Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Stem Cells in Tendon Regeneration and Factors governing Tenogenesis

Author(s): Lingli Ding*, BingYu Zhou*, Yonghui Hou and Liangliang Xu

Volume 17, Issue 6, 2022

Published on: 24 March, 2022

Page: [503 - 512] Pages: 10

DOI: 10.2174/1574888X17666220127111135

Price: $65

Abstract

Tendons are connective tissue structures of paramount importance to the human ability of locomotion. Tendinopathy and tendon rupture can be resistant to treatment and often recurs, thus resulting in a significant health problem with a relevant social impact worldwide. Unfortunately, existing treatment approaches are suboptimal. A better understanding of the basic biology of tendons may provide a better way to solve these problems and promote tendon regeneration. Stem cells, either obtained from tendons or non-tendon sources, such as bone marrow (BMSCs), adipose tissue (AMSCs), as well as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), have received increasing attention toward enhancing tendon healing. There are many studies showing that stem cells can contribute to improving tendon healing. Hence, in this review, the current knowledge of BMSCs, AMSCs, TSPCs, ESCs, and iPSCs for tendon regeneration, as well as the advantages and limitations among them, has been highlighted. Moreover, the transcriptional and bioactive factors governing tendon healing processes have been discussed.

Keywords: Tendon repair, tenogenesis, mesenchymal stem cells, tendon stem cells, transcriptional factors, tendons regeneration.

Graphical Abstract

[1]
Vos T. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Bur-den of Disease Study 2019. Lancet 2020; 396(10262): 1562.
[2]
Abat F, Alfredson H, Cucchiarini M, et al. Current trends in tendinopathy: Consensus of the ESSKA basic science committee. Part II: Treatment options. J Exp Orthop 2018; 5(1): 38.
[http://dx.doi.org/10.1186/s40634-018-0145-5] [PMID: 30251203]
[3]
Elliott DH. Structure and function of mammalian tendon. Biol Rev Camb Philos Soc 1965; 40: 392-421.
[http://dx.doi.org/10.1111/j.1469-185X.1965.tb00808.x] [PMID: 14340913]
[4]
Sharma P, Maffulli N. Biology of tendon injury: Healing, modeling and remodeling. J Musculoskelet Neuronal Interact 2006; 6(2): 181-90.
[PMID: 16849830]
[5]
Sen S. Adult stem cells: Beyond regenerative tool, more as a bio-marker in obesity and diabetes. Diabetes Metab J 2019; 43(6): 744-51.
[http://dx.doi.org/10.4093/dmj.2019.0175] [PMID: 31902144]
[6]
Samak M, Hinkel R. Stem cells in cardiovascular medicine: Historical overview and future prospects. Cells 2019; 8(12): E1530.
[http://dx.doi.org/10.3390/cells8121530] [PMID: 31783680]
[7]
Xia Y, Sun J, Zhao L, et al. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials 2018; 183: 151-70.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.040] [PMID: 30170257]
[8]
Ding L, Tang S, Liang P, Wang C, Zhou PF, Zheng L. Bone regeneration of canine peri-implant defects using cell sheets of adipose-derived mesenchymal stem cells and platelet-rich fibrin membranes. J Oral Maxillofac Surg 2019; 77(3): 499-514.
[http://dx.doi.org/10.1016/j.joms.2018.10.018] [PMID: 30476490]
[9]
Jones IA, Wilson M, Togashi R, Han B, Mircheff AK, Vangsness CT. A randomized, controlled study to evaluate the efficacy of intra-articular, autologous adipose tissue injections for the treatment of mild-to-moderate knee osteoarthritis compared to hyaluronic acid: a study protocol. BMC Musculoskelet Disord 2018; 2018: 19.
[10]
Kim SJ, Song DH, Park JW, Park S, Kim SJ. Effect of bone marrow aspirate concentrate-platelet-rich plasma on tendon-derived stem cells and rotator cuff tendon tear. Cell Transplant 2017; 26(5): 867-78.
[http://dx.doi.org/10.3727/096368917X694705] [PMID: 28105983]
[11]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[12]
Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol 2018; 119: 125-37.
[http://dx.doi.org/10.1016/j.yjmcc.2018.04.012] [PMID: 29698635]
[13]
Tsuchiya A, Takeuchi S, Watanabe T, et al. Mesenchymal stem cell therapies for liver cirrhosis: MSCs as “conducting cells” for im-provement of liver fibrosis and regeneration. Inflamm Regen 2019; 39(1): 18.
[http://dx.doi.org/10.1186/s41232-019-0107-z] [PMID: 31516638]
[14]
Badyra B. Sułkowski M, Milczarek O, Majka M. Mesenchymal stem cells as a multimodal treatment for nervous system diseases. Stem Cells Transl Med 2020; 9(10): 1174-89.
[http://dx.doi.org/10.1002/sctm.19-0430] [PMID: 32573961]
[15]
Boháčová P, Holáň V. Mesenchymal stem cells and type 1 diabetes treatment. Vnitr Lek 2018; 64(7-8): 725-8.
[http://dx.doi.org/10.36290/vnl.2018.099] [PMID: 30441979]
[16]
Owen M, Friedenstein AJ. Stromal stem cells: Marrow-derived osteogenic precursors. Ciba Found Symp 1988; 136: 42-60.
[PMID: 3068016]
[17]
Baberg F, Geyh S, Waldera-Lupa D, et al. Secretome analysis of human bone marrow derived mesenchymal stromal cells. Biochim Biophys Acta Proteins Proteomics 2019; 1867(4): 434-41.
[http://dx.doi.org/10.1016/j.bbapap.2019.01.013] [PMID: 30716505]
[18]
Awad HA, Boivin GP, Dressler MR, Smith FNL, Young RG, Butler DL. Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res 2003; 21(3): 420-31.
[http://dx.doi.org/10.1016/S0736-0266(02)00163-8] [PMID: 12706014]
[19]
Sharma P, Maffulli N. Tendon injury and tendinopathy: healing and repair. J Bone Joint Surg Am 2005; 87(1): 187-202.
[PMID: 15634833]
[20]
Wang JHC. Mechanobiology of tendon. J Biomech 2006; 39(9): 1563-82.
[http://dx.doi.org/10.1016/j.jbiomech.2005.05.011] [PMID: 16000201]
[21]
He M, Gan AW, Lim AY, Goh JC, Hui JH, Chong AK. Bone marrow derived mesenchymal stem cell augmentation of rabbit flexor tendon healing. Hand Surg 2015; 20(3): 421-9.
[http://dx.doi.org/10.1142/S0218810415500343]
[22]
Miyashita H, Ochi M, Ikuta Y. Histological and biomechanical observations of the rabbit patellar tendon after removal of its central one-third. Arch Orthop Trauma Surg 1997; 116(8): 454-62.
[http://dx.doi.org/10.1007/BF00387577] [PMID: 9352038]
[23]
Järvinen TAH, Järvinen TLN, Kannus P, Józsa L, Järvinen M. Collagen fibres of the spontaneously ruptured human tendons display de-creased thickness and crimp angle. J Orthop Res 2004; 22(6): 1303-9.
[http://dx.doi.org/10.1016/j.orthres.2004.04.003] [PMID: 15475213]
[24]
Chong AKS, Ang AD, Goh JCH, et al. Bone marrow-derived mesenchymal stem cells influence early tendon-healing in a rabbit achilles tendon model. J Bone Joint Surg Am 2007; 89(1): 74-81.
[http://dx.doi.org/10.2106/00004623-200701000-00011] [PMID: 17200313]
[25]
Kuo CK, Tuan RS. Mechanoactive tenogenic differentiation of human mesenchymal stem cells. Tissue Eng Part A 2008; 14(10): 1615-27.
[http://dx.doi.org/10.1089/ten.tea.2006.0415] [PMID: 18759661]
[26]
Bourin P, Bunnell BA, Casteilla L, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 2013; 15(6): 641-8.
[http://dx.doi.org/10.1016/j.jcyt.2013.02.006] [PMID: 23570660]
[27]
Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods 2008; 45(2): 115-20.
[http://dx.doi.org/10.1016/j.ymeth.2008.03.006] [PMID: 18593609]
[28]
De Francesco F, Ricci G, D’Andrea F, Nicoletti GF, Ferraro GA. Human adipose stem cells: From bench to bedside. Tissue Eng Part B Rev 2015; 21(6): 572-84.
[http://dx.doi.org/10.1089/ten.teb.2014.0608] [PMID: 25953464]
[29]
Zhou W, Lin J, Zhao K, et al. Single-cell profiles and clinically useful properties of human mesenchymal stem cells of adipose and bone marrow origin. Am J Sports Med 2019; 47(7): 1722-33.
[http://dx.doi.org/10.1177/0363546519848678] [PMID: 31100005]
[30]
Gonçalves AI, Rodrigues MT, Lee SJ, et al. Understanding the role of growth factors in modulating stem cell tenogenesis. PLoS One 2013; 8(12): e83734.
[http://dx.doi.org/10.1371/journal.pone.0083734] [PMID: 24386267]
[31]
Uysal CA, Tobita M, Hyakusoku H, Mizuno H. Adipose-derived stem cells enhance primary tendon repair: Biomechanical and immuno-histochemical evaluation. J Plast Reconstr Aes 2012; 65(12): 1712-9.
[http://dx.doi.org/10.1016/j.bjps.2012.06.011] [PMID: 22771087]
[32]
Veronesi F, Torricelli P, Della Bella E, Pagani S, Fini M. In vitro mutual interaction between tenocytes and adipose-derived mesenchymal stromal cells. Cytotherapy 2015; 17(2): 215-23.
[http://dx.doi.org/10.1016/j.jcyt.2014.10.006] [PMID: 25484309]
[33]
Costa-Almeida R, Calejo I, Reis RL, Gomes ME. Crosstalk between adipose stem cells and tendon cells reveals a temporal regulation of tenogenesis by matrix deposition and remodeling. J Cell Physiol 2018; 233(7): 5383-95.
[http://dx.doi.org/10.1002/jcp.26363] [PMID: 29215729]
[34]
Bi Y, Ehirchiou D, Kilts TM, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med 2007; 13(10): 1219-27.
[http://dx.doi.org/10.1038/nm1630] [PMID: 17828274]
[35]
Rui YF, Lui PP, Li G, Fu SC, Lee YW, Chan KM. Isolation and characterization of multipotent rat tendon-derived stem cells. Tissue Eng Part A 2010; 16(5): 1549-58.
[http://dx.doi.org/10.1089/ten.tea.2009.0529] [PMID: 20001227]
[36]
Kendal AR, Layton T, Al-Mossawi H, et al. Multi-omic single cell analysis resolves novel stromal cell populations in healthy and diseased human tendon. Sci Rep-Uk 2020; 10(10): 13939.
[http://dx.doi.org/10.1038/s41598-020-70786-5]
[37]
Guo J, Chan KM, Zhang JF, Li G. Tendon-derived stem cells undergo spontaneous tenogenic differentiation. Exp Cell Res 2016; 341(1): 1-7.
[http://dx.doi.org/10.1016/j.yexcr.2016.01.007] [PMID: 26794903]
[38]
Wu T, Liu Y, Wang B, et al. The use of cocultured mesenchymal stem cells with tendon-derived stem cells as a better cell source for ten-don repair. Tissue Eng Part A 2016; 22(19-20): 1229-40.
[http://dx.doi.org/10.1089/ten.tea.2016.0248] [PMID: 27609185]
[39]
Quam VG, Altmann NN, Brokken MT, Durgam SS. Zonal characterization and differential trilineage potentials of equine intrasynovial deep digital flexor tendon-derived cells. BMC Vet Res 2021; 17(1): 138.
[http://dx.doi.org/10.1186/s12917-021-02793-1] [PMID: 33794882]
[40]
Zhang J, Wang JHC. Mechanobiological response of tendon stem cells: Implications of tendon homeostasis and pathogenesis of tendi-nopathy. J Orthop Res 2010; 28(5): 639-43.
[http://dx.doi.org/10.1002/jor.21046] [PMID: 19918904]
[41]
Rui YF, Lui PPY, Ni M, Chan LS, Lee YW, Chan KM. Mechanical loading increased BMP-2 expression which promoted osteogenic dif-ferentiation of tendon-derived stem cells. J Orthop Res 2011; 29(3): 390-6.
[http://dx.doi.org/10.1002/jor.21218] [PMID: 20882582]
[42]
Zhang J, Wang JHC. The effects of mechanical loading on tendons--an in vivo and in vitro model study. PLoS One 2013; 8(8): e71740.
[http://dx.doi.org/10.1371/journal.pone.0071740] [PMID: 23977130]
[43]
Lui PPY, Chan KM. Tendon-derived stem cells (TDSCs): from basic science to potential roles in tendon pathology and tissue engineering applications. Stem Cell Rev Rep 2011; 7(4): 883-97.
[http://dx.doi.org/10.1007/s12015-011-9276-0] [PMID: 21611803]
[44]
Ni M, Rui YF, Tan Q, et al. Engineered scaffold-free tendon tissue produced by tendon-derived stem cells. Biomaterials 2013; 34(8): 2024-37.
[http://dx.doi.org/10.1016/j.biomaterials.2012.11.046] [PMID: 23246065]
[45]
Shen W, Chen J, Yin Z, et al. Allogenous tendon stem/progenitor cells in silk scaffold for functional shoulder repair. Cell Transplant 2012; 21(5): 943-58.
[http://dx.doi.org/10.3727/096368911X627453] [PMID: 22405331]
[46]
Yin Z, Chen X, Chen JL, et al. The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 2010; 31(8): 2163-75.
[http://dx.doi.org/10.1016/j.biomaterials.2009.11.083] [PMID: 19995669]
[47]
Chen JL, Yin Z, Shen WL, et al. Efficacy of hESC-MSCs in knitted silk-collagen scaffold for tendon tissue engineering and their roles. Biomaterials 2010; 31(36): 9438-51.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.011] [PMID: 20870282]
[48]
Paterson YZ, Cribbs A, Espenel M, Smith EJ, Henson FMD, Guest DJ. Genome-wide transcriptome analysis reveals equine embryonic stem cell-derived tenocytes resemble fetal, not adult tenocytes. Stem Cell Res Ther 2020; 11(1): 184.
[http://dx.doi.org/10.1186/s13287-020-01692-w] [PMID: 32430075]
[49]
McClellan A, Evans R, Sze C, Kan S, Paterson Y, Guest D. A novel mechanism for the protection of embryonic stem cell derived tenocytes from inflammatory cytokine interleukin 1 beta. Sci Rep 2019; 9(1): 2755.
[http://dx.doi.org/10.1038/s41598-019-39370-4] [PMID: 30808942]
[50]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[51]
Fox IJ, Daley GQ, Goldman SA, Huard J, Kamp TJ, Trucco M. Stem cell therapy. Use of differentiated pluripotent stem cells as replace-ment therapy for treating disease. Science 2014; 345(6199): 1247391.
[http://dx.doi.org/10.1126/science.1247391] [PMID: 25146295]
[52]
Jung Y, Bauer G, Nolta JA. Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: progress toward safe clinical products. Stem Cells 2012; 30(1): 42-7.
[http://dx.doi.org/10.1002/stem.727] [PMID: 21898694]
[53]
Li X, Zhang Y, Liang Y, et al. iPSC-derived mesenchymal stem cells exert SCF-dependent recovery of cigarette smoke-induced apopto-sis/proliferation imbalance in airway cells. J Cell Mol Med 2017; 21(2): 265-77.
[http://dx.doi.org/10.1111/jcmm.12962] [PMID: 27641240]
[54]
Xu W, Wang Y, Liu E, et al. Human iPSC-derived neural crest stem cells promote tendon repair in a rat patellar tendon window defect model. Tissue Eng Part A 2013; 19(21-22): 2439-51.
[http://dx.doi.org/10.1089/ten.tea.2012.0453] [PMID: 23815150]
[55]
Komura S, Satake T, Goto A, et al. Induced pluripotent stem cell-derived tenocyte-like cells promote the regeneration of injured tendons in mice. Sci Rep-Uk 2020; 10(1): 3992.
[http://dx.doi.org/10.1038/s41598-020-61063-6]
[56]
Yang F, Zhang A, Richardson DW. Regulation of the tenogenic gene expression in equine tenocyte-derived induced pluripotent stem cells by mechanical loading and Mohawk. Stem Cell Res (Amst) 2019; 39: 101489.
[http://dx.doi.org/10.1016/j.scr.2019.101489] [PMID: 31277043]
[57]
Sun HB, Schaniel C, Leong DJ, Wang JHC. Biology and mechano-response of tendon cells: Progress overview and perspectives. J Orthop Res 2015; 33(6): 785-92.
[http://dx.doi.org/10.1002/jor.22885] [PMID: 25728946]
[58]
Schweitzer R, Chyung JH, Murtaugh LC, et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and liga-ments. Development 2001; 128(19): 3855-66.
[http://dx.doi.org/10.1242/dev.128.19.3855] [PMID: 11585810]
[59]
Guerquin MJ, Charvet B, Nourissat G, et al. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest 2013; 123(8): 3564-76.
[http://dx.doi.org/10.1172/JCI67521] [PMID: 23863709]
[60]
Ito Y, Toriuchi N, Yoshitaka T, et al. The Mohawk homeobox gene is a critical regulator of tendon differentiation. Proc Natl Acad Sci USA 2010; 107(23): 10538-42.
[http://dx.doi.org/10.1073/pnas.1000525107] [PMID: 20498044]
[61]
Lejard V, Blais F, Guerquin MJ, et al. EGR1 and EGR2 involvement in vertebrate tendon differentiation. J Biol Chem 2011; 286(7): 5855-67.
[http://dx.doi.org/10.1074/jbc.M110.153106] [PMID: 21173153]
[62]
Liu W, Watson SS, Lan Y, et al. The atypical homeodomain transcription factor Mohawk controls tendon morphogenesis. Mol Cell Biol 2010; 30(20): 4797-807.
[http://dx.doi.org/10.1128/MCB.00207-10] [PMID: 20696843]
[63]
Suzuki H, Ito Y, Shinohara M, et al. Gene targeting of the transcription factor Mohawk in rats causes heterotopic ossification of Achilles tendon via failed tenogenesis. Proc Natl Acad Sci USA 2016; 113(28): 7840-5.
[http://dx.doi.org/10.1073/pnas.1522054113] [PMID: 27370800]
[64]
Killian ML, Thomopoulos S. Scleraxis is required for the development of a functional tendon enthesis. FASEB J 2016; 30(1): 301-11.
[http://dx.doi.org/10.1096/fj.14-258236] [PMID: 26443819]
[65]
Yoshimoto Y, Takimoto A, Watanabe H, Hiraki Y, Kondoh G, Shukunami C. Scleraxis is required for maturation of tissue domains for proper integration of the musculoskeletal system 2017; 7.
[66]
Kanazawa T, Soejima T, Noguchi K, et al. Tendon-to-bone healing using autologous bone marrow-derived mesenchymal stem cells in ACL reconstruction without a tibial bone tunnel-A histological study. Muscles Ligaments Tendons J 2014; 4(2): 201-6.
[http://dx.doi.org/10.32098/mltj.02.2014.20] [PMID: 25332936]
[67]
Cserjesi P, Brown D, Ligon KL, et al. Scleraxis: A basic helix-loop-helix protein that prefigures skeletal formation during mouse embryo-genesis. Development 1995; 121(4): 1099-110.
[http://dx.doi.org/10.1242/dev.121.4.1099] [PMID: 7743923]
[68]
Scott A, Sampaio A, Abraham T, Duronio C, Underhill TM. Scleraxis expression is coordinately regulated in a murine model of patellar tendon injury. J Orthop Res 2011; 29(2): 289-96.
[http://dx.doi.org/10.1002/jor.21220] [PMID: 20740671]
[69]
Dyment NA, Liu CF, Kazemi N, et al. The paratenon contributes to scleraxis-expressing cells during patellar tendon healing. PLoS One 2013; 8(3): e59944.
[http://dx.doi.org/10.1371/journal.pone.0059944] [PMID: 23555841]
[70]
Chen X, Yin Z, Chen JL, et al. Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes. Sci Rep 2012; 2: 977.
[http://dx.doi.org/10.1038/srep00977] [PMID: 23243495]
[71]
Alberton P, Popov C, Prägert M, et al. Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells Dev 2012; 21(6): 846-58.
[http://dx.doi.org/10.1089/scd.2011.0150] [PMID: 21988170]
[72]
Tan C, Lui PPY, Lee YW, Wong YM. Scx-transduced tendon-derived stem cells (tdscs) promoted better tendon repair compared to mock-transduced cells in a rat patellar tendon window injury model. PLoS One 2014; 9(5): e97453.
[http://dx.doi.org/10.1371/journal.pone.0097453] [PMID: 24831949]
[73]
Best KT, Korcari A, Mora KE, et al. Scleraxis-lineage cell depletion improves tendon healing and disrupts adult tendon homeostasis. eLife 2021; 10: 10.
[http://dx.doi.org/10.7554/eLife.62203] [PMID: 33480357]
[74]
Kimura W, Machii M, Xue X, et al. Irxl1 mutant mice show reduced tendon differentiation and no patterning defects in musculoskeletal system development. Genesis (New York, NY: 2000) 2011; 49(1): 2-9.
[http://dx.doi.org/10.1002/dvg.20688]
[75]
Liu H, Zhang C, Zhu S, et al. Mohawk promotes the tenogenesis of mesenchymal stem cells through activation of the TGFβ signaling pathway. Stem Cells 2015; 33(2): 443-55.
[http://dx.doi.org/10.1002/stem.1866] [PMID: 25332192]
[76]
Kataoka K, Kurimoto R, Tsutsumi H, et al. In vitro neo-genesis of tendon/ligament-like tissue by combination of mohawk and a three-dimensional cyclic mechanical stretch culture system. Front Cell Dev Biol 2020; 8: 307.
[http://dx.doi.org/10.3389/fcell.2020.00307] [PMID: 32671057]
[77]
Gaut L, Robert N, Delalande A, Bonnin MA, Pichon C, Duprez D. EGR1 regulates transcription downstream of mechanical signals during tendon formation and healing. PLoS One 2016; 11(11): e0166237.
[http://dx.doi.org/10.1371/journal.pone.0166237] [PMID: 27820865]
[78]
Li X, Pongkitwitoon S, Lu H, Lee C, Gelberman R, Thomopoulos S. CTGF induces tenogenic differentiation and proliferation of adipose-derived stromal cells. J Orthop Res 2019; 37(3): 574-82.
[http://dx.doi.org/10.1002/jor.24248] [PMID: 30756417]
[79]
Shen H, Jayaram R, Yoneda S, et al. The effect of adipose-derived stem cell sheets and CTGF on early flexor tendon healing in a canine model. Sci Rep 2018; 8(1): 11078.
[http://dx.doi.org/10.1038/s41598-018-29474-8] [PMID: 30038250]
[80]
Lee CH, Shah B, Moioli EK, Mao JJ. CTGF directs fibroblast differentiation from human mesenchymal stem/stromal cells and defines connective tissue healing in a rodent injury model. J Clin Invest 2010; 120(9): 3340-9.
[http://dx.doi.org/10.1172/JCI43230] [PMID: 20679726]
[81]
Yin Z, Guo J, Wu TY, et al. Stepwise differentiation of mesenchymal stem cells augments tendon-like tissue formation and defect repair in vivo. Stem Cells Transl Med 2016; 5(8): 1106-16.
[http://dx.doi.org/10.5966/sctm.2015-0215] [PMID: 27280798]
[82]
Rui YF, Chen MH, Li YJ, et al. CTGF attenuates tendon-derived stem/progenitor cell aging. Stem Cells Int 2019; 2019: 6257537.
[http://dx.doi.org/10.1155/2019/6257537] [PMID: 31827530]
[83]
Tarafder S, Chen E, Jun Y, et al. Tendon stem/progenitor cells regulate inflammation in tendon healing via JNK and STAT3 signaling. FASEB J 2017; 31(9): 3991-8.
[http://dx.doi.org/10.1096/fj.201700071R] [PMID: 28533328]
[84]
Liu J, Tao X, Chen L, Han W, Zhou Y, Tang K. CTGF positively regulates BMP12 induced tenogenic differentiation of tendon stem cells and signaling. Cell Physiol Biochem 2015; 35(5): 1831-45.
[http://dx.doi.org/10.1159/000373994]
[85]
Gumucio JP, Sugg KB, Mendias CL. TGF-β superfamily signaling in muscle and tendon adaptation to resistance exercise. Exerc Sport Sci Rev 2015; 43(2): 93-9.
[http://dx.doi.org/10.1249/JES.0000000000000041] [PMID: 25607281]
[86]
Piersma B, Bank RA, Boersema M. Signaling in fibrosis: TGF-β WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015; 2: 59.
[http://dx.doi.org/10.3389/fmed.2015.00059] [PMID: 26389119]
[87]
Kaji DA, Howell KL, Balic Z, Hubmacher D, Huang AH. Tgfβ signaling is required for tenocyte recruitment and functional neonatal ten-don regeneration. eLife 2020; 9: 9.
[http://dx.doi.org/10.7554/eLife.51779] [PMID: 32501213]
[88]
Havis E, Bonnin MA, Esteves de Lima J, Charvet B, Milet C, Duprez D. TGFβ and FGF promote tendon progenitor fate and act down-stream of muscle contraction to regulate tendon differentiation during chick limb development. Development 2016; 143(20): 3839-51.
[http://dx.doi.org/10.1242/dev.136242] [PMID: 27624906]
[89]
Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dünker N, Schweitzer R. Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development 2009; 136(8): 1351-61.
[http://dx.doi.org/10.1242/dev.027342] [PMID: 19304887]
[90]
Barsby T, Guest D. Transforming growth factor beta3 promotes tendon differentiation of equine embryo-derived stem cells. Tissue Eng Part A 2013; 19(19-20): 2156-65.
[http://dx.doi.org/10.1089/ten.tea.2012.0372] [PMID: 23611525]
[91]
Abbah SA, Thomas D, Browne S, O’Brien T, Pandit A, Zeugolis DI. Co-transfection of decorin and interleukin-10 modulates pro-fibrotic extracellular matrix gene expression in human tenocyte culture. Sci Rep 2016; 6: 20922.
[http://dx.doi.org/10.1038/srep20922] [PMID: 26860065]
[92]
Wang X, Li F, Xie L, et al. Inhibition of overactive TGF-β attenuates progression of heterotopic ossification in mice. Nat Commun 2018; 9(1): 551.
[http://dx.doi.org/10.1038/s41467-018-02988-5] [PMID: 29416028]
[93]
Wang X, Xie L, Crane J, et al. Aberrant TGF-β activation in bone tendon insertion induces enthesopathy-like disease. J Clin Invest 2018; 128(2): 846-60.
[http://dx.doi.org/10.1172/JCI96186] [PMID: 29355842]
[94]
Liu Y, Feng L, Xu J, et al. MiR-378a suppresses tenogenic differentiation and tendon repair by targeting at TGF-β2. Stem Cell Res Ther 2019; 10(1): 108.
[http://dx.doi.org/10.1186/s13287-019-1216-y] [PMID: 30922407]
[95]
Park A, Hogan MV, Kesturu GS, James R, Balian G, Chhabra AB. Adipose-derived mesenchymal stem cells treated with growth differenti-ation factor-5 express tendon-specific markers. Tissue Eng Part A 2010; 16(9): 2941-51.
[http://dx.doi.org/10.1089/ten.tea.2009.0710] [PMID: 20575691]
[96]
Chen S, Wang J, Chen Y, Mo X, Fan C. Tenogenic adipose-derived stem cell sheets with nanoyarn scaffolds for tendon regeneration. Mater Sci Eng C 2021; 119: 111506.
[http://dx.doi.org/10.1016/j.msec.2020.111506] [PMID: 33321604]
[97]
Jiang D, Gao P, Zhang Y, Yang S. Combined effects of engineered tendon matrix and GDF-6 on bone marrow mesenchymal stem cell-based tendon regeneration. Biotechnol Lett 2016; 38(5): 885-92.
[http://dx.doi.org/10.1007/s10529-016-2037-z] [PMID: 26956234]
[98]
Haddad-Weber M, Prager P, Kunz M, et al. BMP12 and BMP13 gene transfer induce ligamentogenic differentiation in mesenchymal pro-genitor and anterior cruciate ligament cells. Cytotherapy 2010; 12(4): 505-13.
[http://dx.doi.org/10.3109/14653241003709652] [PMID: 20334610]
[99]
Mikic B, Rossmeier K, Bierwert L. Sexual dimorphism in the effect of GDF-6 deficiency on murine tendon. J Orthop Res 2009; 27(12): 1603-11.
[http://dx.doi.org/10.1002/jor.20916] [PMID: 19492402]
[100]
Mikic B, Bierwert L, Tsou D. Achilles tendon characterization in GDF-7 deficient mice. J Orthop Res 2006; 24(4): 831-41.
[http://dx.doi.org/10.1002/jor.20092] [PMID: 16514625]
[101]
Hou Y, Ni M, Lin S, et al. Tenomodulin highly expressing MSCs as a better cell source for tendon injury healing. Oncotarget 2017; 8(44): 77424-35.
[http://dx.doi.org/10.18632/oncotarget.20495] [PMID: 29100398]
[102]
Mendias CL, Bakhurin KI, Faulkner JA. Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc Natl Acad Sci USA 2008; 105(1): 388-93.
[http://dx.doi.org/10.1073/pnas.0707069105] [PMID: 18162552]
[103]
Le W, Yao J. The effect of myostatin (GDF-8) on proliferation and tenocyte differentiation of rat bone marrow-derived mesenchymal stem cells. J Hand Surg Asian Pac Vol 2017; 22(2): 200-7.
[http://dx.doi.org/10.1142/S0218810417500253] [PMID: 28506172]
[104]
Mikic B, Entwistle R, Rossmeier K, Bierwert L. Effect of GDF-7 deficiency on tail tendon phenotype in mice. J Orthop Res 2008; 26(6): 834-9.
[http://dx.doi.org/10.1002/jor.20581] [PMID: 18240333]
[105]
Wang Y, Shimmin A, Ghosh P, et al. Safety, tolerability, clinical, and joint structural outcomes of a single intra-articular injection of al-logeneic mesenchymal precursor cells in patients following anterior cruciate ligament reconstruction: a controlled double-blind random-ised trial. Arthritis Res Ther 2017; 19(1): 180.
[http://dx.doi.org/10.1186/s13075-017-1391-0] [PMID: 28768528]
[106]
Centeno C, Markle J, Dodson E, et al. Symptomatic anterior cruciate ligament tears treated with percutaneous injection of autologous bone marrow concentrate and platelet products: a non-controlled registry study. J Transl Med 2018; 16(1): 246.
[http://dx.doi.org/10.1186/s12967-018-1623-3] [PMID: 30176875]
[107]
Stein BE, Stroh DA, Schon LC. Outcomes of acute Achilles tendon rupture repair with bone marrow aspirate concentrate augmentation. Int Orthop 2015; 39(5): 901-5.
[http://dx.doi.org/10.1007/s00264-015-2725-7] [PMID: 25795246]
[108]
Kim YS, Sung CH, Chung SH, Kwak SJ, Koh YG. Does an injection of adipose-derived mesenchymal stem cells loaded in fibrin glue in-fluence rotator cuff repair outcomes? A clinical and magnetic resonance imaging Study. Am J Sports Med 2017; 45(9): 2010-8.
[http://dx.doi.org/10.1177/0363546517702863] [PMID: 28448728]
[109]
Freitag J, Shah K, Wickham J, Tenen A. Effect of autologous adipose-derived mesenchymal stem cell therapy in combination with autolo-gous platelet-rich plasma in the treatment of elbow tendinopathy. BMJ Case Rep 2020; 13(6): e234592.
[http://dx.doi.org/10.1136/bcr-2020-234592] [PMID: 32606116]
[110]
Pascual-Garrido C, Rolón A, Makino A. Treatment of chronic patellar tendinopathy with autologous bone marrow stem cells: A 5-year-followup. Stem Cells Int 2012; 2012: 953510.
[http://dx.doi.org/10.1155/2012/953510] [PMID: 22220180]
[111]
Hernigou P, Flouzat Lachaniette CH, Delambre J, et al. Biologic augmentation of rotator cuff repair with mesenchymal stem cells during arthroscopy improves healing and prevents further tears: A case-controlled study. Int Orthop 2014; 38(9): 1811-8.
[http://dx.doi.org/10.1007/s00264-014-2391-1] [PMID: 24913770]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy