Generic placeholder image

Current Physical Chemistry

Editor-in-Chief

ISSN (Print): 1877-9468
ISSN (Online): 1877-9476

Research Article

Corrosion Inhibition and Adsorption Mechanism of PVP for Mild Steel in 1.0 M H2SO4: Experimental and Theoretical Approach

Author(s): Harish Kumar*, Hans Raj, Sahil Sharma and Rajni Kumari

Volume 12, Issue 1, 2022

Published on: 18 March, 2022

Page: [37 - 56] Pages: 20

DOI: 10.2174/1877946812666220117125537

Price: $65

Abstract

Aim: Corrosion of mild steel pipe line when exposed to dilute sulphuric acid is a very serious problem for people in the industry and they are in constant search of highly efficient corrosion inhibitors for acidic medium. For designing new corrosion inhibitors, a through knowledge of corrosion and adsorption mechanism is required.

Background: Pitting, cracking and uniform types of corrosion are very common forms of corrosion in dilute sulphuric acid medium. A highly efficient acid corrosion inhibitor is required to minimize all these three forms of corrosion.

Objective: The objective was to provide a solution for pitting, cracking, and uniform types of corrosion and to study corrosion and inhibition mechanisms so that highly efficient corrosion inhibitors can be designed.

Methods: Polyvinyl pyrrolidone (PVP) was explored as a corrosion inhibitor for mild steel in 1.0 M H2SO4 by experimental and theoretical techniques. Experimental techniques used were impedance, weight loss, metallurgical microscopy, and polarization. Theoretical techniques used were DFT, MD simulation, Frontier molecular orbital, Langmuir, and Frumkin adsorption. Theoretical parameters like interaction energy, adsorption energy, Fukui function, chemical potential, electron density distribution, HOMO/LUMO eigenvalue, etc., help in understanding the mechanism of adsorption of PVP on the Fe (110) surface.

Results: Experimental results were supported by theoretical studies. A linear relation was observed between PVP concentration and inhibition efficiency. A maximum of 85.92% inhibition efficiency was observed with a regression coefficient of 0.998. The pore length, the number of pits, and cracks intensity decrease with the concentration of PVP. The waste dilute H2SO4 after the weight loss study was investigated for its biocompatibility and was found to be within the acceptable limit.

Conclusion: PVP was proved to be a highly efficient acid corrosion inhibitor for mild steel in 1.0 M H2SO4 medium.

Keywords: DFT, mild steel, impedance spectroscopy, MD simulation, corrosion inhibitor, PVP.

Graphical Abstract

[1]
Bhat, J.I.; Alva, V.D.P. Inhibition effect of micona-zole nitrate on the corrosion of mild steel in hydro-chloric acid medium. Intern. J. Electrochem., 2011, 157576, 1-8.
[2]
Raja, P.B.; Sethuraman, M.G. Natural products as corrosion inhibitor for metals in corrosive media: A review. Mater. Lett., 2008, 62, 2977-2979.
[http://dx.doi.org/10.1016/j.matlet.2007.04.079]
[3]
Jeyaprabha, C.; Sathiyanarayanan, S.; Phani, K.L.N.; Venkatachari, G. Influence of poly(aminoquinone) on corrosion inhibition of iron in acid media. Appl. Surf. Sci., 2005, 252, 966-975.
[http://dx.doi.org/10.1016/j.apsusc.2005.01.098]
[4]
Kumar, H.; Yadav, S.; Chaudhary, R.S.; Kumar, D. Synergistic effect of some Antiscalants as corrosion inhibitors for an industrial cooling water system. J. Appl. Electrochem., 2009, 39(8), 1339-1347.
[http://dx.doi.org/10.1007/s10800-009-9807-4]
[5]
Kumar, H.; Saini, V.; Kumar, D.; Chaudhary, R.S. Influence of trisodium phosphate (TSP) antiscalant on the corrosion of carbon steel in cooling water sys-tems. Ind. J. Chem. Tech, 2009, 16, 401-410.
[6]
Kumar, H.; Chaudhary, R.S. Influence of sodium tripolyphosphate (STPP) antiscalant on the corrosion of carbon steel in cooling water systems. Bull. Electrochem., 2006, 22(07), 289-296.
[7]
Quraishi, M.A.; Singh, A.; Singh, V.K.; Yadav, D.K.; Singh, A.K. Green approach to corrosion inhibition of mild steel in hydrochloric acid and sulphuric acid so-lutions by the extract of Murraya koenigii leaves. Mater. Chem. Phys., 2010, 122, 114-122.
[http://dx.doi.org/10.1016/j.matchemphys.2010.02.066]
[8]
Kumar, H.; Kumari, M. Acyclic and cyclic hydrocar-bons as acid corrosion inhibitor for carbon steel: A comparative (experimental and theoretical) study. J. Mol. Struct., 2021, 1239, 130523.
[http://dx.doi.org/10.1016/j.molstruc.2021.130523]
[9]
Chauhan, L.R.; Gunasekaran, G. Corrosion inhibition of mild steel by plant extract in dilute HCl medium. Corros. Sci., 2007, 49, 1143-1161.
[http://dx.doi.org/10.1016/j.corsci.2006.08.012]
[10]
Rocha, J.C.; Gomes, J.A.C.P.; D’Elia, E. Corrosion inhibition of carbon steel in hydrochloric acid solution by fruit peel aqueous extracts. Corros. Sci., 2010, 52, 2341-2348.
[http://dx.doi.org/10.1016/j.corsci.2010.03.033]
[11]
Ostavari, A.; Hoseinieh, S.M.; Peikari, M.; Shadiza-deh, S.R.; Hashemi, S.J. Corrosion inhibition of mild steel in 1 M HCl solution by henna extract: A com-parative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-d-Glucose, and Tannic acid). Corros. Sci., 2009, 51, 1935-1949.
[http://dx.doi.org/10.1016/j.corsci.2009.05.024]
[12]
Okafor, P.C.; Ebenso, E.E. The inhibitive action of Carica papaya extracts on the corrosion of mild steel in acidic media and their adsorption characteristics. Pigm. Resin Technol., 2007, 36, 134-140.
[http://dx.doi.org/10.1108/03699420710748992]
[13]
Okafor, P.C.; Ikpi, M.E.; Uwah, I.E.; Ebenso, E.E.; Ekpe, U.J.; Umoren, S.A. Inhibitory action of Phyl-lanthus amarus extracts on the corrosion of mild steel in acidic media. Corros. Sci., 2008, 50, 2310-2317.
[http://dx.doi.org/10.1016/j.corsci.2008.05.009]
[14]
Abdel-Gaber, A.M.; Abd-El-Nabey, B.A.; Saadawy, M. The role of acid anion on the inhibition of the acidic corrosion of steel by lupine extract. Corros. Sci., 2009, 51, 1038-1042.
[http://dx.doi.org/10.1016/j.corsci.2009.03.003]
[15]
Orubite, K.O.; Oforka, N.C. Inhibition of corrosion of mild steel in HCl solutions by the extracts of leaves of Nypa fructicans Wurmb. Mater. Lett., 2004, 58, 1768-1772.
[http://dx.doi.org/10.1016/j.matlet.2003.11.030]
[16]
Torres, V.V.; Amado, R.S.; de Sá, C.F.; Fernandez, T.L.; Riehl, A.G. Inhibitory action of aqueous coffee ground extracts on the corrosion of carbon steel in HCl solution. Corros. Sci., 2011, 53, 2385-2392.
[http://dx.doi.org/10.1016/j.corsci.2011.03.021]
[17]
Trindade, L.G.; Goncalves, R.S. Evidence of caffeine adsorption on a low-carbon steel surface in ethanol. Corros. Sci., 2009, 51, 1578-1583.
[http://dx.doi.org/10.1016/j.corsci.2009.03.038]
[18]
Sharmila, A.; Prema, A.A.; Sahayaraj, P.A. Influence of Murraya Koenigi (curry leaves) extract on the cor-rosion inhibition of carbon steel in HCl solution. Rasayan J. Chem., 2010, 3(1), 74-81.
[19]
Umoren, S.A.; Banera, T.; Garcia, A.; Gervasi, C.A. Mir’ıco, M.V. Inhibition of mild steel corrosion in HCl solution using chitosan. Cellulose, 2013, 20, 2529-2545.
[http://dx.doi.org/10.1007/s10570-013-0021-5]
[20]
Umoren, S.A.; Eduok, U.M. Application of carbohy-drate polymers as corrosion inhibitors for metal sub-strates in different media: A review. Carbohydr. Polym., 2016, 140, 314-341.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.038] [PMID: 26876859]
[21]
Umoren, S.A.; Obot, I.B.; Madhankumar, A.; Gasem, Z.M. Performance evaluation of pectin as ecofriendly corrosion inhibitor for X60 pipeline steel in acid me-dium: experimental and theoretical approaches. Carbohydr. Polym., 2015, 124, 280-291.
[http://dx.doi.org/10.1016/j.carbpol.2015.02.036] [PMID: 25839822]
[22]
Sashiwa, H.; Aiba, S.I. Chemically modified chitin and chitosan as biomaterials. Prog. Polym. Sci., 2004, 29, 887-908.
[http://dx.doi.org/10.1016/j.progpolymsci.2004.04.001]
[23]
Valbon, A.; Neves, M.A.; Echevarria, A. Anticorrosive effect of PVP 40000 against AISI 1020 carbon steel in HCl. Mater. Res., 2018, 21.
[http://dx.doi.org/10.1590/1980-5373-mr-2017-0847]
[24]
Juhaiman, L.A.; Mustafa, A.A.; Mekhamer, W.K. Polyvinyl pyrrolidone as a green corrosion inhibitor of carbon steel in neutral solutions containing NaCl: Electrochemical and thermodynamic study. Int. J. Electrochem. Sci., 2012, 7, 8578-8596.
[25]
Juhaiman, L.A. Polyvinyl pyrrolidone as a corrosion inhibitor for carbon steel in HCl. Int. J. Electrochem. Sci., 2016, 11, 2247-2262.
[26]
Sainia, N.; Kumaa, R.; Pahujaa, P.; Malika, R.; Mali-ka, R.; Singh, S.; Lata, S. Exploring the capability of synthesized PVP-Oxime for corrosion inhibition of a mild steel surface in a 1 M H2SO4 solution. Port. Electrochem. Acta, 2020, 38, 43-58.
[http://dx.doi.org/10.4152/pea.202001043]
[27]
Kumar, H.; Tilak, D. 5-Aminotetrazole a highly effi-cient corrosion inhibitor for mild steel in 0.1 M sul-phuric acid: Experimental & theoretical study. Chem. Data Collect, 2021, 33, 100721.
[http://dx.doi.org/10.1016/j.cdc.2021.100721]
[28]
Kumar, H.; Yadav, V. Highly efficient and eco-friendly acid corrosion inhibitor for mild steel: Exper-imental and theoretical study. J. Mol. Liq., 2021., 116220.
[http://dx.doi.org/10.1016/j.molliq.2021.116220]
[29]
Kumar, H.; Tilak, D. Cyclohexylamine an effective corrosion inhibitor for mild steel in 0.1 N H2SO4: Ex-perimental and theoretical (Molecular dynamics sim-ulation and FMO) study. J. Mol. Liq., 2020, 32, 114847.
[30]
Kumar, H.; Tilak, D. 1-Benzylimidazole a highly effi-cient anti-pitting and anti-cracking agent for mild steel in 0.1 N H2SO4 at normal and elevated tempera-tures: Experimental and theoretical (MDS and FMO) study. J. Mol. Struct., 2021, 1231, 129958.
[http://dx.doi.org/10.1016/j.molstruc.2021.129958]
[31]
Kumar, H.; Kumari, M. Experimental and theoretical investigation of 3,3′-diamino dipropyl amine: Highly efficient corrosion inhibitor for carbon steel in 2 N HCl at normal and elevated temperatures. J. Mol. Struct., 2021., 129598.
[http://dx.doi.org/10.1016/j.molstruc.2020.129598]
[32]
Kumar, H.; Kumari, R.; Yadav, A.; Sharma, R.; Dhanda, T. Trisodium phosphate an efficient anti-pitting and anti-cracking agent for mild steel in 0.1 N sulphuric acid: Experimental & molecular dynamics study. Chem. Data Collect, 2020, 30, 100575.
[http://dx.doi.org/10.1016/j.cdc.2020.100575]
[33]
Kumar, H.; Yadav, V. Musa acuminate (green corro-sion inhibitor) as anti-pit and anti-cracking agent for mild steel in 5.0 M hydrochloric acid solution. Chem. Data Collect, 2020, 29, 100500.
[http://dx.doi.org/10.1016/j.cdc.2020.100500]
[34]
Kumar, H.; Yadav, S.; Chaudhary, R.S.; Kumar, D. Synergistic effect of some antiscalants as corrosion inhibitor for industrial cooling water system. J. Appl. Electrochem., 2009, 39, 1339-1347.
[http://dx.doi.org/10.1007/s10800-009-9807-4]
[35]
Kumar, H.; Tilak, D. Cetyl trimethyl ammonium bromide as anti-pit agent for mild steel in sulfuric acid medium. Curr. Phys. Chem., 2020, 10, 1-14.
[http://dx.doi.org/10.2174/1877946809666191011162351]
[36]
Ghareba, S.; Omanovic, S. Interaction of 12-aminododecanoic acid with a carbon steel surface: Towards the development of ‘green’ corrosion inhibi-tors. Corros. Sci., 2010, 52, 2104-2113.
[http://dx.doi.org/10.1016/j.corsci.2010.02.019]
[37]
Kumar, H.; Raj, H.; Sharma, S.; Dahiya, H. Corro-sion inhibition and adsorption studies of Ammonium oxalate for mild steel by computational and experi-mental techniques: A sustainable approach. Chem. Data Collect, 2021, 36, 100785.
[http://dx.doi.org/10.1016/j.cdc.2021.100785]
[38]
Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Montgomery, J.; Vreven, T.; Kudin, K.; Burant, J. Gaussian, Inc.: Wallingford CT, 2009.
[39]
Cao, Z.; Tang, Y.; Cang, H.; Xu, J.; Lu, G.; Jing, W. Novel benzimidazole derivatives as corrosion inhibi-tors of mild steel in the acidic media. Part II: Theoret-ical studies. Corros. Sci., 2014, 83, 292-298.
[http://dx.doi.org/10.1016/j.corsci.2014.02.025]
[40]
Ciezak, J.A.; Trevino, S.F. Inelastic neutron scattering spectrum of cyclotrimethylenetrinitramine: A com-parison with solid-state electronic structure calcula-tions. J. Phys. Chem. A, 2006, 110(15), 5149-5155.
[http://dx.doi.org/10.1021/jp057098u] [PMID: 16610838]
[41]
Pauling, L. The Nature of the Chemical Bond; Cornell University Press: New York, 1960.
[42]
Parr, R.G.; Pearson, R.G. Absolute hardness: Com-panion parameter to absolute Electronegativity. J. Am. Chem. Soc., 1983, 105, 7512-7516.
[http://dx.doi.org/10.1021/ja00364a005]
[43]
Saha, S.K.; Hens, A.; Chowdhury, A.R.; Lohar, A.K.; Murmu, N.C.; Banerjee, P. Molecular dynamics and density functional theory study on corrosion inhibito-ry action of three substituted pyrazine derivatives on a steel surface. Can. Chem. Trans., 2014, 2, 489-503.
[44]
Saha, S.K.; Ghosh, P.; Hens, A.; Murmu, N.C.; Banerjee, P. Density functional theory and molecular dynamics simulation study on corrosion inhibition performance of mild steel by mercapto-quinoline Schiff base corrosion inhibitor. Physica E, 2015, 66, 332-341.
[http://dx.doi.org/10.1016/j.physe.2014.10.035]
[45]
S’anchez-Mart’ın, J.; Beltr’an-Heredia, J. Sol-eraHern’andez, C. Surface water and wastewater treatment using a new tannin-based coagulant. Pilot plant trials. J. Environ. Manage., 2010, 91, 2051-2058.
[46]
Huang, L.; Cheng, S.; Rezaei, F.; Logan, B.E. Reduc-ing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells. Environ. Technol., 2009, 30(5), 499-504.
[http://dx.doi.org/10.1080/09593330902788244] [PMID: 19507441]
[47]
Chadli, R.; Elazouzi, M.; Khelladi, I.; Elhourri, A.M.; Elmsellem, H.; Aouniti, A.; Kajima Mulengi, J.; Hammouti, B. Electrochemical and theoretical study of pyrazole 4-(4,5- dihydro-1H-pyrazol-5-yl)-N,N-dimethylaniline (D) as a corrosion inhibitor for mild steel in 1 M HCl. Port. Electrochem. Acta, 2017, 35(2), 65-80.
[http://dx.doi.org/10.4152/pea.201702065]
[48]
Rajan, K.; Rajendran, S.; Saranya, R. Alium sativum (garlic) extract as nontoxic corrosion inhibitor. J. Chem., 2013, 743807, 1-4.
[http://dx.doi.org/10.1155/2013/235048]
[49]
El Azzouzi, M.; Aouniti, A.; Tighadouin, S.; Elmsel-lem, H.; Radi, S.; Hammouti, B.; El Assyry, A.; Bentiss, F.; Zarrouk, A. Some hydrazine derivatives as corrosion inhibitors for mild steel in 1.0 M HCl: weight loss, electrochemical, SEM and theoretical studies. J. Mol. Liq., 2016, 221, 633-641.
[http://dx.doi.org/10.1016/j.molliq.2016.06.007]
[50]
Mobin, M.; Rizvi, M. Polysaccharide from Plantago as a green corrosion inhibitor for carbon steel in 1M HCl solution. Carbohydr. Polym., 2017, 160, 172-183.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.056] [PMID: 28115091]
[51]
Yadav, D.K.; Quraishi, M. Electrochemical investiga-tion of substituted pyranopyrazoles adsorption on mild steel in acid solution. Ind. Eng. Chem. Res., 2012, 51, 8194-8210.
[http://dx.doi.org/10.1021/ie3002155]
[52]
Verma, C.; Quraishi, M.; Singh, A. 2-Amino-5-nitro-4, 6-diarylcyclohex-1-ene-1, 3, 3-tricarbonitriles as new and effective corrosion inhibitors for mild steel in 1 M HCl: Experimental and theoretical studies. J. Mol. Liq., 2015, 212, 804-812.
[http://dx.doi.org/10.1016/j.molliq.2015.10.026]
[53]
Fouda, A.S.; Ismail, M.A.; Elewady, G.Y.; Abousalem, A.S. Evaluation of 4-amidinophenyl-2,2′-bithiophene and its aza-analogue as novel corro-sion inhibitors for CS in acidic media: experimental and theoretical study. J. Mol. Liq., 2017, 240, 372-388.
[http://dx.doi.org/10.1016/j.molliq.2017.05.089]
[54]
Yadav, M.; Kumar, S.; Tiwari, N.; Bahadur, I.; Ebenso, E.E. Experimental and quantum chemical studies of synthesized triazine derivatives as an effi-cient corrosion inhibitor for N80 steel in acidic medi-um. J. Mol. Liq., 2015, 212, 151-167.
[http://dx.doi.org/10.1016/j.molliq.2015.09.019]
[55]
Alberty, R.A.; Silbey, R. J. Physical chemistry; Wiley, 1997.
[56]
Barmatov, E.B.; Gedded, J.F.; Crawford, L.P.; Hughes, T.L.; Michaela, N.V. US patent application no. 15/533,315, 2017.
[57]
Daoud, D.; Doudi, T.; Hamani, H.; Chafaa, S.; Al Noaimi, M. Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: Experi-mental and computational study. Corros. Sci., 2015, 94, 21-37.
[http://dx.doi.org/10.1016/j.corsci.2015.01.025]
[58]
Obot, I.B.; Gasem, Z.M.; Umoren, S.A. Molecular-level understanding of the mechanism of aloes leaves extract inhibition of low carbon steel corrosion: A DFT approach. Int. J. Electrochem. Sci., 2014, 9, 510-522.
[59]
Zhang, K.; Xu, B.; Yang, W.; Yin, X.; Liu, Y.; Chen, Y. Halogen-substituted imidazoline derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution. Corros. Sci., 2015, 90, 284-295.
[http://dx.doi.org/10.1016/j.corsci.2014.10.032]
[60]
Kokalj, A. Is the analysis of the molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance. Electrochim. Acta, 2010, 56, 745-755.
[http://dx.doi.org/10.1016/j.electacta.2010.09.065]
[61]
Kovacevic, N.; Kokalj, A. Analysis of the molecular electronic structure of imidazole and benzimidazole-based inhibitors: A simple recipe for qualitative esti-mation of chemical hardness. Corros. Sci., 2011, 53, 909-921.
[http://dx.doi.org/10.1016/j.corsci.2010.11.016]
[62]
Chafai, N.; Chafaa, S.; Benbouguerra, K.; Daoud, D.; Hellal, A.; Mehri, M. Synthesis, characterization and the inhibition activity of a new α-aminophosphonic derivative on the corrosion of XC48 carbon steel in 0.5 M H2SO4: Experimental and theoretical studies. J. Taiwan Inst. Chem. Eng., 2017, 70, 331.
[http://dx.doi.org/10.1016/j.jtice.2016.10.026]
[63]
Erdoğan, S.; Safi, Z.S.; Kaya, S.; Isin, D.O.; Guo, L.; Kaya, C. A computational study on corrosion inhibi-tion performances of novel quinoline derivatives against the corrosion of iron. J. Mol. Struct., 2017, 1134, 751.
[http://dx.doi.org/10.1016/j.molstruc.2017.01.037]
[64]
Paul, S.A.; Chavan, S.K.; Khambe, S.D. Studies on the characterization of textile industrial wastewater in Solapur city. Int. J. Chem., 2012, 10, 635-642.
[65]
Singh, P.; Ebenso, E.E.; Olasunkanmi, L.O.; Obot, I.B.; Quraishi, M.A. Electrochemical, theoretical, and surface morphological studies of corrosion inhibition effect of green naphthyridine derivatives on mild steel in hydrochloric acid. J. Phys. Chem. C, 2016, 120, 3408-3419.
[http://dx.doi.org/10.1021/acs.jpcc.5b11901]
[66]
Marhamati, F.; Mahdavian, M.; Bazgir, S. Corrosion mitigation of mild steel in hydrochloric acid solution using grape seed extract. Sci. Rep., 2021, 11(1), 18374.
[http://dx.doi.org/10.1038/s41598-021-97944-7] [PMID: 34526622]
[67]
Li, L.; Zhang, S.; Li, G.; Zhao, H. Determination of chemical oxygen demand of nitrogenous organic compounds in wastewater using synergetic photoelec-trocatalytic oxidation effect at TiO2 nanostructured electrode. Anal. Chim. Acta, 2012, 754, 47-53.
[http://dx.doi.org/10.1016/j.aca.2012.10.008] [PMID: 23140953]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy