Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Diazo-coupling Reaction Between 2-Aminothiazole and Thymol; Synthesis, DFT Studies, and Specific Heat Capacity Calculations Using TGA-DSC

Author(s): Chandrakant H. Sarode, Sachin D. Yeole, Gaurav R. Gupta* and Govinda P. Waghulde*

Volume 12, Issue 1, 2022

Published on: 14 March, 2022

Page: [57 - 66] Pages: 10

DOI: 10.2174/1877946812666220126161309

Price: $65

conference banner
Abstract

Aims: This study aimed at determining the synthesis, DFT studies, and specific heat capacity (Cp) of azo dyes composed of derivatives of 2-aminothiazole and thymol.

Background: To date, azo dyes have transitioned from the science of molecules to the science of materials very elegantly. 2-aminothiazole and thymol have a wide biological application window. Therefore, attempts have been made to couple these two biologically important organic frameworks via a diazotization strategy.

Objective: The objective of this study was to explore thymol as a coupling partner for the synthesis of azo dyes via a diazotization strategy. Furthermore, the structures of the synthesized azo dyes have been confirmed using DFT calculations. In addition, thermal profiles (TGA-DSC) have been explored elegantly to calculate specific heat capacity (Cp) as a function of temperature for the synthesized azo dyes.

Methods: A unit operation, i.e., diazotization, has been tuned very aptly for the formation of azodye framework based on 2-aminothymol and thymol. Thereafter, the thermal stability of the synthesized azo dyes has been addressed using TGA-DSC. Moreover, the Density Functional Theory has also been used to confirm vibrational frequencies of the synthesized azo dyes.

Results: In the present work, the effect of electronic parameters on the melting temperature of the corresponding azo dyes has been comprehended with the help of DSC analysis. Specific heat capacity data as a function of temperature for the synthesized dyes have been reported for the first time.

Conclusion: Melting behavior of the synthesized azo dyes is determined based on electronic effects with the help of thermal analysis. The specific heat capacity data can be helpful for the chemists, those engaged in chemical modelling, as well as for further docking studies. The structures of these synthesized azo dyes have been confirmed by performing DFT calculations, and to our delight, the comparison of both the experimental and calculated vibrational frequency data is found in good agreement with each other.

Keywords: Diazotization, TGA-DSC, specific heat capacity, DFT study, vibrational frequency, azo dyes.

Graphical Abstract

[1]
Hunger, K. Industrial Dyes: Chemistry, Properties, Applications;; WILEY-VCH Verlag GmbH & Co.: KGaA: Weinheim, 2003.
[2]
Grumezescu, A.M.; Holban, A.M. Natural and Artifi-cial Flavoring Agents and Food Dyes; Elsevier: U. K., 2018, pp. 1-109.
[http://dx.doi.org/10.1016/B978-0-12-811518-3.00022-3]
[3]
Mekkawi, D.E.; Abdel-Mottaleb, M.S.A. The interac-tion and photo stability of some xanthanes and se-lected azo sensitizing dyes with TiO2 nanoparticles. Int. J. Photoenergy, 2005, 7, 95-101.
[http://dx.doi.org/10.1155/S1110662X05000140]
[4]
Gregory, P. Modem reprographics. Coloration, 1994, 24, 1-16.
[5]
Zhi-Gang, Y.; Chun-Xia, Z.; De-Feng, Z.; Freeman, H.S.; Pie-Tong, C.; Jie, H. Monoazo dyes based on 5,10-dihydrophenophosphazine, part 2: Azo acid dyes. Dyes Pigments, 2009, 81, 137-143.
[http://dx.doi.org/10.1016/j.dyepig.2008.09.021]
[6]
Farghaly, T.A.; Abdallah, Z.A. Synthesis, azo-hydrazone tautomerism and antitumor screening of N-(3-ethoxycarbonyl-4,5,6,7-tetrahydro-benzo[b]thien-2-yl)-aryl-hydrazono-3-oxobutanamide derivatives. ARKIVOC, 2008, 17, 295-305.
[7]
Avci, G.A.; Ozkinali, S.; Ozluk, A.; Avci, E.; Kocaokutgen, H. Antimicrobial activities, absorption characteristics and Tautomeric structures of o,o′-hydroxyazo dyes containg an acrylolyloxy group and their chromium complexes. Hacettepe J. Biol. Chem, 2012, 40, 119-126.
[8]
Park, C.; Lim, J.; Lee, Y.; Lee, B.; Kim, S.; Lee, J.; Kim, S. Optimization and morphology for depolariza-tion of reactive black 5 by funaliatrogii. Enzyme Microb. Technol., 2007, 40, 1758-1764.
[http://dx.doi.org/10.1016/j.enzmictec.2006.12.005]
[9]
Pandey, A.; Singh, P.; Iyengar, L. Bacterial decolori-zation and degradation of azo dyes. Inter. Biodet. Biodeg, 2007, 59, 73-84.
[http://dx.doi.org/10.1016/j.ibiod.2006.08.006]
[10]
Zadafya, S.K.; Tailor, J.H.; Malic, G.M. Disperse dyes based on thiazole, their dyeing application on polyes-ter fiber and their antimicrobial activity. J. Chem., 2012, V, 2013.
[11]
Dsouza, R.N.; Pischel, U.; Nau, W.M. Fluorescent dyes and their supramolecular host/guest complexes with macrocycles in aqueous solution. Chem. Rev., 2011, 111(12), 7941-7980.
[http://dx.doi.org/10.1021/cr200213s] [PMID: 21981343]
[12]
Koren, Z.C. Modern chemistry of the ancient chemi-cal processing of organic dyes and pigments, chemi-cal technology in antiquity. ACS Symposium Series, 2015, 197-217.
[http://dx.doi.org/10.1021/bk-2015-1211.ch007]
[13]
Jin, T.; Akhtaruzzaman, M.; Yamamoto, Y. Synthe-sis and performance of new organic dyes and func-tional fullerenes for organic solar cells, nanomaterials for sustainable energy. ACS Symposium Series, 2015, 193-236.
[http://dx.doi.org/10.1021/bk-2015-1213.ch009]
[14]
Singh, K.; Singh, S.; Taylor, J.A. Monoazo disperse dyes-part 1: Synthesis, spectroscopic studies and technical evaluation of monoazo disperse dyes de-rived from 2-aminothiazoles. Dyes Pigments, 2002, 54, 189-200.
[http://dx.doi.org/10.1016/S0143-7208(02)00053-0]
[15]
Razus, A.C.; Birzan, L.; Nae, S.; Surugiu, M.N.; Cim-peanu, V. Azulene-1-azo-2-thiazoles. Synthesis and properties. J. Heterocycl. Chem., 2003, 40, 995-1004.
[http://dx.doi.org/10.1002/jhet.5570400607]
[16]
Yen, M.S.; Wang, I.J. A Facile syntheses and absorp-tion characteristics of monoazo dyes in bis-heterocyclic aromatic systems part II: Syntheses of 4-(p-substituted) phenyl-2-(2-pyrido-5-yl and 5-pyrazolo-4-yl) azo-thiazole derivatives. Dyes Pigments, 2004, 63, 1-9.
[http://dx.doi.org/10.1016/j.dyepig.2003.12.011]
[17]
He, M.; Zhou, Y.; Liu, R.; Dai, J.; Cui, Y.; Zang, T. Novel nonlinearity-transparency-thermal stability trade-off of thiazolylazo pyrimidine chromophores for nonlinear optical applications. Dyes Pigments, 2009, 80, 6-10.
[http://dx.doi.org/10.1016/j.dyepig.2008.03.008]
[18]
Borbone, F.; Carella, A.; Picciotti, L.; Tuzi, A.; Roviel-lo, A.; Barsella, A. High nonlinear optical response in 4-chlorothiazole-based azo dyes. Dyes Pigments, 2011, 88, 290-295.
[http://dx.doi.org/10.1016/j.dyepig.2010.07.011]
[19]
Yadlapalli, R.K.; Chourasia, O.P.; Jogi, M.P.; Podile, A.R.; Perali, R.S. Design, synthesis and in vitro anti-microbial activity of novel phenylbenzamido-aminothiazole-based azasterol mimics. Med. Chem. Res., 2013, 22, 2975-2983.
[http://dx.doi.org/10.1007/s00044-012-0314-5]
[20]
Patel, D.R.; Patel, N.B.; Patel, B.M.; Patel, K.C. Syn-thesis and dyeing properties of some new monoazo disperse dyes derived from 2-amino-4-(2′,4′-dichlorophenyl)-1,3 thiazole. J. Saudi Chem. Soc., 2014, 18, 902-913.
[http://dx.doi.org/10.1016/j.jscs.2011.11.012]
[21]
Malik, G.M.; Patel, S.S.; Tailor, J.H. Synthesis, Char-acterization, dyeing performance and fastness prop-erties of 2-amino 4-phenyl thiazole based bisazo dis-perse dyes having different tertiary component. Chem. Biol. Interact., 2016, 6(2), 83-91.
[22]
Boga, C.; Cino, S.; Micheletti, G.; Padovan, D.; Prati, L.; Mazzanti, A.; Zanna, N. New azo-decorated N-pyrrolidinylthiazoles: Synthesis, properties and an unexpected remote substituent effect transmission. Org. Biomol. Chem., 2016, 14(29), 7061-7068.
[http://dx.doi.org/10.1039/C6OB00994H] [PMID: 27376825]
[23]
Tupys, A.; Kalembkiewicz, J.; Ostapiuk, Y.; Matiichuk, V.; Tymoshuk, O.; Woznicka, E.; By-czynski, L. Synthesis, Structural characterization and thermal studies of a novel reagent 1-[(5-benzyl-1,3-thiazol-2-yl)diazenyl] naphthalene-2-ol. J. Therm. Anal. Calorim., 2017, 127, 2233-2242.
[http://dx.doi.org/10.1007/s10973-016-5784-0]
[24]
Sarode, C.H.; Gupta, G.R.; Chaudhari, G.R.; Waghule, G.P. Investigations related to the suitability of imidazolium based room temperature ionic liquids and pyridinium based sponge ionic liquids towards the synthesis of 2-aminothiazole compounds as reac-tion medium and catalyst. Curr. Green Chem., 2018, 5, 191-197.
[http://dx.doi.org/10.2174/2213346105666181001111019]
[25]
Bryan, S. J. Organic Chemistry; Edward Anold: New York, 1961.
[26]
Paula, Y.B. Organic Chemistry; Prentice-Hall Inc.: New York, 1995.
[27]
Otutu, J.O.; Osabohien, E.; Efurhievwe, E.M. Synthe-sis and spectral properties of hetaryl monoazo dyes derived from 2-amino-5-nitrothiazole. Orient. J. Chem., 2011, 27(4), 1389-1396.
[28]
Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
[29]
Becke, A.D. Density-functional exchange-energy ap-proximation with correct asymptotic behavior. Phys. Rev. A Gen. Phys., 1988, 38(6), 3098-3100.
[http://dx.doi.org/10.1103/PhysRevA.38.3098] [PMID: 9900728]
[30]
Becke, A.D. Density‐functional thermo chemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98, 5648.
[http://dx.doi.org/10.1063/1.464913]
[31]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a func-tional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[32]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.V.; Bloino, J.; Janesko, B.G.; Gomperts, R.; Mennucci, B.; Hratchian, H.P.; Ortiz, J.V.; Izmaylov, A.F.; Sonnenberg, J.L. Wil-liams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Go-ings, J.; Peng, B.; Petrone, A.; Henderson, T.; Rana-singhe, D.; Zakrzewski, V.G.; Gao, J.; Rega, N.; Zhen, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fu-kuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Thros-sell, K.; Montgomery, J.A.; Peralta, J.E., Jr.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Keith, T.A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Bu-rant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Millam, J.M.; Klene, M.A.; damo, C.; Cammi, R.; Martin, R.L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D.J. Gasussian 16 Revision B.01; Gaussian, Inc.: Wallingford, CT, 2016.
[33]
Gupta, G.; Shaikh, V.; Kalas, S.; Patil, K. Specific heat capacity estimations for biologically and medic-inally important compounds: Lidocaine hydrochlo-ride, clove oil and β-Piperine using the DSC Tech-nique. Curr. Phys. Chem., 2021, 11(1), 27-34.
[http://dx.doi.org/10.2174/1573412916999200430092644]
[34]
Girase, T.R.; Patil, K.J.; Kapdi, A.R.; Gupta, G.R. Pal-ladium acetate/[CPy][Br]: An efficient catalytic sys-tem towards the synthesis of biologically relevant stilbene derivatives via heck cross‐coupling reaction. ChemistrySelect, 2020, 5, 4251-4262.
[http://dx.doi.org/10.1002/slct.201904837]
[35]
Tomar, P.A.; Yadav, S.M.; Jahagirdar, A.A.; Gupta, G.R. Exploring the catalytic potentials of supported molten salts towards transesterification of biodiesel. Catal Green Chem Eng, 2019, 2, 133-141.
[http://dx.doi.org/10.1615/CatalGreenChemEng.2020031663]
[36]
Gupta, G.R.; Shaikh, V.R.; Kalas, S.S.; Hundiwale, D.G.; Patil, K.J. Studies of thermal analysis and spe-cific heat capacity for quaternary ammonium salts. Nova Scientific Publisher, 2019, 8, 53-74.
[37]
Sarode, C.; Yeole, S.; Chaudhari, G.; Waghulde, G.; Gupta, G. Development of the room temperature pro-tocol based on room temperature ionic liquids and surfactant ionic liquids for the synthesis of deriva-tives of 2-amino-thiazoles and thermo-physical anal-ysis of the synthesized derivatives using TGA-DSC. Curr. Phys. Chem., 2021, 11(1), 18-26.
[http://dx.doi.org/10.2174/1877946810999200519102040]
[38]
Gupta, G.R.; Shah, J.; Vadagaonkar, K.S.; Lavekar, A.G.; Kapdi, A.R. Hetero-bimetallic cooperative ca-talysis for the synthesis of heteroarenes. Org. Biomol. Chem., 2019, 17(33), 7596-7631.
[http://dx.doi.org/10.1039/C9OB01152H] [PMID: 31241119]
[39]
Gupta, G.; Shaikh, V.; Patil, K. Synchronous thermo-gravimetry and differential scanning calorimetry es-timates of urea inclusion complexes using TGA/DSC. Curr. Phys. Chem., 2018, 8, 175-185.
[http://dx.doi.org/10.2174/1877946808666181031113024]
[40]
Gupta, G.R.; Patil, P.D.; Shaikh, V.R.; Kolhapurkar, R.R.; Dagade, D.H.; Patil, K.J. Analytical estimation of water contents, specific heat capacity and thermal profiles associated with enzymatic model compound β-cyclodextrin. Curr. Sci., 2018, 114, 2525-2529.
[http://dx.doi.org/10.18520/cs/v114/i12/2525-2529]
[41]
Patil, K.S.; Zope, P.H.; Patil, U.T.; Patil, P.; Dubey, R.S.; Gupta, G.R. Synthesis and thermophysical stud-ies of polyanilines. Bull. Mater. Sci., 2019, 42, 24-33.
[http://dx.doi.org/10.1007/s12034-018-1705-0]
[42]
Denes, L. The Nature of Biological Systems as Re-vealed by Thermal Methods; Kluwer Academic Pub-lishers: Dordrecht, 2004.
[43]
Myer, K. Applied Plastics Engineering Hand Book Processing, Materials and Applications; 2nd edition Elsevier United State, 2017.
[44]
Bhirud, J.D.; Gupta, G.R.; Narkhede, H.P. Oxidative cyclization of chalcones in the presence of sulfamic acid as catalyst. synthesis, biological activity, and thermal properties of 1, 3, 5-trisubstituted pyrazoles. Russ. J. Org. Chem., 2020, 56(10), 1815-1822.
[http://dx.doi.org/10.1134/S1070428020100243]
[45]
Emmerich, W.; Trevor, M.L. Heat capacities liquids, solutions and vapours; Royal Society of Chemistry: The London, 2010.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy