Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Recent Advances in Utilization of Deep Eutectic Solvents: An Environmentally Friendly Pathway for Multi-component Synthesis

Author(s): Ajay Thakur*, Monika Verma, Ruchi Bharti* and Renu Sharma

Volume 26, Issue 3, 2022

Published on: 15 February, 2022

Page: [299 - 323] Pages: 25

DOI: 10.2174/1385272826666220126165925

Price: $65

Abstract

With the increasing analysis of saving the environment, the researchers demonstrated much effort to replace toxic chemicals with environmentally benign ones. Eutectic mixtures are those solvents that fulfill the criteria of green solvents. The synthesis of organic compounds in the chemical and pharmaceutical industries makes it necessary to find unconventional solvents that cause no harmful impact on health parameters. This review showed that using deep eutectic mixture-based solvents to overcome the hazardous effects of harmful volatile organic solvents over the past few years has gained much more appeal. In most applications, deep eutectic mixtures are used for a solvent or co-solvent role, as they are easy to use, easy dissolution of reactants, and non-evaporative nature. However, deep eutectic mixtures have also been investigated as catalysts, and this dual functionality has much scope in the future, as a significantly less range of deep eutectic mixtures is utilized for this.

Keywords: Deep eutectic mixtures, green solvent, multicomponent reaction, heterocycles, biorenewable, biotransformation.

Graphical Abstract

[1]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[2]
Thompson, L.A.; Ellman, J.A. Synthesis and applications of small molecule libraries. Chem. Rev., 1996, 96(1), 555-600.
[http://dx.doi.org/10.1021/cr9402081] [PMID: 11848765]
[3]
Mirmashhori, B.; Azizi, N.; Saidi, M.R. A simple, economical, and highly efficient synthesis of β-hydroxynitriles from epoxide under solvent free conditions. J. Mol. Catal. Chem., 2006, 247(1-2), 159-161.
[http://dx.doi.org/10.1016/j.molcata.2005.11.042]
[4]
Singh, M.S.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis. RSC Advances, 2012, 2(11), 4547-4592.
[http://dx.doi.org/10.1039/c2ra01056a]
[5]
Rotstein, B.H.; Zaretsky, S.; Rai, V.; Yudin, A.K. Small heterocycles in multicomponent reactions. Chem. Rev., 2014, 114(16), 8323-8359.
[http://dx.doi.org/10.1021/cr400615v] [PMID: 25032909]
[6]
Climent, M.J.; Corma, A.; Iborra, S. Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances, 2012, 2(1), 16-58.
[http://dx.doi.org/10.1039/C1RA00807B]
[7]
Gu, Y.; Jérôme, F. Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chem. Soc. Rev., 2013, 42(24), 9550-9570.
[http://dx.doi.org/10.1039/c3cs60241a] [PMID: 24056753]
[8]
Yang, J.; Tan, J-N.; Gu, Y. Lactic acid as an invaluable bio-based solvent for organic reactions. Green Chem., 2012, 14(12), 3304-3317.
[http://dx.doi.org/10.1039/c2gc36083g]
[9]
Alvim, H.G.O.; da Silva, E.N. Junior; Neto, B.A.D. What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. RSC Advances, 2014, 4(97), 54282-54299.
[http://dx.doi.org/10.1039/C4RA10651B]
[10]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[11]
Ünlü, A.; Arıkaya, A.; Takaç, S. Use of deep eutectic solvents as catalyst: A mini-review. Green Process. Synth., 2019, 8(1), 355-372.
[http://dx.doi.org/10.1515/gps-2019-0003]
[12]
Grodowska, K.; Parczewski, A. Organic solvents in the pharmaceutical industry. Acta Pol. Pharm., 2010, 67(1), 3-12.
[PMID: 20210074]
[13]
Reichardt, C.; Welton, T. Solvents and solvent effects in organic chemistry; John Wiley & Sons: New Jersey, USA, 2011.
[14]
Soroush, M.; Grady, M.C. Polymers, Polymerization Reactions, and Computational Quantum Chemistry.Computational Quantum Chemistry; Soroush, M., Ed.; Elsevier, 2019, pp. 1-16.
[http://dx.doi.org/10.1016/B978-0-12-815983-5.00001-5]
[15]
Litbarg, N.O. Chronic kidney disease.Integrative Medicine, 4th ed; Rakel, D., Ed.; Elsevier, 2018, pp. 411-421.e11.
[http://dx.doi.org/10.1016/B978-0-323-35868-2.00040-2]
[16]
Sha, F.; Huang, X. A multicomponent reaction of arynes, isocyanides, and terminal alkynes: Highly chemo- and regioselective synthesis of polysubstituted pyridines and isoquinolines. Angew. Chem. Int. Ed. Engl., 2009, 48(19), 3458-3461.
[http://dx.doi.org/10.1002/anie.200900212] [PMID: 19350594]
[17]
Martínez, R.; Ramon, D.J.; Yus, M. Catalyst-free multicomponent Strecker reaction in acetonitrile. Tetrahedron Lett., 2005, 46(49), 8471-8474.
[http://dx.doi.org/10.1016/j.tetlet.2005.10.020]
[18]
Sheldon, R.A. Fundamentals of green chemistry: Efficiency in reaction design. Chem. Soc. Rev., 2012, 41(4), 1437-1451.
[http://dx.doi.org/10.1039/C1CS15219J] [PMID: 22033698]
[19]
Tanaka, K. Solvent-Free Organic Synthesis; Wiley-VCH: Germany, 2003.
[http://dx.doi.org/10.1002/3527601821]
[20]
Q3C-Tables and List Guidance for Industry, 2017. Available from: https://www.fda.gov/media/71737/download
[21]
Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Sherwood, J. Opportunities for bio-based solvents created as petrochemical and fuel products transition towards renewable resources. Int. J. Mol. Sci., 2015, 16(8), 17101-17159.
[http://dx.doi.org/10.3390/ijms160817101] [PMID: 26225963]
[22]
Pena-Pereira, F.; Kloskowski, A.; Namieśnik, J. Perspectives on the replacement of harmful organic solvents in analytical methodologies: A framework toward the implementation of a generation of eco-friendly alternatives. Green Chem., 2015, 17(7), 3687-3705.
[http://dx.doi.org/10.1039/C5GC00611B]
[23]
Earle, M.J.; Seddon, K.R. Ionic liquids. Green solvents for the future. Pure Appl. Chem., 2000, 72(7), 1391.
[http://dx.doi.org/10.1351/pac200072071391]
[24]
Pollet, P.; Davey, E.A.; Ureña-Benavides, E.E.; Eckert, C.A.; Liotta, C.L. Solvents for sustainable chemical processes. Green Chem., 2014, 16(3), 1034-1055.
[http://dx.doi.org/10.1039/C3GC42302F]
[25]
Wolfson, A.; Dlugy, C.; Shotland, Y. Glycerol as a green solvent for high product yields and selectivities. Environ. Chem. Lett., 2007, 5(2), 67-71.
[http://dx.doi.org/10.1007/s10311-006-0080-z]
[26]
Gu, Y.; Jérôme, F. Glycerol as a sustainable solvent for green chemistry. Green Chem., 2010, 12(7), 1127-1138.
[http://dx.doi.org/10.1039/c001628d]
[27]
Dejoye Tanzi, C.; Abert Vian, M.; Ginies, C.; Elmaataoui, M.; Chemat, F. Terpenes as green solvents for extraction of oil from microalgae. Molecules, 2012, 17(7), 8196-8205.
[http://dx.doi.org/10.3390/molecules17078196] [PMID: 22777188]
[28]
Nalawade, S.P.; Picchioni, F.; Janssen, L. Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications. Prog. Polym. Sci., 2006, 31(1), 19-43.
[29]
Lozowski, D. Supercritical CO2: A green solvent. Chem. Eng. (N.Y.), 2010, 117(2), 15.
[30]
Ramsey, E.; Sun, Q.; Zhang, Z.; Zhang, C.; Gou, W. Mini-review: Green sustainable processes using supercritical fluid carbon dioxide. J. Environ. Sci. (China), 2009, 21(6), 720-726.
[http://dx.doi.org/10.1016/S1001-0742(08)62330-X] [PMID: 19803072]
[31]
Leitner, W. Homogeneous catalysts for application in supercritical carbon dioxide as a ‘green’ solvent. Comptes Rendus de l'Académie des Sciences - Series IIC - Chemistry, , 2000, 3(7), 595-600.
[32]
F’Oliakoff, M.; George, M.W.; Howdle, S.M.; Bagratashvili, V.N.; Han, B.X.; Yan, H.K. Supercritical fluids: Clean solvents for green chemistry. Chin. J. Chem., 1999, 17(3), 212-222.
[33]
Marcus, Y. Supercritical Water: A Green Solvent: Properties and Uses; John Wiley & Sons: New Jersey, USA, 2012.
[http://dx.doi.org/10.1002/9781118310250]
[34]
Santana, Á.L.; Santos, D.T.; Meireles, M.A.A. Perspectives on small-scale integrated biorefineries using supercritical CO2 as a green solvent. Curr. Opin. Green Sustain. Chem., 2019, 18, 1-12.
[http://dx.doi.org/10.1016/j.cogsc.2018.11.007]
[35]
Shitu, A.; Izhar, S.; Tahir, T. Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work. Glob. J. Environ. Sci. Manag, 2015, 255-264.
[36]
Mistry, L.; Mapesa, K.; Bousfield, T.W.; Camp, J.E. Synthesis of ureas in the bio-alternative solvent Cyrene. Green Chem., 2017, 19(9), 2123-2128.
[http://dx.doi.org/10.1039/C7GC00908A]
[37]
Ray, P.; Hughes, T.; Smith, C.; Hibbert, M.; Saito, K.; Simon, G.P. Development of bio-acrylic polymers from Cyrene™: Transforming a green solvent to a green polymer. Polym. Chem., 2019, 10(24), 3334-3341.
[http://dx.doi.org/10.1039/C9PY00353C]
[38]
Camp, J.E.; Nyamini, S.B.; Scott, F.J. Cyrene™ is a green alternative to DMSO as a solvent for antibacterial drug discovery against ESKAPE pathogens. RSC Med. Chem., 2019, 11(1), 111-117.
[http://dx.doi.org/10.1039/C9MD00341J] [PMID: 33479610]
[39]
Marino, T.; Galiano, F.; Molino, A.; Figoli, A. New frontiers in sustainable membrane preparation: Cyrene™ as green bioderived solvent. J. Membr. Sci., 2019, 580, 224-234.
[http://dx.doi.org/10.1016/j.memsci.2019.03.034]
[40]
Dutta, S.; Yu, I.K.M.; Tsang, D.C.W.; Ng, Y.H.; Ok, Y.S.; Sherwood, J.; Clark, J.H. Green synthesis of gamma-valerolactone (GVL) through hydrogenation of biomass-derived levulinic acid using non-noble metal catalysts: A critical review. Chem. Eng. J., 2019, 372, 992-1006.
[http://dx.doi.org/10.1016/j.cej.2019.04.199]
[41]
Gandeepan, P.; Kaplaneris, N.; Santoro, S.; Vaccaro, L.; Ackermann, L. Biomass-derived solvents for sustainable transition metal-catalyzed C–H activation. ACS Sustain. Chem. Eng., 2019, 7(9), 8023-8040.
[http://dx.doi.org/10.1021/acssuschemeng.9b00226]
[42]
Santoro, S.; Ferlin, F.; Luciani, L.; Ackermann, L.; Vaccaro, L. Biomass-derived solvents as effective media for cross-coupling reactions and C–H functionalization processes. Green Chem., 2017, 19(7), 1601-1612.
[http://dx.doi.org/10.1039/C7GC00067G]
[43]
Dubey, A.V.; Kumar, A.V. Cu(II)–glucose: Sustainable catalyst for the synthesis of quinazolinones in a biomass-derived solvent 2-methylthf and application for the synthesis of diproqualone. ACS Sustain. Chem. Eng., 2018, 6(11), 14283-14291.
[http://dx.doi.org/10.1021/acssuschemeng.8b02940]
[44]
Strappaveccia, G.; Luciani, L.; Bartollini, E.; Marrocchi, A.; Pizzo, F.; Vaccaro, L. γ-Valerolactone as an alternative biomass-derived medium for the Sonogashira reaction. Green Chem., 2015, 17(2), 1071-1076.
[http://dx.doi.org/10.1039/C4GC01728E]
[45]
Yan, K.; Lafleur, T.; Wu, G.; Liao, J.; Ceng, C.; Xie, X. Highly selective production of value-added γ-valerolactone from biomass-derived levulinic acid using the robust Pd nanoparticles. Appl. Catal. A Gen., 2013, 468, 52-58.
[http://dx.doi.org/10.1016/j.apcata.2013.08.037]
[46]
Long, J.; Zhang, Q.; Wang, T.; Zhang, X.; Xu, Y.; Ma, L. An efficient and economical process for lignin depolymerization in biomass-derived solvent tetrahydrofuran. Bioresour. Technol., 2014, 154, 10-17.
[http://dx.doi.org/10.1016/j.biortech.2013.12.020] [PMID: 24370950]
[47]
Yoo, C.G.; Pu, Y.; Ragauskas, A.J. Ionic liquids: Promising green solvents for lignocellulosic biomass utilization. Curr. Opin. Green Sustain. Chem., 2017, 5, 5-11.
[http://dx.doi.org/10.1016/j.cogsc.2017.03.003]
[48]
Liu, Z-T.; Shen, L-H.; Liu, Z-W.; Lu, J. Acetylation of β-cyclodextrin in ionic liquid green solvent. J. Mater. Sci., 2009, 44(7), 1813-1820.
[http://dx.doi.org/10.1007/s10853-008-3238-1]
[49]
Zhu, P.; Chen, Y.; Wang, L.Y.; Zhou, M. Treatment of waste printed circuit board by green solvent using ionic liquid. Waste Manag., 2012, 32(10), 1914-1918.
[http://dx.doi.org/10.1016/j.wasman.2012.05.025] [PMID: 22683227]
[50]
Wahidin, S.; Idris, A.; Shaleh, S.R.M. Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production. Bioresour. Technol., 2016, 206, 150-154.
[http://dx.doi.org/10.1016/j.biortech.2016.01.084] [PMID: 26851899]
[51]
Welton, T. Ionic liquids in Green Chemistry. Green Chem., 2011, 13(2), 225-225.
[http://dx.doi.org/10.1039/c0gc90047h]
[52]
Xu, J-M.; Wu, W-B.; Qian, C.; Liu, B-K.; Lin, X-F. A novel and highly efficient protocol for Markovnikov’s addition using ionic liquid as catalytic green solvent. Tetrahedron Lett., 2006, 47(10), 1555-1558.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.001]
[53]
Golmakani, M.T.; Mendiola, J.A.; Rezaei, K.; Ibáñez, E. Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorganisms. J. Supercrit. Fluids, 2014, 92, 1-7.
[http://dx.doi.org/10.1016/j.supflu.2014.05.001]
[54]
Pace, V.; Hoyos, P.; Castoldi, L.; Domínguez de María, P.; Alcántara, A.R. 2-Methyltetrahydrofuran (2-MeTHF): A biomass-derived solvent with broad application in organic chemistry. ChemSusChem, 2012, 5(8), 1369-1379.
[http://dx.doi.org/10.1002/cssc.201100780] [PMID: 22887922]
[55]
Perez-Sanchez, M.; Sandoval, M.; Hernaiz, M.J.; Maria, P.D.d. Biocatalysis in biomass-derived solvents: The quest for fully sustainable chemical processes. Curr. Org. Chem., 2013, 17(11), 1188-1199.
[http://dx.doi.org/10.2174/1385272811317110006]
[56]
Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S.M.S. Chemical and biochemical transformations in ionic liquids. Tetrahedron, 2005, 5(61), 1015-1060.
[http://dx.doi.org/10.1016/j.tet.2004.10.070]
[57]
Subbiah, S.; Cathy, I.C.; Yen-Ho, C. Ionic Liquids for Green Organic Synthesis. Curr. Org. Synth., 2012, 9(1), 74-95.
[http://dx.doi.org/10.2174/157017912798889116]
[58]
Wang, B.; Gu, Y.; Luo, C.; Yang, T.; Yang, L.; Suo, J. Pyrrole synthesis in ionic liquids by Paal–Knorr condensation under mild conditions. Tetrahedron Lett., 2004, 45(17), 3417-3419.
[http://dx.doi.org/10.1016/j.tetlet.2004.03.012]
[59]
Ganske, F.; Bornscheuer, U.T. Lipase-catalyzed glucose fatty acid ester synthesis in ionic liquids. Org. Lett., 2005, 7(14), 3097-3098.
[http://dx.doi.org/10.1021/ol0511169] [PMID: 15987214]
[60]
Lozano, P.; De Diego, T.; Carrié, D.; Vaultier, M.; Iborra, J.L. Enzymatic ester synthesis in ionic liquids. J. Mol. Catal., B Enzym., 2003, 21(1), 9-13.
[http://dx.doi.org/10.1016/S1381-1177(02)00128-5]
[61]
Huddleston, J.G.; Willauer, H.D.; Swatloski, R.P.; Visser, A.E.; Rogers, R.D. Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem. Commun. (Camb.), 1998, 16, 1765-1766.
[http://dx.doi.org/10.1039/A803999B]
[62]
Gharehbaghi, M.; Shemirani, F. A novel method for dye removal: Ionic Liquid‐Based Dispersive Liquid–Liquid Extraction (IL‐DLLE). Clean (Weinh.), 2012, 40(3), 290-297.
[http://dx.doi.org/10.1002/clen.201100258]
[63]
Kim, Y-H.; Choi, Y-K.; Park, J.; Lee, S.; Yang, Y-H.; Kim, H.J.; Park, T-J.; Hwan Kim, Y.; Lee, S.H. Ionic liquid-mediated extraction of lipids from algal biomass. Bioresour. Technol., 2012, 109, 312-315.
[http://dx.doi.org/10.1016/j.biortech.2011.04.064] [PMID: 21601447]
[64]
Rodríguez-Cabo, B.; Arce, A.; Soto, A. Desulfurization of fuels by liquid–liquid extraction with 1-ethyl-3-methylimidazolium ionic liquids. Fluid Phase Equilib., 2013, 356, 126-135.
[http://dx.doi.org/10.1016/j.fluid.2013.07.028]
[65]
Itoh, T. Biotransformation in Ionic Liquid.Future Directions in Biocatalysis, 2nd ed; Matsuda, T., Ed.; Elsevier: Amsterdam, 2017, pp. 27-67.
[http://dx.doi.org/10.1016/B978-0-444-63743-7.00002-0]
[66]
Cull, S.G.; Holbrey, J.D.; Vargas-Mora, V.; Seddon, K.R.; Lye, G.J. Room-temperature ionic liquids as replacements for organic solvents in multiphase bioprocess operations. Biotechnol. Bioeng., 2000, 69(2), 227-233.
[http://dx.doi.org/10.1002/(SICI)1097-0290(20000720)69:2<227:AID-BIT12>3.0.CO;2-0] [PMID: 10861402]
[67]
Sheldon, R.A.; van Rantwijk, F.; Lau, R.M. Biotransformations in Ionic Liquids: An Overview.Ionic Liquids as Green Solvents; American Chemical Society: Washington, D.C., USA, 2003.
[http://dx.doi.org/10.1021/bk-2003-0856.ch016]
[68]
Lozano, P.; De Diego, T.; Carrié, D.; Vaultier, M.; Iborra, J.L. Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnol. Lett., 2001, 23(18), 1529-1533.
[http://dx.doi.org/10.1023/A:1011697609756]
[69]
Al Jitan, S.; Alkhoori, S.A.; Yousef, L.F. Phenolic acids from plants: Extraction and application to human health. In: Studies in Natural Products Chemistry; Atta ur, R., Ed.; Elsevier, , 2018; 58, pp. 389-417.
[70]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. (Camb.), 2003, 1(1), 70-71.
[http://dx.doi.org/10.1039/b210714g] [PMID: 12610970]
[71]
Wasserscheid, P.; Welton, T. Ionic liquids in synthesis, 2nd ed; Wiley-VCH: Weinheim, 2008.
[72]
Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev., 2014, 114(21), 11060-11082.
[http://dx.doi.org/10.1021/cr300162p] [PMID: 25300631]
[73]
Abbott, A.P.; Barron, J.C.; Ryder, K.S.; Wilson, D. Eutectic-based ionic liquids with metal-containing anions and cations. Chemistry, 2007, 13(22), 6495-6501.
[http://dx.doi.org/10.1002/chem.200601738] [PMID: 17477454]
[74]
Longo, L.S., Jr; Craveiro, M.V. Deep eutectic solvents as unconventional media for multicomponent reactions. J. Braz. Chem. Soc., 2018, 29, 1999-2025.
[http://dx.doi.org/10.21577/0103-5053.20180147]
[75]
Kareem, M.A.; Mjalli, F.S.; Hashim, M.A.; AlNashef, I.M. Phosphonium-based ionic liquids analogues and their physical properties. J. Chem. Eng. Data, 2010, 55(11), 4632-4637.
[http://dx.doi.org/10.1021/je100104v]
[76]
Ventura, S.P.; e Silva, F.A.; Gonçalves, A.M.; Pereira, J.L.; Gonçalves, F.; Coutinho, J.A.P. Ecotoxicity analysis of cholinium-based ionic liquids to Vibrio fischeri marine bacteria. Ecotoxicol. Environ. Saf., 2014, 102, 48-54.
[http://dx.doi.org/10.1016/j.ecoenv.2014.01.003] [PMID: 24580821]
[77]
Abbott, A.P.; Harris, R.C.; Ryder, K.S.; D’Agostino, C.; Gladden, L.F.; Mantle, M.D. Glycerol eutectics as sustainable solvent systems. Green Chem., 2011, 13(1), 82-90.
[http://dx.doi.org/10.1039/C0GC00395F]
[78]
Shahbaz, K.; Baroutian, S.; Mjalli, F.; Hashim, M.; AlNashef, I. Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques. Thermochim. Acta, 2012, 527, 59-66.
[http://dx.doi.org/10.1016/j.tca.2011.10.010]
[79]
Hou, Y.; Gu, Y.; Zhang, S.; Yang, F.; Ding, H.; Shan, Y. Novel binary eutectic mixtures based on imidazole. J. Mol. Liq., 2008, 143(2-3), 154-159.
[http://dx.doi.org/10.1016/j.molliq.2008.07.009]
[80]
Liu, Y-T.; Chen, Y-A.; Xing, Y-J. Synthesis and characterization of novel ternary deep eutectic solvents. Chin. Chem. Lett., 2014, 25(1), 104-106.
[http://dx.doi.org/10.1016/j.cclet.2013.09.004]
[81]
Mjalli, F.S.; Naser, J.; Jibril, B.; Alizadeh, V.; Gano, Z. Tetrabutylammonium chloride based ionic liquid analogues and their physical properties. J. Chem. Eng. Data, 2014, 59(7), 2242-2251.
[http://dx.doi.org/10.1021/je5002126]
[82]
Jibril, B.; Mjalli, F.; Naser, J.; Gano, Z. New tetrapropylammonium bromide-based deep eutectic solvents: Synthesis and characterizations. J. Mol. Liq., 2014, 199, 462-469.
[http://dx.doi.org/10.1016/j.molliq.2014.08.004]
[83]
Abbott, A.P.; Capper, G.; Gray, S. Design of improved deep eutectic solvents using hole theory. ChemPhysChem, 2006, 7(4), 803-806.
[http://dx.doi.org/10.1002/cphc.200500489] [PMID: 16596609]
[84]
Zhao, H.; Baker, G.A.; Holmes, S. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel. Org. Biomol. Chem., 2011, 9(6), 1908-1916.
[http://dx.doi.org/10.1039/c0ob01011a] [PMID: 21283901]
[85]
Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R. Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures. Inorg. Chem., 2004, 43(11), 3447-3452.
[http://dx.doi.org/10.1021/ic049931s] [PMID: 15154807]
[86]
Guo, W.; Hou, Y.; Ren, S.; Tian, S.; Wu, W. Formation of deep eutectic solvents by phenols and choline chloride and their physical properties. J. Chem. Eng. Data, 2013, 58(4), 866-872.
[http://dx.doi.org/10.1021/je300997v]
[87]
Hayyan, A.; Mjalli, F.S.; AlNashef, I.M.; Al-Wahaibi, Y.M.; Al-Wahaibi, T.; Hashim, M.A. Glucose-based deep eutectic solvents: Physical properties. J. Mol. Liq., 2013, 178, 137-141.
[http://dx.doi.org/10.1016/j.molliq.2012.11.025]
[88]
Hayyan, A.; Mjalli, F.S.; AlNashef, I.M.; Al-Wahaibi, T.; Al-Wahaibi, Y.M.; Hashim, M.A. Fruit sugar-based deep eutectic solvents and their physical properties. Thermochim. Acta, 2012, 541, 70-75.
[http://dx.doi.org/10.1016/j.tca.2012.04.030]
[89]
Maugeri, Z.; de María, P.D. Novel choline-chloride-based deep-eutectic-solvents with renewable hydrogen bond donors: Levulinic acid and sugar-based polyols. RSC Advances, 2012, 2(2), 421-425.
[http://dx.doi.org/10.1039/C1RA00630D]
[90]
Florindo, C.; Oliveira, F.S.; Rebelo, L.P.N.; Fernandes, A.M.; Marrucho, I.M. Engineering, Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids. ACS Sustain. Chem. Eng., 2014, 2(10), 2416-2425.
[http://dx.doi.org/10.1021/sc500439w]
[91]
Francisco, M.; van den Bruinhorst, A.; Kroon, M.C. New natural and renewable low transition temperature mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing. Green Chem., 2012, 14(8), 2153-2157.
[http://dx.doi.org/10.1039/c2gc35660k]
[92]
Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc., 2004, 126(29), 9142-9147.
[http://dx.doi.org/10.1021/ja048266j] [PMID: 15264850]
[93]
Swaroop, T.R.; Sharath Kumar, K.S.; Palanivelu, M.; Chaitanya, S.; Rangappa, K.S. A catalyst-free green protocol for the synthesis of pyranopyrazoles using room temperature ionic liquid choline chloride-urea. J. Heterocycl. Chem., 2014, 51(6), 1866-1870.
[http://dx.doi.org/10.1002/jhet.1864]
[94]
Aziizi, N.; Manochehri, Z.; Nahayi, A.; Torkashvand, S. A facile one-pot synthesis of tetrasubstituted imidazoles catalyzed by eutectic mixture stabilized ferrofluid. J. Mol. Liq., 2014, 196, 153-158.
[http://dx.doi.org/10.1016/j.molliq.2014.03.013]
[95]
Azizi, N.; Dezfooli, S.; Hashemi, M.M. Greener synthesis of spirooxindole in deep eutectic solvent. J. Mol. Liq., 2014, 194, 62-67.
[http://dx.doi.org/10.1016/j.molliq.2014.01.009]
[96]
Rajawat, A.; Khandelwal, S.; Kumar, M. Deep eutectic solvent promoted efficient and environmentally benign four-component domino protocol for synthesis of spirooxindoles. RSC Advances, 2014, 4(10), 5105-5112.
[http://dx.doi.org/10.1039/c3ra44600j]
[97]
Atul, C. Catalyst free one-pot three-component synthesis of 2-Amino-4Hchromene derivatives in aqueous deep eutectic mixture at room temperature. Lett. Org. Chem., 2014, 11(7), 480-486.
[http://dx.doi.org/10.2174/1570178611666140210213413]
[98]
Azizi, N.; Mariami, M.; Edrisi, M. Greener construction of 4H-chromenes based dyes in deep eutectic solvent. Dyes Pigm., 2014, 100, 215-221.
[http://dx.doi.org/10.1016/j.dyepig.2013.09.007]
[99]
Rokade, S.M.; Garande, A.M.; Ahmad, N.A.A.; Bhate, P.M. Acid- and metal-free synthesis of annulated pyrroles in a deep eutectic solvent. RSC Advances, 2015, 5(3), 2281-2284.
[http://dx.doi.org/10.1039/C4RA14379E]
[100]
Keshavarzipour, F.; Tavakol, H. Deep eutectic solvent as a recyclable catalyst for three-component synthesis of β-Amino Carbonyls. Catal. Lett., 2015, 145(4), 1062-1066.
[http://dx.doi.org/10.1007/s10562-014-1471-6]
[101]
Hu, H-C.; Liu, Y-H.; Li, B-L.; Cui, Z-S.; Zhang, Z-H. Deep eutectic solvent based on choline chloride and malonic acid as an efficient and reusable catalytic system for one-pot synthesis of functionalized pyrroles. RSC Advances, 2015, 5(10), 7720-7728.
[http://dx.doi.org/10.1039/C4RA13577F]
[102]
Shaabani, A.; Afshari, R.; Hooshmand, S.E. Passerini three-component cascade reactions in deep eutectic solvent: An environmentally benign and rapid system for the synthesis of α-acyloxyamides. Res. Chem. Intermed., 2016, 42(6), 5607-5616.
[http://dx.doi.org/10.1007/s11164-015-2390-x]
[103]
Shahabi, D.; Tavakol, H. One-pot synthesis of quinoline derivatives using choline chloride/tin (II) chloride deep eutectic solvent as a green catalyst. J. Mol. Liq., 2016, 220, 324-328.
[http://dx.doi.org/10.1016/j.molliq.2016.04.094]
[104]
Azizi, N.; Dezfooli, S. Catalyst-free synthesis of imidazo [1,2-a] pyridines via Groebke multicomponent reaction. Environ. Chem. Lett., 2016, 14(2), 201-206.
[http://dx.doi.org/10.1007/s10311-015-0541-3]
[105]
Azizi, N.; Edrisi, M. Deep eutectic solvent immobilized on SBA-15 as a novel separable catalyst for one-pot three-component Mannich reaction. Microporous Mesoporous Mater., 2017, 240, 130-136.
[http://dx.doi.org/10.1016/j.micromeso.2016.11.009]
[106]
Azizi, N.; Edrisi, M. Multicomponent reaction in deep eutectic solvent for synthesis of substituted 1-aminoalkyl-2-naphthols. Res. Chem. Intermed., 2017, 43(1), 379-385.
[http://dx.doi.org/10.1007/s11164-016-2628-2]
[107]
Aryan, R.; Beyzaei, H.; Nojavan, M.; Rezaei, M. Novel biocompatible glucose-based deep eutectic solvent as recyclable medium and promoter for expedient multicomponent green synthesis of diverse three and four substituted pyrazole-4-carbonitrile derivatives. Res. Chem. Intermed., 2017, 43(8), 4731-4744.
[http://dx.doi.org/10.1007/s11164-017-2908-5]
[108]
Krishnammagari, S.K.; Cho, B.G.; Jeong, Y.T. Choline chloride based eutectic solvent for the efficient synthesis of 2-amino-4 H-chromen-4-yl phosphonate derivatives via multicomponent reaction under mild conditions. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(5), 306-316.
[http://dx.doi.org/10.1080/10426507.2017.1417296]
[109]
Momeni, A.R.; Samimi, H.A.; Vaezzadeh, H. Eutectic mixture Choline Chloride–Chloroacetic acid: A new and efficient catalyst for synthesis of 3,4-Dihydropyrimidin-2-ones. Chem. Methodol., 2018, 2(3), 260-269.
[110]
Beyzaei, H.; Kamali Deljoo, M.; Aryan, R.; Ghasemi, B.; Zahedi, M.M.; Moghaddam-Manesh, M. Green multicomponent synthesis, antimicrobial and antioxidant evaluation of novel 5-amino-isoxazole-4-carbonitriles. Chem. Cent. J., 2018, 12(1), 114.
[http://dx.doi.org/10.1186/s13065-018-0488-0] [PMID: 30443685]
[111]
Vanegas, S.; Rodríguez, D.; Puentes, C. An efficient and eco‐friendly one‐pot synthesis of pyrazolopyridines mediated by Choline Chloride/Urea eutectic mixture. ChemistrySelect, 2019, 4, 3131-3134.
[http://dx.doi.org/10.1002/slct.201900314]
[112]
Nishtala, V.B.; Basavoju, S. ZnCl2+ Urea, the deep eutectic solvent promoted synthesis of the spirooxindolopyrans and xanthenes through a pseudo-three-component approach. Synth. Commun., 2019, 49(18), 2342-2349.
[http://dx.doi.org/10.1080/00397911.2019.1620784]
[113]
Patil, A.; Lohar, T.; Mane, A.; Kamat, S.; Salunkhe, R. Deep eutectic solvent an efficient reaction medium for the synthesis of chromeno pyrazolo and indazolo phthalazine derivatives. J. Heterocycl. Chem., 2019, 56(11), 3145-3151.
[http://dx.doi.org/10.1002/jhet.3713]
[114]
Bhosle, M.R.; Shaikh, M.A.; Nipate, D.; Khillare, L.D.; Bondle, G.M.; Sangshetti, J.N. ChCl: 2ZnCl2 catalyzed efficient synthesis of new Sulfonyl Decahydroacridine-1, 8-Diones via one-pot multicomponent reactions to discover potent antimicrobial agents. Polycycl. Aromat. Compd., 2019, 1-12.
[115]
Fekri, L.Z.; Nikpassand, M.; Mostaghim, S.; Marvi, O. Green catalyst-free multi-component synthesis of aminobenzochromenes in deep eutectic solvents. Org. Prep. Proced. Int., 2020, 52(2), 81-90.
[http://dx.doi.org/10.1080/00304948.2020.1714319]
[116]
Biglari, M.; Shirini, F.; Mahmoodi, N.O.; Zabihzadeh, M.; Mashhadinezhad, M. A choline chloride-based deep eutectic solvent promoted three-component synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3-d] pyrimidinone (thione) derivatives. J. Mol. Struct., 2020, 1205127652
[http://dx.doi.org/10.1016/j.molstruc.2019.127652]
[117]
Sayahi, M.; Gorjizadeh, M.; Meheiseni, M.; Sayyahi, S. One-pot multi-component process for the synthesis of 4-azaphenanthrene-3,10-dione, 1,8-dioxo-octahydroxanthene and tetrahydrobenzo[b]pyran derivatives catalyzed by the deep eutectic solvent choline chloride-oxalic acid. Z. Naturforsch. B, 2020, 75(3), 269-279.
[http://dx.doi.org/10.1515/znb-2019-0155]
[118]
Riadi, Y. Green, rapid and efficient synthesis of new antibacterial pyridopyrimidinone mediated by eutectic mixture of Urea/CuCl2. Sustain. Chem. Pharm., 2020, 15100233
[http://dx.doi.org/10.1016/j.scp.2020.100233]
[119]
Mohire, P.P.; Chandam, D.R.; Patravale, A.A.; Choudhari, P.; Karande, V.; Ghosh, J.S.; Deshmukh, M.B. An expedient four component synthesis of substituted pyrido-pyrimidine heterocycles in glycerol: Proline based low transition temperature mixture and their antioxidant activity with molecular docking studies. Polycycl. Aromat. Compd., 2022, 42(1), 137-155.
[http://dx.doi.org/10.1080/10406638.2020.1720749]
[120]
Tamaddon, F.; Khorram, A. New magnetic-responsive deep eutectic catalyst based on Co2+/choline chloride for the synthesis of tetrahydro-pyrazolopyridines and pyrroles in water. J. Mol. Liq., 2020, 304112722
[http://dx.doi.org/10.1016/j.molliq.2020.112722]
[121]
Azizi, N.; Qomi, M.; Asghari, M.; Farhadi, E. Deep eutectic solvent mediated rapid and selective one-pot synthesis of 5-alkylidene-Thiazolones. Sustain. Chem. Pharm., 2021, 22100457
[http://dx.doi.org/10.1016/j.scp.2021.100457]
[122]
Abtahi, B.; Tavakol, H. CuI‐catalyzed, one‐pot synthesis of 3‐ aminobenzofurans in deep eutectic solvents. Appl. Organometal. Chem., 2021. e6433.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy