/10.1055/s-2008-1074515] [PMID: 18449848]
[103]
Hale, B.G.; Randall, R.E.; Ortín, J.; Jackson, D. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol., 2008, 89(Pt 10), 2359-2376.
[http://dx.doi.org/10.1099/vir.0.2008/004606-0] [PMID: 18796704]
[104]
Engel, D.A. The influenza virus NS1 protein as a therapeutic target. Antiviral Res., 2013, 99(3), 409-416.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.005] [PMID: 23796981]
[105]
Maroto, M.; Fernandez, Y.; Ortin, J.; Pelaez, F.; Cabello, M.A. Development of an HTS assay for the search of anti-influenza agents targeting the interaction of viral RNA with the NS1 protein. J. Biomol. Screen., 2008, 13(7), 581-590.
[http://dx.doi.org/10.1177/1087057108318754] [PMID: 18594021]
[106]
Basu, D.; Walkiewicz, M.P.; Frieman, M.; Baric, R.S.; Auble, D.T.; Engel, D.A. Novel influenza virus NS1 antagonists block replication and restore innate immune function. J. Virol., 2009, 83(4), 1881-1891.
[http://dx.doi.org/10.1128/JVI.01805-08] [PMID: 19052087]
[107]
Walkiewicz, M.P.; Basu, D.; Jablonski, J.J.; Geysen, H.M.; Engel, D.A. Novel inhibitor of influenza non-structural protein 1 blocks multi-cycle replication in an RNase L-dependent manner. J. Gen. Virol., 2011, 92(Pt 1), 60-70.
[http://dx.doi.org/10.1099/vir.0.025015-0] [PMID: 20881091]
[108]
Gog, J.R.; Afonso, E.S.; Dalton, R.M.; Leclercq, I.; Tiley, L.; Elton, D.; von Kirchbach, J.C.; Naffakh, N.; Escriou, N.; Digard, P. Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res., 2007, 35(6), 1897-1907.
[http://dx.doi.org/10.1093/nar/gkm087] [PMID: 17332012]
[109]
Cho, E.J.; Xia, S.; Ma, L-C.; Robertus, J.; Krug, R.M.; Anslyn, E.V.; Montelione, G.T.; Ellington, A.D. Identification of influenza virus inhibitors targeting NS1A utilizing fluorescence polarization-based high-throughput assay. J. Biomol. Screen., 2012, 17(4), 448-459.
[http://dx.doi.org/10.1177/1087057111431488] [PMID: 22223052]
[110]
Crépin, T.; Dias, A.; Palencia, A.; Swale, C.; Cusack, S.; Ruigrok, R.W.H. Mutational and metal binding analysis of the endonuclease domain of the influenza virus polymerase PA subunit. J. Virol., 2010, 84(18), 9096-9104.
[http://dx.doi.org/10.1128/JVI.00995-10] [PMID: 20592097]
[111]
Kim, M.; Kim, S-Y.; Lee, H.W.; Shin, J.S.; Kim, P.; Jung, Y-S.; Jeong, H-S.; Hyun, J-K.; Lee, C-K. Inhibition of influenza virus internalization by (-)-epigallocatechin-3-gallate. Antiviral Res., 2013, 100(2), 460-472.
[http://dx.doi.org/10.1016/j.antiviral.2013.08.002] [PMID: 23954192]
[112]
Onishi, S.; Mori, T.; Kanbara, H.; Habe, T.; Ota, N.; Kurebayashi, Y.; Suzuki, T. Green tea catechins adsorbed on the murine pharyngeal mucosa reduce influenza A virus infection. J. Funct. Foods, 2020, 68, 103894.
[http://dx.doi.org/10.1016/j.jff.2020.103894]
[113]
Yang, Z.F.; Bai, L.P.; Huang, W.B.; Li, X.Z.; Zhao, S.S.; Zhong, N.S.; Jiang, Z.H. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia, 2014, 93, 47-53.
[http://dx.doi.org/10.1016/j.fitote.2013.12.011] [PMID: 24370660]
[114]
Furuta, T.; Hirooka, Y.; Abe, A.; Sugata, Y.; Ueda, M.; Murakami, K.; Suzuki, T.; Tanaka, K.; Kan, T. Concise synthesis of dideoxy-epigallocatechin gallate (DO-EGCG) and evaluation of its anti-influenza virus activity. Bioorg. Med. Chem. Lett., 2007, 17(11), 3095-3098.
[http://dx.doi.org/10.1016/j.bmcl.2007.03.041] [PMID: 17420124]
[115]
Song, J.M.; Park, K.D.; Lee, K.H.; Byun, Y.H.; Park, J.H.; Kim, S.H.; Kim, J.H.; Seong, B.L. Biological evaluation of anti-influenza viral activity of semi-synthetic catechin derivatives. Antiviral Res., 2007, 76(2), 178-185.
[http://dx.doi.org/10.1016/j.antiviral.2007.07.001] [PMID: 17709148]
[116]
Imanishi, N.; Tuji, Y.; Katada, Y.; Maruhashi, M.; Konosu, S.; Mantani, N.; Terasawa, K.; Ochiai, H. Additional inhibitory effect of tea extract on the growth of influenza A and B viruses in MDCK cells. Microbiol. Immunol., 2002, 46(7), 491-494.
[http://dx.doi.org/10.1111/j.1348-0421.2002.tb02724.x] [PMID: 12222936]
[117]
Rawangkan, A.; Kengkla, K.; Kanchanasurakit, S.; Duangjai, A.; Saokaew, S. Anti-influenza with green tea catechins: A systematic review and meta-analysis. Molecules, 2021, 26(13), 1-16.
[http://dx.doi.org/10.3390/molecules26134014] [PMID: 34209247]
[118]
Kaihatsu, K.; Mori, S.; Kato, N.; Anti-Influenza, A. Virus inhibitory effect of (−)-epigallocatechin-3-o-gallate fatty acid monoester derivatives. Antiviral Res., 2008, 78(2), A41.
[http://dx.doi.org/10.1016/j.antiviral.2008.01.079]
[119]
Mori, S.; Miyake, S.; Kobe, T.; Nakaya, T.; Fuller, S.D.; Kato, N.; Kaihatsu, K. Enhanced anti-influenza A virus activity of (-)-epigallocatechin-3-O-gallate fatty acid monoester derivatives: Effect of alkyl chain length. Bioorg. Med. Chem. Lett., 2008, 18(14), 4249-4252.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.020] [PMID: 18547804]
[120]
Ishida, T. Review on the role of Zn2+ ions in viral pathogenesis and the effect of Zn2+ ions for host cell-virus growth inhibition. Am. J. Biomed. Sci. Res., 2019, 2(1), 28-37.
[http://dx.doi.org/10.34297/AJBSR.2019.02.000566]
[121]
Xiang, D.X.; Chen, Q.; Pang, L.; Zheng, C.L. Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J. Virol. Methods, 2011, 178(1-2), 137-142.
[http://dx.doi.org/10.1016/j.jviromet.2011.09.003] [PMID: 21945220]
[122]
Saadh, M.J.; Aggag, M.M.; Alboghdadly, A.; Kharshid, A.M.; Aldalaen, S.M.; Abdelrazek, M.A. Silver nanoparticles with epigallocatechingallate and zinc sulphate significantly inhibits avian influenza A virus H9N2. Microb. Pathog., 2021, 158, 105071.
[http://dx.doi.org/10.1016/j.micpath.2021.105071] [PMID: 34182075]
[123]
Matsumoto, K.; Yamada, H.; Takuma, N.; Niino, H.; Sagesaka, Y.M. Effects of green tea catechins and theanine on preventing influenza infection among healthcare workers: A randomized controlled trial. BMC Complement. Altern. Med., 2011, 11(1), 15.
[http://dx.doi.org/10.1186/1472-6882-11-15] [PMID: 21338496]
[124]
Ide, K.; Yamada, H.; Matsushita, K.; Ito, M.; Nojiri, K.; Toyoizumi, K.; Matsumoto, K.; Sameshima, Y. Effects of green tea gargling on the prevention of influenza infection in high school students: A randomized controlled study. PLoS One, 2014, 9(5), e96373.
[http://dx.doi.org/10.1371/journal.pone.0096373] [PMID: 24836780]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy