Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Health Beneficial Aspect and Therapeutic Potential of Cirsimaritin in the Medicine for the Treatment of Human Health Complications

Author(s): Dinesh Kumar Patel*

Volume 18, Issue 7, 2022

Published on: 06 April, 2022

Article ID: e270122200566 Pages: 12

DOI: 10.2174/1573407218666220127092925

Price: $65

Abstract

Background: Herbal plants have been used in medicine for the treatment of numerous human health complications. Plant-derived products, including extract, botanicals, and preparations, have been used in medicine and other allied health sectors since a very early age and have been available in the market for several decades. Flavonoids have been a well-known class of phytochemicals in medicine due to their anti-oxidant, anti-cancer, anti-inflammatory, anti-bacterial and hepatoprotective potential.

Methods: In order to know the medicinal importance and therapeutic benefit of cirsimaritin in medicine, in the present investigation, scientific research data have been collected and analyzed from various literature data sources, including Science Direct, Google, Google Scholar, PubMed, and Scopus. Detailed pharmacological activities of cirsimaritin have been analyzed to know the biological potential of cirsimaritin. However, for the standardization of plant material, numerous analytical techniques have been developed in the scientific field, and analytical data of cirsimaritin have been collected and analyzed in the present work.

Results: Cirsimaritin, also called 4',5-dihydroxy-6,7-dimethoxyflavone, is a flavonoidal class phytochemical found to be present in the medicinal plant. It has been utilised in medicine to address a wide range of human health issues. Through the analysis of scientific data, it was found that cirsimaritin has numerous health beneficial aspects due to its vast pharmacological activities. Its medicinal importance is mainly due to its anti-oxidant, anti-bacterial, and anti-inflammatory activities. Further data analysis revealed the therapeutic effectiveness of cirsimaritin on breast cancer, gallbladder carcinoma, central nervous system disorders, diabetes mellitus, melanogenesis, immune responses, human erythrocytes, and respiratory burst. The importance of GC-MS, LC-MS, HSSPME, FTIR, ICP-OES, MS, NMR, LC/ESI-MS/MS, HPLC, reversed-phase HPLC, and TLC techniques for the analysis of cirsimaritin has been revealed.

Conclusion: The biological importance of cirsimaritin for the treatment of human health complications was revealed; it could also be used for the development of effective medicine against human disorders.

Keywords: Cirsimaritin, anti-oxidant, anti-bacterial, anti-inflammatory, breast cancer, gallbladder carcinoma, brain disorders, diabetes mellitus, melanogenesis, immune responses.

Graphical Abstract

[1]
Shahbaz, A.; Abbasi, B.A.; Iqbal, J.; Fatima, I.; Anber Zahra, S.; Kanwal, S. Chemical composition of Gastrocotyle hispida (Forssk.) bunge and Heliotropium crispum Desf. and evaluation of their multiple in vitro biological potentials. Saudi J. Biol. Sci., 2021, 28, 6086-6096.
[http://dx.doi.org/10.1016/j.sjbs.2021.09.040]
[2]
Mahmud, S.; Paul, G.K.; Afroze, M.; Islam, S.; Gupt, S.B.R.; Razu, M.H. Efficacy of phytochemicals derived from avicennia officinalis for the management of COVID-19: A combined in silico and biochemical study. Molecules, 2021, 26, 2210.
[http://dx.doi.org/10.3390/molecules26082210]
[3]
Khan, MF; Kader, F Pharmacological insights and prediction of lead bioactive isolates of Dita bark through experimental and computer-aided mechanism. Biomed. Pharmacother., 2020, 131, 110774.
[http://dx.doi.org/10.1016/j.biopha.2020.110774]
[4]
Küpeli Akkol, E.; Tatlı Çankaya, I.; Şeker Karatoprak, G.; Carpar, E.; Sobarzo-Sánchez, E.; Capasso, R. Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. Front. Pharmacol., 2021, 12, 669638.
[http://dx.doi.org/10.3389/fphar.2021.669638]
[5]
Patel, K.; Patel, D.K. Secoiridoid amarogentin from ‘gentianaceae’ with their health promotion, disease prevention and modern analytical aspects. Curr. Bioact. Compd., 2020, 16, 191-200.
[http://dx.doi.org/10.2174/1573407214666181023115355]
[6]
Patel, K.; Patel, D.K. Health benefits of ipecac and cephaeline: Their potential in health promotion and disease prevention. Curr. Bioact. Compd., 2021, 17, 206-213.
[http://dx.doi.org/10.2174/1573407216999200609130841]
[7]
Patel, D.K. Biological importance, therapeutic benefit, and medicinal importance of flavonoids, cirsiliol for the development of remedies against human disorders. Curr. Bioact. Compd., 2021.
[http://dx.doi.org/10.2174/1573407217666210824125427]
[8]
Wu, Y.; Sun, L.; Zeng, F.; Wu, S. A conjugated-polymer-based ratiometric nanoprobe for evaluating in-vivo hepatotoxicity induced by herbal medicine via MSOT imaging. Photoacoustics, 2019, 13, 6-17.
[http://dx.doi.org/10.1016/j.pacs.2018.11.002]
[9]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioanalytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7, 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[10]
Lee, H.W.; Jun, J.H.; Choi, J.; Choi, T-Y.; Lee, J.A.; Ang, L. Herbal prescription for managing menopausal disorders: A practice survey in Korean medicine doctors. Complement. Ther. Clin. Pract., 2020, 38, 101073.
[http://dx.doi.org/10.1016/j.ctcp.2019.101073]
[11]
Chen, L.; Mulder, P.P.J.; Peijnenburg, A.; Rietjens, I.M.C.M. Risk assessment of intake of pyrrolizidine alkaloids from herbal teas and medicines following realistic exposure scenarios. Food Chem. Toxicol., 2019, 130, 142-153.
[http://dx.doi.org/10.1016/j.fct.2019.05.024]
[12]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4, 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[13]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. β-sitosterol: Bioactive compounds in foods, their role in health promotion and disease prevention “a concise report of its phytopharmaceutical importance.”. Curr. Tradit. Med., 2017, 3, 168-177.
[http://dx.doi.org/10.2174/2215083803666170615111759]
[14]
Patel, K.; Patel, D.K. Medicinal significance, pharmacological activities, and analytical aspects of ricinine: A concise report. J. Coast. Life Med., 2016, 4, 663-667.
[http://dx.doi.org/10.12980/jclm.4.2016J6-96]
[15]
Patel, K.; Mishra, R.; Patel, D.K. A review on phytopharmaceutical importance of asiaticoside. J. Coast. Life Med., 2016, 4, 1000-1007.
[http://dx.doi.org/10.12980/jclm.4.2016J6-161]
[16]
Fernández, J.; Silván, B.; Entrialgo-Cadierno, R.; Villar, C.J.; Capasso, R.; Uranga, J.A. Antiproliferative and palliative activity of flavonoids in colorectal cancer. Biomed. Pharmacother., 2021, 143, 112241.
[http://dx.doi.org/10.1016/j.biopha.2021.112241]
[17]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7, 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003]
[18]
Patel, K.; Patel, D.K. Health beneficial potential of pectolinarigenin on human diseases: an updated review of medicinal importance and pharmacological activity. Nat. Prod. J., 2021, 11, 3-12.
[http://dx.doi.org/10.2174/2210315509666191111110901]
[19]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24, 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x]
[20]
Yu, M.; Wang, B.; Qi, Z.; Xin, G.; Li, W. Response surface method was used to optimize the ultrasonic assisted extraction of flavonoids from Crinum asiaticum. Saudi J. Biol. Sci., 2019, 26, 2079-2084.
[http://dx.doi.org/10.1016/j.sjbs.2019.09.018]
[21]
De Souza, L.A.; Tavares, W.M.G.; Lopes, A.P.M.; Soeiro, M.M.; De Almeida, W.B. Structural analysis of flavonoids in solution through DFT 1H NMR chemical shift calculations: Epigallocatechin, Kaempferol and Quercetin. Chem. Phys. Lett., 2017, 676, 46-52.
[http://dx.doi.org/10.1016/j.cplett.2017.03.038]
[22]
Patel, K.; Patel, D.K. Health benefits of avicularin in the medicine against cancerous disorders and other complications: Biological importance, therapeutic benefit and analytical aspects of the medicine. Curr. Cancer Ther. Rev., 2021.
[http://dx.doi.org/10.2174/1573394717666210831163322]
[23]
Marques, G.S.; Leão, W.F.; Lyra, M.A.M.; Peixoto, M.S.; Monteiro, R.P.M.; Rolim, L.A. Comparative evaluation of UV/VIS and HPLC analytical methodologies applied for quantification of flavonoids from leaves of Bauhinia forficata. Rev. Bras. Farmacogn., 2013, 23, 51-57.
[http://dx.doi.org/10.1590/S0102-695X2012005000143]
[24]
Morita, M.; Takahashi, I.; Kanai, M.; Okafuji, F.; Iwashima, M.; Hayashi, T. Baicalein 5,6,7-trimethyl ether, a flavonoid derivative, stimulates fatty acid β-oxidation in skin fibroblasts of X-linked adrenoleukodystrophy. FEBS Lett., 2005, 579, 409-414.
[http://dx.doi.org/10.1016/j.febslet.2004.11.102]
[25]
Patel, D.K. Biological importance, therapeutic benefit and analytical aspects of bioactive flavonoid pectolinarin in the nature. Drug Metab. Lett., 2021, 14, 117-125.
[http://dx.doi.org/10.2174/1872312814666210726112910]
[26]
Patel, D.K. Therapeutic benefit of salvigenin against various forms of human disorders including cancerous disorders: Medicinal properties and biological application in the modern medicine. Curr Chinese Sci, 2021, 1, 387-395.
[http://dx.doi.org/10.2174/2210298101666210224100246]
[27]
Govindarasu, M.; Palani, M.; Vaiyapuri, M. In silico docking studies on kaempferitrin with diverse inflammatory and apoptotic proteins functional approach towards the colon cancer. Int. J. Pharm. Pharm. Sci., 2017, 9, 199.
[http://dx.doi.org/10.22159/ijpps.2017v9i9.20500]
[28]
Bestwick, C.S.; Milne, L.; Pirie, L.; Duthie, S.J. The effect of short-term kaempferol exposure on reactive oxygen levels and integrity of human (HL-60) leukaemic cells. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1740, 340-349.
[http://dx.doi.org/10.1016/j.bbadis.2004.10.005]
[29]
Mahmood, Adeem; Alkhathlan, Hamad Z. Isolation, synthesis and pharmacological applications of cirsimaritin – A short review. Faslnamah-i Giyahan-i Daruyi, 2019, 7, 252.
[30]
Kim, H.; Kim, I.; Dong, Y.; Lee, I-S.; Kim, J.; Kim, J-S. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int. J. Mol. Sci., 2015, 16, 8772-8788.
[http://dx.doi.org/10.3390/ijms16048772]
[31]
Shin, M-S.; Park, J.Y.; Lee, J.; Yoo, H.H.; Hahm, D-H.; Lee, S.C. Anti-inflammatory effects and corresponding mechanisms of cirsimaritin extracted from Cirsium japonicum var. maackii Maxim. Bioorg. Med. Chem. Lett., 2017, 27, 3076-3080.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.051]
[32]
Leu, W-J.; Chen, J-C.; Guh, J-H. Extract from plectranthus amboinicus inhibit maturation and release of interleukin 1β through inhibition of NF-κB nuclear translocation and NLRP3 inflammasome activation. Front. Pharmacol., 2019, 10, 573.
[http://dx.doi.org/10.3389/fphar.2019.00573]
[33]
Ana Silvia, G-R.; Gabriela, T-T.; Maribel, H-R.; Nayeli, M-B.; José Luis, T-E.; Alejandro, Z. Effect of terpenoids and flavonoids isolated from baccharis conferta kunth on TPA-induced ear edema in mice. Molecules, 2020, 25, 1379.
[http://dx.doi.org/10.3390/molecules25061379]
[34]
Cottiglia, F.; Casu, L.; Bonsignore, L.; Casu, M.; Floris, C.; Sosa, S. Topical anti-inflammatory activity of flavonoids and a new xanthone from santolina insularis. Z. Naturforsch. C, 2005, 60, 63-66.
[http://dx.doi.org/10.1515/znc-2005-1-212]
[35]
Kelm, M.A.; Nair, M.G.; Strasburg, G.M.; DeWitt, D.L. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine, 2000, 7, 7-13.
[http://dx.doi.org/10.1016/S0944-7113(00)80015-X]
[36]
Zehra, B.; Ahmed, A.; Sarwar, R.; Khan, A.; Farooq, U.; Abid Ali, S. Apoptotic and antimetastatic activities of betulin isolated from Quercus incana against non-small cell lung cancer cells. Cancer Manag. Res., 2019, 11, 1667-1683.
[http://dx.doi.org/10.2147/CMAR.S186956]
[37]
Ben Sghaier, M.; Skandrani, I.; Nasr, N.; Franca, M-G.D.; Chekir-Ghedira, L.; Ghedira, K. Flavonoids and sesquiterpenes from Tecurium ramosissimum promote antiproliferation of human cancer cells and enhance antioxidant activity: A structure–activity relationship study. Environ. Toxicol. Pharmacol., 2011, 32, 336-348.
[http://dx.doi.org/10.1016/j.etap.2011.07.003]
[38]
Moghaddam, G.; Ebrahimi, S.A.; Rahbar-Roshandel, N.; Foroumadi, A. Antiproliferative activity of flavonoids: Influence of the sequential methoxylation state of the flavonoid structure. Phytother. Res., 2012, 26, 1023-1028.
[http://dx.doi.org/10.1002/ptr.3678]
[39]
Bai, N.; He, K.; Roller, M.; Lai, C-S.; Shao, X.; Pan, M-H. Flavonoid glycosides from Microtea debilis and their cytotoxic and anti-inflammatory effects. Fitoterapia, 2011, 82, 168-172.
[http://dx.doi.org/10.1016/j.fitote.2010.08.014]
[40]
Yeon Park, J.; Young Kim, H.; Shibamoto, T.; Su Jang, T.; Cheon Lee, S.; Suk Shim, J. Beneficial effects of a medicinal herb, Cirsium japonicum var. maackii, extract and its major component, cirsimaritin on breast cancer metastasis in MDA-MB-231 breast cancer cells. Bioorg. Med. Chem. Lett., 2017, 27, 3968-3973.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.070]
[41]
Sen, A.; Ozbas Turan, S.; Bitis, L. Bioactivity-guided isolation of anti-proliferative compounds from endemic Centaurea kilaea. Pharm. Biol., 2017, 55, 541-546.
[http://dx.doi.org/10.1080/13880209.2016.1255980]
[42]
Quan, Z.; Gu, J.; Dong, P.; Lu, J.; Wu, X.; Wu, W. Reactive oxygen species-mediated endoplasmic reticulum stress and mitochondrial dysfunction contribute to cirsimaritin-induced apoptosis in human gallbladder carcinoma GBC-SD cells. Cancer Lett., 2010, 295, 252-259.
[http://dx.doi.org/10.1016/j.canlet.2010.03.008]
[43]
Algreiby, A.A.; Hammer, K.A.; Durmic, Z.; Vercoe, P.; Flematti, G.R. Antibacterial compounds from the Australian native plant Eremophila glabra. Fitoterapia, 2018, 126, 45-52.
[http://dx.doi.org/10.1016/j.fitote.2017.11.008]
[44]
Rijo, P.; Simões, M.F.; Duarte, A.; Rodríguez, B. Isopimarane diterpenoids from Aeollanthus rydingianus and their antimicrobial activity. Phytochemistry, 2009, 70, 1161-1165.
[http://dx.doi.org/10.1016/j.phytochem.2009.06.008]
[45]
Maia, GL de A Flavonoids from praxelis clematidea R.M. King and robinson modulate bacterial drug resistance. Molecules, 2011, 16, 4828-4835.
[http://dx.doi.org/10.3390/molecules16064828]
[46]
Polatoğlu, K.; Karakoç, Ö.C.; Demirci, F.; Gökçe, A.; Gören, N. Chemistry and biological activities of tanacetum chiliophyllum var. oligocephalum extracts. J. AOAC Int., 2013, 96, 1222-1227.
[http://dx.doi.org/10.5740/jaoacint.SGEPolatoglu]
[47]
Beer, M.F.; Frank, F.M.; Germán Elso, O.; Ernesto Bivona, A.; Cerny, N.; Giberti, G. Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satureiifolia. Pharm. Biol., 2016, 54, 2188-2195.
[http://dx.doi.org/10.3109/13880209.2016.1150304]
[48]
Miski, M.; Ulubelen, A.; Johansson, C.; Mabry, T.J. Antibacterial activity studies of flavonoids from salvia palaestina. J. Nat. Prod., 1983, 46, 874-875.
[http://dx.doi.org/10.1021/np50030a007]
[49]
Isobe, T.; Doe, M.; Morimoto, Y.; Nagata, K.; Ohsaki, A. The anti-helicobacter pylori flavones in a Brazilian plant, hyptis fasciculata, and the activity of methoxyflavones. Biol. Pharm. Bull., 2006, 29, 1039-1041.
[http://dx.doi.org/10.1248/bpb.29.1039]
[50]
Koysu, P.; Genc, N.; Elmastas, M.; Aksit, H.; Erenler, R. Isolation, identification of secondary metabolites from Salvia absconditiflora and evaluation of their antioxidative properties. Nat. Prod. Res., 2019, 33, 3592-3595.
[http://dx.doi.org/10.1080/14786419.2018.1488700]
[51]
Dawé, A.; Mbiantcha, M.; Yakai, F.; Jabeen, A.; Ali, M.S.; Lateef, M. Flavonoids and triterpenes from Combretum fragrans with anti-inflammatory, antioxidant and antidiabetic potential. Z. Naturforsch. C, 2018, 73, 211-219.
[http://dx.doi.org/10.1515/znc-2017-0166]
[52]
Abdelhalim, A.; Karim, N.; Chebib, M.; Aburjai, T.; Khan, I.; Johnston, G.A.R. Antidepressant, anxiolytic and antinociceptive activities of constituents from rosmarinus officinalis. J. Pharm. Pharm. Sci., 2015, 18, 448.
[http://dx.doi.org/10.18433/J3PW38]
[53]
Shafiq, N.; Riaz, N.; Ahmed, S.; Ashraf, M.; Ejaz, S.A.; Ahmed, I. Bioactive phenolics from Seriphidium stenocephalum. J. Asian Nat. Prod. Res., 2013, 15, 286-293.
[http://dx.doi.org/10.1080/10286020.2013.763226]
[54]
Kavvadias, D.; Monschein, V.; Sand, P.; Riederer, P.; Schreier, P. Constituents of Sage (Salvia officinalis) with in vitro affinity to human brain benzodiazepine receptor. Planta Med., 2003, 69, 113-117.
[http://dx.doi.org/10.1055/s-2003-37712]
[55]
Lee, D.; Kim, K.H.; Lee, J.; Hwang, G.S.; Lee, H.L.; Hahm, D-H. Protective effect of cirsimaritin against streptozotocin-induced apoptosis in pancreatic beta cells. J. Pharm. Pharmacol., 2017, 69, 875-883.
[http://dx.doi.org/10.1111/jphp.12719]
[56]
Bower, A.M.; Real Hernandez, L.M.; Berhow, M.A.; de Mejia, E.G. Bioactive compounds from culinary herbs inhibit a molecular target for type 2 diabetes management, dipeptidyl peptidase IV. J. Agric. Food Chem., 2014, 62, 6147-6158.
[http://dx.doi.org/10.1021/jf500639f]
[57]
Yin, Y.; Gong, F-Y.; Wu, X-X.; Sun, Y.; Li, Y-H.; Chen, T. Anti-inflammatory and immunosuppressive effect of flavones isolated from Artemisia vestita. J. Ethnopharmacol., 2008, 120, 1-6.
[http://dx.doi.org/10.1016/j.jep.2008.07.029]
[58]
Amakura, Y.; Yoshimura, M.; Takaoka, M.; Toda, H.; Tsutsumi, T.; Matsuda, R. Characterization of natural Aryl hydrocarbon receptor agonists from cassia seed and rosemary. Molecules, 2014, 19, 4956-4966.
[http://dx.doi.org/10.3390/molecules19044956]
[59]
Bilto, Y.Y.; Abdalla, S.S. Effects of selected flavonoids on deformability, osmotic fragility and aggregation of human erythrocytes. Clin. Hemorheol. Microcirc., 1998, 18, 165-173.
[60]
Wang, J-P.; Chang, L-C.; Hsu, M-F.; Chen, S-C.; Kuo, S-C. Inhibition of formyl-methionyl-leucyl-phenylalanine-stimulated respiratory burst by cirsimaritin involves inhibition of phospholipase D signaling in rat neutrophils. Naunyn Schmiedebergs Arch. Pharmacol., 2002, 366, 307-314.
[http://dx.doi.org/10.1007/s00210-002-0631-1]
[61]
Nourozi, E.; Hosseini, B.; Maleki, R.; Abdollahi Mandoulakani, B. Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures. J. Sci. Food Agric., 2019, 99, 6418-6430.
[http://dx.doi.org/10.1002/jsfa.9921]
[62]
Srivedavyasasri, R.; Hayes, T.; Ross, S.A. Phytochemical and biological evaluation of Salvia apiana. Nat. Prod. Res., 2017, 31, 2058-2061.
[http://dx.doi.org/10.1080/14786419.2016.1269096]
[63]
Tanaka, M.; Suzuki, M.; Takei, Y.; Okamoto, T.; Watanabe, H. Cirsium maritimum makino inhibits the antigen/immunoglobulin-e-mediated allergic response in vitro and in vivo. J. Agric. Food Chem., 2017, 65, 8386-8391.
[http://dx.doi.org/10.1021/acs.jafc.7b03322]
[64]
Burki, S.; Burki ZG, Mehjabeen; Imran M, Shah ZA; Khan, M. Phytochemical screening, antioxidant, and in vivo neuropharmacological effect of Monotheca buxifolia (Falc.) barks extract. Pak. J. Pharm. Sci., 2018, 31, 1519-1528.
[65]
Mirzahosseini, G.; Manayi, A.; Khanavi, M.; Safavi, M.; Salari, A.; Madjid Ansari, A. Bio-guided isolation of Centaurea bruguierana subsp. belangerana cytotoxic components. Nat. Prod. Res., 2019, 33, 1687-1690.
[http://dx.doi.org/10.1080/14786419.2018.1428590]
[66]
Malmir, M.; Gohari, A.R.; Saeidnia, S.; Silva, O. A new bioactive monoterpene–flavonoid from Satureja khuzistanica. Fitoterapia, 2015, 105, 107-112.
[http://dx.doi.org/10.1016/j.fitote.2015.06.012]
[67]
Bendif, H.; Miara, M.D.; Peron, G.; Sut, S.; Dall’Acqua, S.; Flamini, G. NMR, HS-SPME-GC/MS, and HPLC/MS n Analyses of Phytoconstituents and Aroma Profile of Rosmarinus eriocalyx. Chem. Biodivers., 2017, 14e, 1700248.
[http://dx.doi.org/10.1002/cbdv.201700248]
[68]
Zhong, J. Chemical constituents from Perovskia atriplicifolia. China J. Chinese Mater. Medica, 2015, 40, 1108-1113.
[69]
González-Trujano, M.E.; Hernández-Sánchez, L.Y.; Muñoz Ocotero, V.; Dorazco-González, A.; Guevara Fefer, P.; Aguirre-Hernández, E. Pharmacological evaluation of the anxiolytic-like effects of Lippia graveolens and bioactive compounds. Pharm. Biol., 2017, 55, 1569-1576.
[http://dx.doi.org/10.1080/13880209.2017.1310908]
[70]
Zhu, M.; Phillipson, J.; Greengrass, P.; Bowery, N. Chemical and biological investigation of the root bark of clerodendrum mandarinorum. Planta Med., 1996, 62, 393-396.
[http://dx.doi.org/10.1055/s-2006-957923]
[71]
Kanetis, L.; Exarchou, V.; Charalambous, Z.; Goulas, V. Edible coating composed of chitosan and Salvia fruticosa Mill. extract for the control of grey mould of table grapes. J. Sci. Food Agric., 2017, 97, 452-460.
[http://dx.doi.org/10.1002/jsfa.7745]
[72]
Grayer, R.J.; Veitch, N.C. An 8-hydroxylated external flavone and its 8-O-glucoside from Becium grandiflorum. Phytochemistry, 1998, 47, 779-782.
[http://dx.doi.org/10.1016/S0031-9422(97)00626-2]
[73]
Exarchou, V.; Kanetis, L.; Charalambous, Z.; Apers, S.; Pieters, L.; Gekas, V. HPLC-SPE-NMR characterization of major metabolites in salvia fruticosa mill. Extract with antifungal potential: relevance of carnosic acid, carnosol, and hispidulin. J. Agric. Food Chem., 2015, 63, 457-463.
[http://dx.doi.org/10.1021/jf5050734]
[74]
Hasrat, J.A.; Pieters, L.; Claeys, M.; Vlietinck, A.; De Backer, J-P.; Vauquelin, G. Adenosine-1 active ligands: Cirsimarin, a flavone glycoside from microtea debilis 1. J. Nat. Prod., 1997, 60, 638-641.
[http://dx.doi.org/10.1021/np970025k]
[75]
Marino, A.; Zengin, G.; Nostro, A.; Ginestra, G.; Dugo, P.; Cacciola, F. Antimicrobial activities, toxicity and phenolic composition of Asphodeline anatolica E. Tuzlaci leaf extracts from Turkey. Nat. Prod. Res., 2016, 30, 2620-2623.
[http://dx.doi.org/10.1080/14786419.2015.1129330]
[76]
ehyAl Ati HYhmeFawzy GAAAEl GamalahKhalil ATTahir KEl Din El MS aaAbdel-KaderPhytochemical and biological evaluation of Buddleja polystachya growing in Saudi Arabia. Pak. J. Pharm. Sci., 2015, 28, 1533-1540.
[77]
Lin, S.; Zhang, Q.W.; Zhang, N.N.; Zhang, Y.X. Determination of flavonoids in buds of Herba Artemisiae Scopariae by HPLC. Zhongguo Zhongyao Zazhi, 2005, 30, 591-594.
[78]
Verykokidou-Vitsaropoulou, E.; Vajias, C. Methylated flavones from teucrium polium. Planta Med., 1986, 52, 401-402.
[http://dx.doi.org/10.1055/s-2007-969198]
[79]
Tahtah, Y.; Wubshet, S.G.; Kongstad, K.T.; Heskes, A.M.; Pateraki, I.; Møller, B.L. High-resolution PTP1B inhibition profiling combined with high-performance liquid chromatography–high-resolution mass spectrometry–solid-phase extraction–nuclear magnetic resonance spectroscopy: Proof-of-concept and antidiabetic constituents in crude extra. Fitoterapia, 2016, 110, 52-58.
[http://dx.doi.org/10.1016/j.fitote.2016.02.008]
[80]
Khaliq, S.; Volk, F-J.; Frahm, A. Phytochemical investigation of perovskia abrotanoides. Planta Med., 2006, 73, 77-83.
[http://dx.doi.org/10.1055/s-2006-951766]
[81]
Peter, S.R.; Peru, K.M.; Fahlman, B.; McMartin, D.W.; Headley, J.V. The application of HPLC ESI MS in the investigation of the flavonoids and flavonoid glycosides of a Caribbean Lamiaceae plant with potential for bioaccumulation. J. Environ. Sci. Heal. Part B, 2015, 50, 819-826.
[http://dx.doi.org/10.1080/03601234.2015.1058103]
[82]
Valentão, P.; Andrade, P.B.; Areias, F.; Ferreres, F.; Seabra, R.M. Analysis of vervain flavonoids by HPLC/Diode array detector method. its application to quality control. J. Agric. Food Chem., 1999, 47, 4579-4582.
[http://dx.doi.org/10.1021/jf990444i]
[83]
Weimann, C.; Göransson, U.; Pongprayoon-Claeson, U.; Claeson, P.; Bohlin, L.; Rimpler, H. Spasmolytic effects of Baccharis conferta and some of its constituents. J. Pharm. Pharmacol., 2002, 54, 99-104.
[http://dx.doi.org/10.1211/0022357021771797]
[84]
Ren, X.; Wang, W.; Bao, Y.; Zhu, Y.; Zhang, Y.; Lu, Y. Isorhamnetin and hispidulin from tamarix ramosissima inhibit 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation by trapping phenylacetaldehyde as a key mechanism. Foods, 2020, 9, 420.
[http://dx.doi.org/10.3390/foods9040420]
[85]
Liu, Y-L.; Ho, D.K.; Cassady, J.M.; Cook, V.M.; Baird, W.M. Isolation of potential cancer Chemopreventive agents from eriodictyon californicum. J. Nat. Prod., 1992, 55, 357-363.
[http://dx.doi.org/10.1021/np50081a012]
[86]
Yu, Z.W.; Zhu, H.Y.; Yang, X.S.; Sun, Q.Y.; Hao, X.J. Study on chemical constituents from Incarvillea arguta and their accelerating PC-12 cell differentiation. Zhongguo Zhongyao Zazhi, 2005, 30, 1335-1338.
[87]
Zhang, Q.W.; Zhang, Y.X.; Zhang, Y.; Xiao, Y.Q.; Wang, Z.M. Studies on chemical constituents in buds of Artemisia scoparia. Zhongguo Zhongyao Zazhi, 2002, 27, 202-204.
[88]
Zhang, W.; Zhao, D.B.; Li, M.J.; Liu, X.H.; Wang, H.Q. Studies on flavonoid constituents from herbs of Artemisia ordosica II. Zhongguo Zhongyao Zazhi, 2006, 31, 1959-1961.
[89]
Tundis, R.; Nadjafi, F.; Menichini, F. Angiotensin-converting enzyme inhibitory activity and antioxidant properties of nepeta crassifolia boiss & buhse and nepeta binaludensis Jamzad. Phytother. Res., 2013, 27, 572-580.
[http://dx.doi.org/10.1002/ptr.4757]
[90]
Ono, M.; Morinaga, H.; Masuoka, C.; Ikeda, T.; Okawa, M.; Kinjo, J. New bisabolane-type sesquiterpenes from the aerial parts of Lippia dulcis. Chem. Pharm. Bull. (Tokyo), 2005, 53, 1175-1177.
[http://dx.doi.org/10.1248/cpb.53.1175]
[91]
Okada, Y.; Miyauchi, N.; Suzuki, K.; Kobayashi, T.; Tsutsui, C.; Mayuzumi, K. Search for naturally occurring substances to prevent the complications of diabetes. II. Inhibitory effect of coumarin and flavonoid derivatives on bovine lens aldose reductase and rabbit platelet aggregation. Chem. Pharm. Bull. (Tokyo), 1995, 43, 1385-1387.
[http://dx.doi.org/10.1248/cpb.43.1385]
[92]
Ibañez, E.; Kubátová, A.; Señoráns, F.J.; Cavero, S.; Reglero, G.; Hawthorne, S.B. Subcritical water extraction of antioxidant compounds from rosemary plants. J. Agric. Food Chem., 2003, 51, 375-382.
[http://dx.doi.org/10.1021/jf025878j]
[93]
Kuo, C-F.; Su, J-D.; Chiu, C-H.; Peng, C-C.; Chang, C-H.; Sung, T-Y. Anti-inflammatory effects of supercritical carbon dioxide extract and its isolated carnosic acid from rosmarinus officinalis leaves. J. Agric. Food Chem., 2011, 59, 3674-3685.
[http://dx.doi.org/10.1021/jf104837w]
[94]
Stefkov, G.; Kulevanova, S.; Miova, B.; Dinevska-Kjovkarovska, S.; Mølgaard, P.; Jäger, A.K. Effects of Teucrium polium spp. capitatum flavonoids on the lipid and carbohydrate metabolism in rats. Pharm. Biol., 2011, 49, 885-892.
[http://dx.doi.org/10.3109/13880209.2011.552187]
[95]
Nyiligira, E.; Viljoen, A.M.; Van Heerden, F.R.; Van Zyl, R.L.; Van Vuuren, S.F.; Steenkamp, P.A. Phytochemistry and in vitro pharmacological activities of South African Vitex (Verbenaceae) species. J. Ethnopharmacol., 2008, 119, 680-685.
[http://dx.doi.org/10.1016/j.jep.2008.07.004]
[96]
Mujovo, S.F.; Hussein, A.A.; Meyer, J.J.M.; Fourie, B.; Muthivhi, T.; Lall, N. Bioactive compounds from Lippia javanica and Hoslundia opposita. Nat. Prod. Res., 2008, 22, 1047-1054.
[http://dx.doi.org/10.1080/14786410802250037]
[97]
Henchiri, H.; Bodo, B.; Deville, A.; Dubost, L.; Zourgui, L.; Raies, A. Sesquiterpenoids from Teucrium ramosissimum. Phytochemistry, 2009, 70, 1435-1441.
[http://dx.doi.org/10.1016/j.phytochem.2009.08.012]
[98]
Youssef, D.; Frahm, A. Constituents of the egyptian centaurea scoparia; III. Phenolic constituents of the aerial parts. Planta Med., 1995, 61, 570-573.
[http://dx.doi.org/10.1055/s-2006-959378]
[99]
Bosabalidis, A.; Gabrieli, C.; Niopas, I. Flavone aglycones in glandular hairs of Origanum x intercedens. Phytochemistry, 1998, 49, 1549-1553.
[http://dx.doi.org/10.1016/S0031-9422(98)00186-1]
[100]
Areias, F.; Valentão, P.; Andrade, P.B.; Ferreres, F.; Seabra, R.M. Flavonoids and phenolic acids of sage: Influence of some agricultural-factors. J. Agric. Food Chem., 2000, 48, 6081-6084.
[http://dx.doi.org/10.1021/jf000440+]
[101]
Wang, R-F.; Yang, X-W.; Ma, C-M.; Liu, H-Y.; Shang, M-Y.; Zhang, Q-Y. Trollioside, a new compound from the flowers of Trollius chinensis. J. Asian Nat. Prod. Res., 2004, 6, 139-144.
[http://dx.doi.org/10.1080/1028602031000147393]
[102]
dos Santos, M.S.; da Silva, J.; Menezes, A.P.S.; de Barros, F.M.C.; Lemes, M.L.B.; Rossatto, R.R. Biotoxicological analyses of trimeroside from baccharis trimera using a battery of in vitro test systems. Oxid. Med. Cell. Longev., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/7804135]
[103]
Ren, X.; Bao, Y.; Zhu, Y.; Liu, S.; Peng, Z.; Zhang, Y. Isorhamnetin, hispidulin, and cirsimaritin identified in tamarix ramosissima barks from southern xinjiang and their antioxidant and antimicrobial activities. Molecules, 2019, 24, 390.
[http://dx.doi.org/10.3390/molecules24030390]
[104]
Stefanis, I.; Hadjipavlou-Litina, D.; Bilia, A-R.; Karioti, A. LC-MS- and NMR-guided isolation of monoterpene dimers from cultivated thymus vulgaris Varico 3 hybrid and their antityrosinase activity. Planta Med., 2019, 85, 941-946.
[http://dx.doi.org/10.1055/a-0927-7041]
[105]
Devi, M.; Devi, S.; Sharma, V.; Rana, N.; Bhatia, R.K.; Kumar, A. Green synthesis of silver nanoparticles using methanolic fruit extract of Aegle marmelos and their antimicrobial potential against human bacterial pathogens. J. Tradit. Complement. Med., 2020, 10, 158-165.
[http://dx.doi.org/10.1016/j.jtcme.2019.04.007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy