Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Review Article

Review on Dietary Factors in Fermented Foods and their Efficacy in Disease Management

Author(s): Christine Kurian, Anandi Mathur and KuppusamyAlagesan Paari*

Volume 18, Issue 2, 2022

Published on: 21 January, 2022

Page: [144 - 165] Pages: 22

DOI: 10.2174/1573401318666220118144750

Price: $65

conference banner
Abstract

The process of preservation of various food sources, over time, gave rise to fermented foods. Traditionally, each ethnic group has its distinct fermented food(s) incorporated into their diet, both as culinary enjoyment and nutrition. Fermentation increases nutrient availability and enhances the texture and flavor of the original food. The benefits of fermented food consumption and potential probiotic intake are discussed in this review. The review describes mechanism(s) of action of bioactive components from fermented foods on the human system, their role in health management, and an overview of the role of fermented foods in improving diseases, namely obesity, cardiovascular diseases (CVDs), inflammatory bowel disease (IBD), hematological cancers, and radiation-induced diarrhea in cancer patients and allergies are briefly reviewed.

Keywords: Fermented foods, nutrients, fermentative microbes, functional foods, cardiovascular disease, inflammatory bowel disease.

Graphical Abstract

[1]
Chaudhary A, Sharma DK, Arora A. Prospects of Indian traditional fermented food as functional foods. Indian J Agric Sci 2018; 88(10): 1496-501.
[2]
Ray M, Ghosh K, Singh S, Mondal KC. Folk to functional: an explorative overview of rice-based fermented foods and beverages in India. J Ethn Food 2016; 3(1): 5-18.
[http://dx.doi.org/10.1016/j.jef.2016.02.002]
[3]
Terefe NS. Emerging trends and opportunities in food fermentation. USA: Elsevier 2016.
[http://dx.doi.org/10.1016/B978-0-08-100596-5.21087-1]
[4]
Sanlier N, Navruz Varli S, Macit MS, Mortas H, Tatar T. Evaluation of disordered eating tendencies in young adults. Eat Weight Disord 2017; 22(4): 623-31.
[http://dx.doi.org/10.1007/s40519-017-0430-9] [PMID: 28871480]
[5]
Tamang JP, Watanabe K, Holzapfel WH. Diversity of microorganisms in global fermented foods and beverages. Front Microbiol 2016; 7: 377.
[http://dx.doi.org/10.3389/fmicb.2016.00377] [PMID: 27047484]
[6]
Kabak B, Dobson AD. An introduction to the traditional fermented foods and beverages of Turkey. Crit Rev Food Sci Nutr 2011; 51(3): 248-60.
[http://dx.doi.org/10.1080/10408390903569640] [PMID: 21390945]
[7]
Wolfe BE, Dutton RJ. Fermented foods as experimentally tractable microbial ecosystems. Cell 2015; 161(1): 49-55.
[http://dx.doi.org/10.1016/j.cell.2015.02.034] [PMID: 25815984]
[8]
Singhal P, Shukla L, Satya SN, Naik S. Scientific validation and process mechanism of traditional bamboo shoot fermentation by isolation and characterization of lactic acid. Curr Nutr Food Sci 2017; 13(3): 176-81.
[http://dx.doi.org/10.2174/1573401313666170220123337]
[9]
Steinkraus KH. Nutritional significance of fermented foods. Int Food Res J 1994; 27(3): 259-67.
[http://dx.doi.org/10.1016/0963-9969(94)90094-9]
[10]
BeenaDivya J Kulangara Varsha K, MadhavanNampoothiri K, Ismail B, Pandey A. Probiotic fermented foods for health benefits. Eng Life Sci 2012; 12(4): 377-90.
[http://dx.doi.org/10.1002/elsc.201100179]
[11]
Hwang J, Kim JC, Moon H, Yang JY, Kim M. Determination of sodium contents in traditional fermented foods in Korea. J Food Compos Anal 2017; 56: 110-4.
[http://dx.doi.org/10.1016/j.jfca.2016.11.013]
[12]
Mota de Carvalho N, Costa EM, Silva S, Pimentel L, Fernandes TH, Pintado ME. Fermented foods and beverages in human diet and their influence on gut microbiota and health. Fermentation (Basel) 2018; 4(4): 90.
[http://dx.doi.org/10.3390/fermentation4040090]
[13]
Carlquist M, Gibson B, Karagul Yuceer Y, et al. Process engineering for bioflavour production with metabolically active yeasts - a mini-review. Yeast 2015; 32(1): 123-43.
[PMID: 25400136]
[14]
Murooka Y. Acetic acid bacteria in production of vinegars and traditional fermented foods. In: Acetic Acid Bacteria. Tokyo: Springer 2016; pp. 51-72.
[15]
Chen W, He Y, Zhou Y, et al. Edible filamentous fungi from the species Monascus: early traditional fermentations, modern molecular biology, and future genomics. Compr Rev Food Sci 2015; 14(5): 555-67.
[http://dx.doi.org/10.1111/1541-4337.12145]
[16]
Roy D, Mainville I, Mondou F. Selective enumeration and survival of bifidobacteria in fresh cheese. Int Dairy J 1997; 7(12): 785-93.
[http://dx.doi.org/10.1016/S0958-6946(98)00012-0]
[17]
Odhong C, Wilkes A, van Dijk S, et al. Financing large-scale mitigation by smallholder farmers: what roles for public climate finance? Front Sustain Food Syst 2019; 3: 3.
[http://dx.doi.org/10.3389/fsufs.2019.00003]
[18]
Wang Y, Li C, Zhao Y, et al. Novel insight into the formation mechanism of volatile flavor in Chinese fish sauce (Yu-lu) based on molecular sensory and metagenomics analyses. Food Chem 2020; 323: 126839.
[http://dx.doi.org/10.1016/j.foodchem.2020.126839] [PMID: 32334314]
[19]
Chaves‐Lópe z C, Serio A, Grande‐Tovar CD, Cuervo‐Mulet R, Delgado‐Ospina J, Paparella A. Traditional fermented foods and beverages from a microbiological and nutritional perspective: the Colombian heritage. Compr Rev Food Sci Food Saf 2014; 13(5): 1031-48.
[http://dx.doi.org/10.1111/1541-4337.12098]
[20]
Waché Y, Do TL, Do TB, et al. Prospects for food fermentation in South-East Asia, topics from the tropical fermentation and biotechnology network at the end of the AsiFood Erasmus+ Project. Front Microbiol 2018; 9: 2278.
[http://dx.doi.org/10.3389/fmicb.2018.02278] [PMID: 30374334]
[21]
Bokulich NA, Mills DA. Facility-specific “house” microbiome drives microbial landscapes of artisan cheesemaking plants. Appl Environ Microbiol 2013; 79(17): 5214-23.
[http://dx.doi.org/10.1128/AEM.00934-13] [PMID: 23793641]
[22]
Patra JK, Das G, Paramithiotis S, Shin HS. Kimchi and other widely consumed traditional fermented foods of Korea: a review. Front Microbiol 2016; 7: 1493.
[http://dx.doi.org/10.3389/fmicb.2016.01493] [PMID: 27733844]
[23]
Lee ME, Jang JY, Lee JH, Park HW, Choi HJ, Kim TW. Starter cultures for kimchi fermentation. J Microbiol Biotechnol 2015; 25(5): 559-68.
[http://dx.doi.org/10.4014/jmb.1501.01019] [PMID: 25674806]
[24]
Jung JY, Lee SH, Jeon CO. Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Appl Microbiol Biotechnol 2014; 98(6): 2385-93.
[http://dx.doi.org/10.1007/s00253-014-5513-1] [PMID: 24419800]
[25]
Cho J, Lee D, Yang C, Jeon J, Kim J, Han H. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol Lett 2006; 257(2): 262-7.
[http://dx.doi.org/10.1111/j.1574-6968.2006.00186.x] [PMID: 16553862]
[26]
Song YO. The functional properties of kimchi for the health benefits. Food Sci Nutr 2004; 9(3): 27-33.
[27]
Sreeramulu G, Zhu Y, Knol W. Kombucha fermentation and its antimicrobial activity. J Agric Food Chem 2000; 48(6): 2589-94.
[http://dx.doi.org/10.1021/jf991333m] [PMID: 10888589]
[28]
Balentine DA, Wiseman SA, Bouwens LC. The chemistry of tea flavonoids. Crit Rev Food Sci Nutr 1997; 37(8): 693-704.
[http://dx.doi.org/10.1080/10408399709527797] [PMID: 9447270]
[29]
Savard P, Lamarche B, Paradis ME, Thiboutot H, Laurin É, Roy D. Impact of Bifidobacterium animalis subsp. lactis BB-12 and, Lactobacillus acidophilus LA-5-containing yoghurt, on fecal bacterial counts of healthy adults. Int J Food Microbiol 2011; 149(1): 50-7.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.12.026] [PMID: 21296446]
[30]
May A, Narayanan S, Alcock J, Varsani A, Maley C, Aktipis A. Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ 2019; 7: e7565.
[http://dx.doi.org/10.7717/peerj.7565] [PMID: 31534844]
[31]
Dufresne C, Farnworth E. Tea, Kombucha, and health: a review. Food Res Int 2000; 33(6): 409-21.
[http://dx.doi.org/10.1016/S0963-9969(00)00067-3]
[32]
Watawana MI, Jayawardena N, Gunawardhana CB, Waisundara VY. Health, wellness, and safety aspects of the consumption of kombucha. J Chem 2015; 2015: 591869.
[http://dx.doi.org/10.1155/2015/591869]
[33]
Sarkar S. Potential of kefir as a dietetic beverage–a review. Br Food J 2007; 109(4): 280-90.
[http://dx.doi.org/10.1108/00070700710736534]
[34]
Guzel-Seydim ZB, Kok-Tas T, Greene AK, Seydim AC. Review: functional properties of kefir. Crit Rev Food Sci Nutr 2011; 51(3): 261-8.
[http://dx.doi.org/10.1080/10408390903579029] [PMID: 21390946]
[35]
de Oliveira Leite AM, Miguel MA, Peixoto RS, Rosado AS, Silva JT, Paschoalin VM. Microbiological, technological and therapeutic properties of kefir: a natural probiotic beverage. Braz J Microbiol 2013; 44(2): 341-9.
[http://dx.doi.org/10.1590/S1517-83822013000200001] [PMID: 24294220]
[36]
Farnworth ER. The Beneficial health effects of fermented foods-potential probiotics around the world. J Nutrace Funct Med Foods 2005; 4(3-4): 93-117.
[http://dx.doi.org/10.1300/J133v04n03_07]
[37]
Gamba RR, Yamamoto S, Abdel-Hamid M, et al. Chemical, microbiological, and functional characterization of kefir produced from cow’s milk and soy milk. Int J Microbiol 2020; 2020: 7019286.
[http://dx.doi.org/10.1155/2020/7019286] [PMID: 32565815]
[38]
Garrote GL, Abraham AG, De Antoni GL. Microbial interactions in kefir: a natural probiotic drink. In: Biotechnology of lactic acid bacteria: novel applications. USA: Wiley 2010; p. 327.
[http://dx.doi.org/10.1002/9780813820866.ch18]
[39]
Rattray FP, O’Connell MJ. Kefir, fermented milks. J Dairy Sci 2011; 6095: 518-24.
[40]
von der Weid I, Alviano DS, Santos AL, Soares RM, Alviano CS, Seldin L. Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J Appl Microbiol 2003; 95(5): 1143-51.
[http://dx.doi.org/10.1046/j.1365-2672.2003.02097.x] [PMID: 14633044]
[41]
Nout MJ, Rombouts FM. Recent developments in tempe research. J Appl Microbiol 1990; 69(5): 609-33.
[42]
Hartanti AT, Rahayu G, Hidayat I. Rhizopus species from fresh tempeh collected from several regions in Indonesia. Hayati J Biosci 2015; 22(3): 136-42.
[http://dx.doi.org/10.1016/j.hjb.2015.10.004]
[43]
Babu PD, Bhakyaraj R, Vidhyalakshmi R. A low cost nutritious food “tempeh”-a review. World J Dairy Food Sci 2009; 4(1): 22-7.
[44]
Chalid SY, Hermanto S, Rahmawati A. Angiotensin converting enzyme inhibitor activity of the soybean tempeh protein as functional food. Int J GEOMATE 2019; 16: 73-8.
[http://dx.doi.org/10.21660/2019.56.4583]
[45]
Ahmad A, Ramasamy K, Majeed AB, Mani V. Enhancement of β-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Pharm Biol 2015; 53(5): 758-66.
[http://dx.doi.org/10.3109/13880209.2014.942791] [PMID: 25756802]
[46]
Peñas E, Martinez-Villaluenga C, Frias J. Sauerkraut: Production, composition, and health benefits. In: Fermented foods in health and disease prevention. USA: Academic Press 2017; pp. 557-76.
[http://dx.doi.org/10.1016/B978-0-12-802309-9.00024-8]
[47]
Jägerstad M, Jastrebova J, Svensson U. Folates in fermented vegetables—A pilot study. Lebensm Wiss Technol 2004; 37(6): 603-11.
[http://dx.doi.org/10.1016/j.lwt.2003.11.008]
[48]
Ciska E, Karamac M, Kosiñska A. Antioxidant activity of extracts of white cabbage and sauerkraut. Pol J Food Nutr Sci 2005; 14(4): 367.
[49]
Katina K, Arendt E, Liukkonen KH, Autio K, Flander L, Poutanen K. Potential of sourdough for healthier cereal products. Trends Food Sci Technol 2005; 16(1-3): 104-12.
[http://dx.doi.org/10.1016/j.tifs.2004.03.008]
[50]
Fujimoto A, Ito K, Itou M, et al. Microbial behavior and changes in food constituents during fermentation of Japanese sourdoughs with different rye and wheat starting materials. J Biosci Bioeng 2018; 125(1): 97-104.
[http://dx.doi.org/10.1016/j.jbiosc.2017.08.009] [PMID: 28927834]
[51]
Wang HL. Tofu and tempeh as potential protein sources in the western diet. J Am Oil Chem Soc 1984; 61(3): 528-34.
[http://dx.doi.org/10.1007/BF02677023]
[52]
Rossi F, Felis GE, Martinelli A, Calcavecchia B, Torriani S. Microbiological characteristics of fresh tofu produced in small industrial scale and identification of specific spoiling microorganisms (SSO). Lebensm Wiss Technol 2016; 70: 280-5.
[http://dx.doi.org/10.1016/j.lwt.2016.02.057]
[53]
Ndatsu Y, Olekan AA. Effects of different types of coagulants on the nutritional quality tofu produced in the northern part of Nigeria. WJDFS 2012; 7(2): 135-41.
[54]
Kao TH, Lu YF, Hsieh HC, Chen BH. Stability of isoflavone glucosides during processing of soymilk and tofu. Food Res Int 2004; 37(9): 891-900.
[http://dx.doi.org/10.1016/j.foodres.2004.05.007]
[55]
Abiru Y, Kumemura M, Ueno T, Uchiyama S, Masaki K. Discovery of an S-equol rich food stinky tofu, a traditional fermented soy product in Taiwan. Int J Food Sci Nutr 2012; 63(8): 964-70.
[http://dx.doi.org/10.3109/09637486.2012.687369] [PMID: 22594820]
[56]
Sharma S, Kandasamy S, Kavitake D, Shetty PH. Probiotic characterization and antioxidant properties of Weissella confusa KR780676, isolated from an Indian fermented food. Lebensm Wiss Technol 2018; 97: 53-60.
[http://dx.doi.org/10.1016/j.lwt.2018.06.033]
[57]
Iyer BK, Singhal RS, Ananthanarayan L. Characterization and in vitro probiotic evaluation of lactic acid bacteria isolated from idli batter. J Food Sci Technol 2013; 50(6): 1114-21.
[http://dx.doi.org/10.1007/s13197-011-0445-6] [PMID: 24426023]
[58]
Chaves-López C, Serio A, Martuscelli M, Paparella A, Osorio-Cadavid E, Suzzi G. Microbiological characteristics of kumis, a traditional fermented Colombian milk, with particular emphasis on enterococci population. Food Microbiol 2011; 28(5): 1041-7.
[http://dx.doi.org/10.1016/j.fm.2011.02.006] [PMID: 21569950]
[59]
Marsh AJ, Hill C, Ross RP, Cotter PD. Fermented beverages with health-promoting potential: Past and future perspectives. Trends Food Sci Technol 2014; 38(2): 113-24.
[http://dx.doi.org/10.1016/j.tifs.2014.05.002]
[60]
Choudhury PK, Salem AZ, Jena R, Kumar S, Singh R, Puniya AK. Rumen microbiology: An overview. In: Rumen microbiology: from evolution to revolution. NY: Springer 2015; pp. 3-16.
[http://dx.doi.org/10.1007/978-81-322-2401-3_1]
[61]
Hou Q, Li C, Liu Y, et al. Koumiss consumption modulates gut microbiota, increases plasma high density cholesterol, decreases immunoglobulin G and albumin. J Funct Foods 2019; 52: 469-78.
[http://dx.doi.org/10.1016/j.jff.2018.11.023]
[62]
Méndez-Albores JA, Arámbula-Villa G, Preciado-Ortíz RE, Moreno-Martínez E. Aflatoxins in pozol, a nixtamalized, maize-based food. Int J Food Microbiol 2004; 94(2): 211-5.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.02.009] [PMID: 15193807]
[63]
ben Omar N, Ampe F. Microbial community dynamics during production of the Mexican fermented maize dough pozol. Appl Environ Microbiol 2000; 66(9): 3664-73.
[http://dx.doi.org/10.1128/AEM.66.9.3664-3673.2000] [PMID: 10966374]
[64]
Robles-Ozuna LE, Ochoa-Martínez LA, Morales-Castro J, Gallegos-Infante JA, Quintero-Ramos A, Madera-Santana TJ. Effect of nixtamalization conditions ultrasound assisted on some physicochemical, structural and quality characteristics in maize used for pozole. CYTA J Food 2016; 14(2): 324-32.
[http://dx.doi.org/10.1080/19476337.2015.1110201]
[65]
Tsukamoto Y, Ichise H, Kakuda H, Yamaguchi M. Intake of fermented soybean (natto) increases circulating vitamin K2 (menaquinone-7) and γ-carboxylated osteocalcin concentration in normal individuals. J Bone Miner Metab 2000; 18(4): 216-22.
[http://dx.doi.org/10.1007/s007740070023] [PMID: 10874601]
[66]
Park KJ, Kang JI, Kim TS, Yeo IH. The antithrombotic and fibrinolytic effect of natto in hypercholesterolemia rats. Prev Nutr Food Sci 2012; 17(1): 78-82.
[http://dx.doi.org/10.3746/pnf.2012.17.1.078] [PMID: 24471066]
[67]
Panjagari NR, Singh RR, Singh AK. Indian traditional fermented dairy products. In: Traditional Foods. Boston, MA: Springer 2016; pp. 101-14.
[http://dx.doi.org/10.1007/978-1-4899-7648-2_7]
[68]
Singh BP, Vij S, Hati S, Singh D, Kumari P, Minj J. Antimicrobial activity of bioactive peptides derived from fermentation of soy milk by Lactobacillus plantarum C^ sub 2^ against common foodborne pathogens. IJFF 2015; 4(1/2): 77.
[69]
Ali K, Mehmood MH, Iqbal MA, et al. Isolation and characterization of exopolysaccharide-producing strains of Lactobacillus bulgaricus from curd. Food Sci Nutr 2019; 7(4): 1207-13.
[http://dx.doi.org/10.1002/fsn3.905] [PMID: 31024693]
[70]
Chaturvedi S, Chakraborty S. Review on potential non‐dairy synbiotic beverages: a preliminary approach using legumes. Int J Food Sci Technol 2020; 56(5): 2068-77.
[71]
Lee D, Kim S, Cho J, Kim J. Microbial population dynamics and temperature changes during fermentation of kimjang kimchi. J Microbiol 2008; 46(5): 590-3.
[http://dx.doi.org/10.1007/s12275-008-0156-5] [PMID: 18974963]
[72]
Park KY, Jeong JK, Lee YE, Daily JW III. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J Med Food 2014; 17(1): 6-20.
[http://dx.doi.org/10.1089/jmf.2013.3083] [PMID: 24456350]
[73]
Elbanna K, El Hadad S, Assaeedi A, Aldahlawi A, Khider M, Alhebshi A. In vitro and in vivo evidences for innate immune stimulators lactic acid bacterial starters isolated from fermented camel dairy products. Sci Rep 2018; 8(1): 12553.
[http://dx.doi.org/10.1038/s41598-018-31006-3] [PMID: 30135492]
[74]
Agrawal A, Houghton LA, Morris J, et al. Clinical trial: the effects of a fermented milk product containing Bifidobacterium lactis DN-173 010 on abdominal distension and gastrointestinal transit in irritable bowel syndrome with constipation. Aliment Pharmacol Ther 2009; 29(1): 104-14.
[http://dx.doi.org/10.1111/j.1365-2036.2008.03853.x] [PMID: 18801055]
[75]
Pato U, Surono IS, Hosono A. Hypocholesterolemic effect of indigenous dadih lactic acid bacteria by deconjugation of bile salts. Asian-Australas J Anim Sci 2004; 17(12): 1741-5.
[http://dx.doi.org/10.5713/ajas.2004.1741]
[76]
Veiga P, Gallini CA, Beal C, et al. Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc Natl Acad Sci USA 2010; 107(42): 18132-7.
[http://dx.doi.org/10.1073/pnas.1011737107] [PMID: 20921388]
[77]
Sonestedt E, Wirfält E, Wallström P, Gullberg B, Orho-Melander M, Hedblad B. Dairy products and its association with incidence of cardiovascular disease: the Malmö diet and cancer cohort. Eur J Epidemiol 2011; 26(8): 609-18.
[http://dx.doi.org/10.1007/s10654-011-9589-y] [PMID: 21660519]
[78]
Amoutzopoulos B, Löker GB, Samur G, et al. Effects of a traditional fermented grape-based drink ‘hardaliye’ on antioxidant status of healthy adults: a randomized controlled clinical trial. J Sci Food Agric 2013; 93(14): 3604-10.
[http://dx.doi.org/10.1002/jsfa.6158] [PMID: 23553618]
[79]
Liu SN, Han Y, Zhou ZJ. Lactic acid bacteria in traditional fermented Chinese foods. Food Res Int 2011; 44(3): 643-51.
[http://dx.doi.org/10.1016/j.foodres.2010.12.034]
[80]
Hor YY, Lew LC, Lau AS, et al. Probiotic Lactobacillus casei Zhang (LCZ) alleviates respiratory, gastrointestinal & RBC abnormality via immuno-modulatory, anti-inflammatory & anti-oxidative actions. J Funct Foods 2018; 44: 235-45.
[http://dx.doi.org/10.1016/j.jff.2018.03.017]
[81]
Ya T, Zhang Q, Chu F, et al. Immunological evaluation of Lactobacillus casei Zhang: a newly isolated strain from koumiss in Inner Mongolia, China. BMC Immunol 2008; 9(1): 68.
[http://dx.doi.org/10.1186/1471-2172-9-68] [PMID: 19019236]
[82]
Dwivedi S, Sheth M. Fermented milk derived biogenic metabolites and their probable impact on cortisol levels and depression scores. IJRAR 2019; 6(1): 450-8.
[83]
Chung YC, Jin HM, Cui Y, et al. Fermented milk of Lactobacillus helveticus IDCC3801 improves cognitive functioning during cognitive fatigue tests in healthy older adults. J Funct Foods 2014; 10: 465-74.
[http://dx.doi.org/10.1016/j.jff.2014.07.007]
[84]
Stoyanova LG, Vodolazov IV, Dbar SD, Oleskin AV. Probiotic strains of Lactococcus lactis subsp. lactis produce neuroactive substances. J Hyg Eng Des 2017; 20: 25-31.
[85]
Kiefer D. Beneficial brain bacteria: fermented milk and your noggin'. Integr Med Alert 2014; 17(3)
[86]
Fukami H, Tachimoto H, Kishi M, et al. Continuous ingestion of acetic acid bacteria: effect on cognitive function in healthy middle-aged and elderly persons. J Anti Aging Med 2009; 6(7): 60-5.
[http://dx.doi.org/10.3793/jaam.6.60]
[87]
Fukami H, Kobayashi S, Tachimoto H, et al. Effect of continuous ingestion of acetic Acid bacteria on memory retention and the synaptic function in aged rats. Biosci Biotechnol Biochem 2010; 74(7): 1498-500.
[http://dx.doi.org/10.1271/bbb.100164] [PMID: 20622429]
[88]
Stephanie S, Ratih NK, Soka S, Suwanto A. Effect of tempeh supplementation on the profiles of human intestinal immune system and gut microbiota. Microbiol Indones 2017; 11(1): 2.
[http://dx.doi.org/10.5454/mi.11.1.2]
[89]
Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA 2013; 110(22): 9066-71.
[http://dx.doi.org/10.1073/pnas.1219451110] [PMID: 23671105]
[90]
Savidge TC. Epigenetic regulation of enteric neurotransmission by gut bacteria. Front Cell Neurosci 2016; 9: 503.
[http://dx.doi.org/10.3389/fncel.2015.00503] [PMID: 26778967]
[91]
Bordenave N, Ferruzzi MG, Eds. Functional foods and beverages: In vitro assessment of nutritional, sensory, and safety properties. USA: John Wiley & Sons 2018.
[http://dx.doi.org/10.1002/9781118823309]
[92]
Volokh O, Klimenko N, Berezhnaya Y, et al. Human gut microbiome response induced by fermented dairy product intake in healthy volunteers. Nutrients 2019; 11(3): 547.
[http://dx.doi.org/10.3390/nu11030547] [PMID: 30836671]
[93]
Kemp K, Griffiths J, Campbell S, Lovell K. An exploration of the follow-up up needs of patients with inflammatory bowel disease. J Crohn’s Colitis 2013; 7(9): e386-95.
[http://dx.doi.org/10.1016/j.crohns.2013.03.001] [PMID: 23541150]
[94]
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559-63.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[95]
Veiga P, Pons N, Agrawal A, et al. van HylckamaVlieg JE, Houghton LA, Whorwell PJ, Ehrlich SD. Changes of the human gut microbiome induced by a fermented milk product. Sci Rep 2014; 4(1): 1-9.
[96]
Zhang C, Derrien M, Levenez F, et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J 2016; 10(9): 2235-45.
[http://dx.doi.org/10.1038/ismej.2016.13] [PMID: 26953599]
[97]
Unno T, Choi JH, Hur HG, et al. Changes in human gut microbiota influenced by probiotic fermented milk ingestion. J Dairy Sci 2015; 98(6): 3568-76.
[http://dx.doi.org/10.3168/jds.2014-8943] [PMID: 25864056]
[98]
Jang SE, Kim KA, Han MJ, Kim DH. Doenjang, a fermented Korean soybean paste, inhibits lipopolysaccharide production of gut microbiota in mice. J Med Food 2014; 17(1): 67-75.
[http://dx.doi.org/10.1089/jmf.2013.3073] [PMID: 24456356]
[99]
Wang Y, Yu M, Shi Y, et al. Effects of a fermented beverage of Changbai Mountain fruit and vegetables on the composition of gut microbiota in mice. Plant Foods Hum Nutr 2019; 74(4): 468-73.
[http://dx.doi.org/10.1007/s11130-019-00761-7] [PMID: 31352653]
[100]
Gill PA, van Zelm MC, Muir JG, Gibson PR. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther 2018; 48(1): 15-34.
[http://dx.doi.org/10.1111/apt.14689] [PMID: 29722430]
[101]
Derrien M, Veiga P. Rethinking diet to aid human–microbe symbiosis. Trends Microbiol 2017; 25(2): 100-12.
[http://dx.doi.org/10.1016/j.tim.2016.09.011] [PMID: 27916707]
[102]
Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 2015; 6(1): 6734.
[http://dx.doi.org/10.1038/ncomms7734] [PMID: 25828455]
[103]
Thomas RL, Jiang L, Adams JS, et al. Vitamin D metabolites and the gut microbiome in older men. Nat Commun 2020; 11(1): 5997.
[http://dx.doi.org/10.1038/s41467-020-19793-8] [PMID: 33244003]
[104]
Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA 2013; 110(11): 4410-5.
[http://dx.doi.org/10.1073/pnas.1215927110] [PMID: 23401498]
[105]
Ghosh T, Beniwal A, Semwal A, Navani NK. Mechanistic insights into probiotic properties of lactic acid bacteria associated with ethnic fermented dairy products. Front Microbiol 2019; 10: 502.
[http://dx.doi.org/10.3389/fmicb.2019.00502] [PMID: 30972037]
[106]
Schneeman TA, Bruno ME, Schjerven H, Johansen FE, Chady L, Kaetzel CS. Regulation of the polymeric Ig receptor by signaling through TLRs 3 and 4: linking innate and adaptive immune responses. J Immunol 2005; 175(1): 376-84.
[http://dx.doi.org/10.4049/jimmunol.175.1.376] [PMID: 15972671]
[107]
Bruno ME, Frantz AL, Rogier EW, Johansen FE, Kaetzel CS. Regulation of the polymeric immunoglobulin receptor by the classical and alternative NF-κB pathways in intestinal epithelial cells. Mucosal Immunol 2011; 4(4): 468-78.
[http://dx.doi.org/10.1038/mi.2011.8] [PMID: 21451502]
[108]
Vora P, Youdim A, Thomas LS, et al. β-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. J Immunol 2004; 173(9): 5398-405.
[http://dx.doi.org/10.4049/jimmunol.173.9.5398] [PMID: 15494486]
[109]
Wehkamp J, Harder J, Wehkamp K, et al. NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: a novel effect of a probiotic bacterium. Infect Immun 2004; 72(10): 5750-8.
[http://dx.doi.org/10.1128/IAI.72.10.5750-5758.2004] [PMID: 15385474]
[110]
Chelliah R, Ramakrishnan SR, Prabhu PR, Antony U. Evaluation of antimicrobial activity and probiotic properties of wild-strain Pichia kudriavzevii isolated from frozen idli batter. Yeast 2016; 33(8): 385-401.
[http://dx.doi.org/10.1002/yea.3181] [PMID: 27370793]
[111]
Karczewski J, Troost FJ, Konings I, et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 2010; 298(6): G851-9.
[http://dx.doi.org/10.1152/ajpgi.00327.2009] [PMID: 20224007]
[112]
Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 2007; 132(4): 1359-74.
[http://dx.doi.org/10.1053/j.gastro.2007.02.056] [PMID: 17408640]
[113]
Ley RE. Obesity and the human microbiome. Curr Opin Gastroenterol 2010; 26(1): 5-11.
[http://dx.doi.org/10.1097/MOG.0b013e328333d751] [PMID: 19901833]
[114]
Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57(6): 1470-81.
[http://dx.doi.org/10.2337/db07-1403] [PMID: 18305141]
[115]
Bouter KE, van Raalte DH, Groen AK, Nieuwdorp M. Role of the gut microbiome in the pathogenesis of obesity and obesity-related metabolic dysfunction. Gastroenterology 2017; 152(7): 1671-8.
[http://dx.doi.org/10.1053/j.gastro.2016.12.048] [PMID: 28192102]
[116]
Kalliomäki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin 2008; 87(3): 534-8.
[http://dx.doi.org/10.1093/ajcn/87.3.534] [PMID: 18326589]
[117]
Koleva PT, Bridgman SL, Kozyrskyj AL. The infant gut microbiome: evidence for obesity risk and dietary intervention. Nutrients 2015; 7(4): 2237-60.
[http://dx.doi.org/10.3390/nu7042237] [PMID: 25835047]
[118]
McGuire M, McGuire MA, Bode L, Eds. Prebiotics and probiotics in human milk: Origins and functions of milk-borne oligosaccharides and bacteria. USA: Academic Press 2016.
[119]
Grev J, Berg M, Soll R. Maternal probiotic supplementation for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst Rev 2018; 12: CD012519.
[http://dx.doi.org/10.1002/14651858.CD012519.pub2] [PMID: 30548483]
[120]
Nakajima H, Suzuki Y. HIROTA T. Cholesterol lowering activity of ropy fermented milk. J Food Sci 1992; 57(6): 1327-9.
[http://dx.doi.org/10.1111/j.1365-2621.1992.tb06848.x]
[121]
Tok E, Aslim B. Cholesterol removal by some lactic acid bacteria that can be used as probiotic. Microbiol Immunol 2010; 54(5): 257-64.
[http://dx.doi.org/10.1111/j.1348-0421.2010.00219.x] [PMID: 20536722]
[122]
Tang LQ, Wei W, Chen LM, Liu S. Effects of berberine on diabetes induced by alloxan and a high-fat/high-cholesterol diet in rats. J Ethnopharmacol 2006; 108(1): 109-15.
[http://dx.doi.org/10.1016/j.jep.2006.04.019] [PMID: 16759828]
[123]
Gunness P, Gidley MJ. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct 2010; 1(2): 149-55.
[http://dx.doi.org/10.1039/c0fo00080a] [PMID: 21776465]
[124]
Abushelaibi A, Al-Mahadin S, Enan M, El-Tarabily K, Shah N, Ayyash M. In-vitro investigation into probiotic characterisation of Streptococcus and Enterococcus isolated from camel milk. Lebensm Wiss Technol 2018; 87: 478-87.
[http://dx.doi.org/10.1016/j.lwt.2017.09.019]
[125]
Walther B, Karl JP, Booth SL, Boyaval P. Menaquinones, bacteria, and the food supply: the relevance of dairy and fermented food products to vitamin K requirements. Adv Nutr 2013; 4(4): 463-73.
[http://dx.doi.org/10.3945/an.113.003855] [PMID: 23858094]
[126]
Weng Y, Yao J, Sparks S, Wang KY. Nattokinase: an oral antithrombotic agent for the prevention of cardiovascular disease. Int J Mol Sci 2017; 18(3): 523.
[http://dx.doi.org/10.3390/ijms18030523] [PMID: 28264497]
[127]
Comalada M, Camuesco D, Sierra S, et al. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. Eur J Immunol 2005; 35(2): 584-92.
[http://dx.doi.org/10.1002/eji.200425778] [PMID: 15668926]
[128]
Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol 2011; 106(4): 563-73.
[http://dx.doi.org/10.1038/ajg.2011.44] [PMID: 21468064]
[129]
Amre DK, D’Souza S, Morgan K, et al. Imbalances in dietary consumption of fatty acids, vegetables, and fruits are associated with risk for Crohn’s disease in children. Am J Gastroenterol 2007; 102(9): 2016-25.
[http://dx.doi.org/10.1111/j.1572-0241.2007.01411.x] [PMID: 17617201]
[130]
Szigethy E, Hardy D, Kenney E, et al. Longitudinal effects of cognitive behavioral therapy for depressed adolescents with IBD: P‐0086. Inflamm Bowel Dis 2007; 13: 673-4.
[131]
Altonsy MO, Andrews SC, Tuohy KM. Differential induction of apoptosis in human colonic carcinoma cells (Caco-2) by Atopobium, and commensal, probiotic and enteropathogenic bacteria: mediation by the mitochondrial pathway. Int J Food Microbiol 2010; 137(2-3): 190-203.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2009.11.015] [PMID: 20036023]
[132]
Baldwin C, Millette M, Oth D, Ruiz MT, Luquet FM, Lacroix M. Probiotic Lactobacillus acidophilus and L. casei mix sensitize colorectal tumoral cells to 5-fluorouracil-induced apoptosis. Nutr Cancer 2010; 62(3): 371-8.
[http://dx.doi.org/10.1080/01635580903407197] [PMID: 20358475]
[133]
Chong ES. A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World J Microbiol Biotechnol 2014; 30(2): 351-74.
[http://dx.doi.org/10.1007/s11274-013-1499-6] [PMID: 24068536]
[134]
Kim Y, Oh S, Yun HS, Oh S, Kim SH. Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett Appl Microbiol 2010; 51(2): 123-30.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02859.x] [PMID: 20536712]
[135]
Le Leu RK, Hu Y, Brown IL, Woodman RJ, Young GP. Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis 2010; 31(2): 246-51.
[http://dx.doi.org/10.1093/carcin/bgp197] [PMID: 19696163]
[136]
Iyer C, Kosters A, Sethi G, Kunnumakkara AB, Aggarwal BB, Versalovic J. Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-kappaB and MAPK signalling. Cell Microbiol 2008; 10(7): 1442-52.
[http://dx.doi.org/10.1111/j.1462-5822.2008.01137.x] [PMID: 18331465]
[137]
Mansouri-Tehrani HS, Khorasgani MR, Roayaei MA. Effects of probiotics with or without honey on radiation-induced diarrhea. Int J Radiat Res 2016; 14(3): 205.
[http://dx.doi.org/10.18869/acadpub.ijrr.14.3.205]
[138]
Delia P, Sansotta G, Donato V, et al. Use of probiotics for prevention of radiation-induced diarrhea. World J Gastroenterol 2007; 13(6): 912-5.
[http://dx.doi.org/10.3748/wjg.v13.i6.912] [PMID: 17352022]
[139]
Urbancsek H, Kazar T, Mezes I, Neumann K. Results of a double-blind, randomized study to evaluate the efficacy and safety of Antibiophilus in patients with radiation-induced diarrhoea. Eur J Gastroenterol Hepatol 2001; 13(4): 391-6.
[http://dx.doi.org/10.1097/00042737-200104000-00015] [PMID: 11338068]
[140]
Kumar RS, Kanmani P, Yuvaraj N, et al. Lactobacillus plantarum AS1 isolated from south Indian fermented food Kallappam suppress 1,2-dimethyl hydrazine (DMH)-induced colorectal cancer in male Wistar rats. Appl Biochem Biotechnol 2012; 166(3): 620-31.
[http://dx.doi.org/10.1007/s12010-011-9453-2] [PMID: 22161238]
[141]
Hidvégi M, Ráso E, Tömösközi-Farkas R, Paku S, Lapis K, Szende B. Effect of Avemar and Avemar + vitamin C on tumor growth and metastasis in experimental animals. Anticancer Res 1998; 18(4A): 2353-8.
[PMID: 9703878]
[142]
Wcislo G, Szarlej-Wcislo K. Colorectal cancer prevention by wheat consumption: a three-valued logic-true, false, or otherwise? In: Wheat and rice in disease prevention and health. USA: Academic Press 2014; pp. 91-111.
[http://dx.doi.org/10.1016/B978-0-12-401716-0.00008-8]
[143]
Nakano V, Padilla G, do Valle Marques M, Avila-Campos MJ. Plasmid-related β-lactamase production in Bacteroides fragilis strains. Res Microbiol 2004; 155(10): 843-6.
[http://dx.doi.org/10.1016/j.resmic.2004.06.011] [PMID: 15567279]
[144]
Lee J, Lee J, Kim M, Kim JH. Fermented extraction of Citrus unshiu peel inhibits viability and migration of human pancreatic cancers. J Med Food 2018; 21(1): 5-12.
[http://dx.doi.org/10.1089/jmf.2017.3984] [PMID: 29346059]
[145]
Singh SS, De Mandal S, Mathipi V, Ghatak S, Kumar NS. Traditional fermented fish harbors bacteria with potent probiotic and anticancer properties. Biocatal Agric Biotechnol 2018; 15: 283-90.
[http://dx.doi.org/10.1016/j.bcab.2018.07.007]
[146]
Devi J, Arumugam M, Arivarasu A, Dhinakaran AK, Suresh P. Preparation of herbal curd with Gymnema sylvestre and its characterization for the treatment of liver cancer. J Food Process Eng 2020; 43(3): e13338.
[http://dx.doi.org/10.1111/jfpe.13338]
[147]
Allaerts W, Chang TW. Skewed exposure to environmental antigens complements hygiene hypothesis in explaining the rise of allergy. Acta Biotheor 2017; 65(2): 117-34.
[http://dx.doi.org/10.1007/s10441-017-9306-7] [PMID: 28342137]
[148]
Phromraksa P, Nagano H, Boonmars T, Kamboonruang C. Identification of proteolytic bacteria from thai traditional fermented foods and their allergenic reducing potentials. J Food Sci 2008; 73(4): M189-95.
[http://dx.doi.org/10.1111/j.1750-3841.2008.00721.x] [PMID: 18460136]
[149]
Prakoeswa CRS, Herwanto N, Prameswari R, et al. Lactobacillus plantarum IS-10506 supplementation reduced SCORAD in children with atopic dermatitis. Benef Microbes 2017; 8(5): 833-40.
[http://dx.doi.org/10.3920/BM2017.0011] [PMID: 29022387]
[150]
Ongol MP, Iguchi T, Tanaka M, et al. Potential of selected strains of lactic acid bacteria to induce a Th1 immune profile. Biosci Biotechnol Biochem 2008; 72(11): 2847-57.
[http://dx.doi.org/10.1271/bbb.80307] [PMID: 18997432]
[151]
Uchida K, Motoshima H, Katano N, Hachimura S, Tanaka A, Nishihira J. Effect of Lactococcus lactis subsp. cremoris YRC3780 on birch pollinosis: a randomized, double-blind, placebo-controlled clinical trial. J Funct Foods 2018; 43: 173-9.
[http://dx.doi.org/10.1016/j.jff.2018.01.030]
[152]
Bell V, Ferrão J, Fernandes T. Nutritional guidelines and fermented food frameworks. Foods 2017; 6(8): 65.
[http://dx.doi.org/10.3390/foods6080065] [PMID: 28783111]
[153]
Laulund S, Wind A, Derkx PMF, Zuliani V. Regulatory and safety requirements for food cultures. Microorganisms 2017; 5(2): 28.
[http://dx.doi.org/10.3390/microorganisms5020028] [PMID: 28545249]
[154]
Mattila-Sandholm T, Myllärinen P, Crittenden R, Mogensen G, Fondén R, Saarela M. Technological challenges for future probiotic foods. Int Dairy J 2002; 12(2-3): 173-82.
[http://dx.doi.org/10.1016/S0958-6946(01)00099-1]
[155]
Talon R, Leroy S. Diversity and safety hazards of bacteria involved in meat fermentations. Meat Sci 2011; 89(3): 303-9.
[http://dx.doi.org/10.1016/j.meatsci.2011.04.029] [PMID: 21620574]
[156]
Martín B, Garriga M, Hugas M, Bover-Cid S, Veciana-Nogués MT, Aymerich T. Molecular, technological and safety characterization of Gram-positive catalase-positive cocci from slightly fermented sausages. Int J Food Microbiol 2006; 107(2): 148-58.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2005.08.024] [PMID: 16297478]
[157]
Liu Z, Liu W, Ran C, Hu J, Zhou Z. Abrupt suspension of probiotics administration may increase host pathogen susceptibility by inducing gut dysbiosis. Sci Rep 2016; 6(1): 23214.
[http://dx.doi.org/10.1038/srep23214] [PMID: 26983596]
[158]
Şanlier N, Gökcen BB, Sezgin AC. Health benefits of fermented foods. Crit Rev Food Sci Nutr 2019; 59(3): 506-27.
[http://dx.doi.org/10.1080/10408398.2017.1383355] [PMID: 28945458]
[159]
Rodrigues KL, Carvalho JC, Schneedorf JM. Anti-inflammatory properties of kefir and its polysaccharide extract. Inflammopharmacology 2005; 13(5-6): 485-92.
[http://dx.doi.org/10.1163/156856005774649395] [PMID: 16280101]
[160]
Zhou Q, Zang S, Zhao Z, Li X. Dynamic changes of bacterial communities and nitrite character during northeastern Chinese sauerkraut fermentation. Food Sci Biotechnol 2017; 27(1): 79-85.
[http://dx.doi.org/10.1007/s10068-017-0279-8] [PMID: 30263727]
[161]
Mathur H, Beresford TP, Cotter PD. Health benefits of lactic acid bacteria (LAB) fermentates. Nutrients 2020; 12(6): 1679.
[http://dx.doi.org/10.3390/nu12061679] [PMID: 32512787]
[162]
Ueno Y, Hayakawa K, Takahashi S, Oda K. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotechnol Biochem 1997; 61(7): 1168-71.
[http://dx.doi.org/10.1271/bbb.61.1168] [PMID: 9255981]
[163]
Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. Understanding kombucha tea fermentation: a review. J Food Sci 2018; 83(3): 580-8.
[http://dx.doi.org/10.1111/1750-3841.14068] [PMID: 29508944]
[164]
Beganović J, Kos B, Leboš Pavunc A, Uroić K, Jokić M, Šušković J. Traditionally produced sauerkraut as source of autochthonous functional starter cultures. Microbiol Res 2014; 169(7-8): 623-32.
[http://dx.doi.org/10.1016/j.micres.2013.09.015] [PMID: 24797236]
[165]
Cooper-Bribiesca B, Navarro-Ocaña A, Díaz-Ruiz G, Aguilar-Osorio G, Rodríguez-Sanoja R, Wacher C. Lactic acid fermentation of arabinoxylan from nejayote by Streptococcus infantarius ssp. infantarius 25124 isolated from pozol. Front Microbiol 2018; 9: 3061.
[http://dx.doi.org/10.3389/fmicb.2018.03061] [PMID: 30619147]
[166]
Olendzki BC, Silverstein TD, Persuitte GM, Ma Y, Baldwin KR, Cave D. An anti-inflammatory diet as treatment for inflammatory bowel disease: a case series report. Nutr J 2014; 13(1): 5.
[http://dx.doi.org/10.1186/1475-2891-13-5] [PMID: 24428901]
[167]
Mitsuoka T. Significance of dietary modulation of intestinal flora and intestinal environment. Biosci Microflora 2000; 19(1): 15-25.
[http://dx.doi.org/10.12938/bifidus1996.19.15]
[168]
Woo JK, Choi S, Kang JH, et al. Fermented barley and soybean (BS) mixture enhances intestinal barrier function in dextran sulfate sodium (DSS)-induced colitis mouse model. BMC Complement Altern Med 2016; 16(1): 498.
[http://dx.doi.org/10.1186/s12906-016-1479-0] [PMID: 27912750]
[169]
Aslam H, Green J, Jacka FN, et al. Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety. Nutr Neurosci 2020; 23(9): 659-71.
[http://dx.doi.org/10.1080/1028415X.2018.1544332] [PMID: 30415609]
[170]
He D, Wang Y, Lin J, et al. Identification and characterization of alcohol-soluble components from wheat germ-apple fermented by Lactobacillus sp. capable of preventing ulcerative colitis of dextran sodium sulfate-induced mice. J Funct Foods 2020; 64: 103642.
[http://dx.doi.org/10.1016/j.jff.2019.103642]
[171]
Gobbetti M. The sourdough microflora: interactions of lactic acid bacteria and yeasts. Trends Food Sci Technol 1998; 9(7): 267-74.
[http://dx.doi.org/10.1016/S0924-2244(98)00053-3]
[172]
Rezac S, Kok CR, Heermann M, Hutkins R. Fermented foods as a dietary source of live organisms. Front Microbiol 2018; 9: 1785.
[http://dx.doi.org/10.3389/fmicb.2018.01785] [PMID: 30197628]
[173]
Ray RC, Didier M, Eds. Microorganisms and fermentation of traditional foods. USA: CRC Press 2014.
[http://dx.doi.org/10.1201/b17307]
[174]
Fitzsimons NA, Cogan TM, Condon S, Beresford T. Phenotypic and genotypic characterization of non-starter lactic acid bacteria in mature cheddar cheese. Appl Environ Microbiol 1999; 65(8): 3418-26.
[http://dx.doi.org/10.1128/AEM.65.8.3418-3426.1999] [PMID: 10427029]
[175]
Gala E, Landi S, Solieri L, Nocetti M, Pulvirenti A, Giudici P. Diversity of lactic acid bacteria population in ripened Parmigiano Reggiano cheese. Int J Food Microbiol 2008; 125(3): 347-51.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2008.04.008] [PMID: 18524408]
[176]
Morea M, Baruzzi F, Cocconcelli PS. Molecular and physiological characterization of dominant bacterial populations in traditional mozzarella cheese processing. J Appl Microbiol 1999; 87(4): 574-82.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00855.x] [PMID: 10583686]
[177]
Lara-Hidalgo C, Hernández-Sánchez H, Hernández-Rodríguez C, Dorantes-Álvarez L. Yeasts in fermented foods and their probiotic potential. Austin J NutrMetab 2017; 4(1): 1045.
[178]
Padonou SW, Nielsen DS, Akissoe NH, Hounhouigan JD, Nago MC, Jakobsen M. Development of starter culture for improved processing of Lafun, an African fermented cassava food product. J Appl Microbiol 2010; 109(4): 1402-10.
[http://dx.doi.org/10.1111/j.1365-2672.2010.04769.x] [PMID: 20553347]
[179]
Kim J, Chun J, Han HU. Leuconostoc kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 2000; 50(Pt 5): 1915-9.
[http://dx.doi.org/10.1099/00207713-50-5-1915] [PMID: 11034505]
[180]
Olasupo NA, Okorie PC. African fermented food condiments: Microbiology impacts on their nutritional values. In: Frontiers and New Trends in the Science of Fermented Food and Beverages. UK: IntechOpen 2019.
[http://dx.doi.org/10.5772/intechopen.83466]
[181]
Xiang H, Sun-Waterhouse D, Waterhouse GI, Cui C, Ruan Z. Fermentation-enabled wellness foods: a fresh perspective. Food Sci Hum Wellness 2019; 8(3): 203-43.
[http://dx.doi.org/10.1016/j.fshw.2019.08.003]
[182]
Abdalla MO, Hussain SI. Enumeration and identification of microflora in roub, a sudanese traditional fermented dairy product. Br J Dairy Sci 2010; 1(2): 30-3.
[183]
Nout MR, Sarkar PK, Beuchat LR. Indigenous fermented foods. In: Food Microbiology: Fundamentals and Frontiers. 3rd ed. USA: Wiley 2007; pp. 817-35.
[184]
Chaves-López C, Rossi C, Maggio F, Paparella A, Serio A. Changes occurring in spontaneous maize fermentation: An overview. Fermentation (Basel) 2020; 6(1): 36.
[http://dx.doi.org/10.3390/fermentation6010036]
[185]
Sridevi J, Halami PM, Vijayendra SV. Selection of starter cultures for idli batter fermentation and their effect on quality of idlis. J Food Sci Technol 2010; 47(5): 557-63.
[http://dx.doi.org/10.1007/s13197-010-0101-6] [PMID: 23572685]
[186]
Achi OK. Traditional fermented protein condiments in Nigeria. Afr J Biotechnol 2005; 4(13)
[187]
Meybodi NM, Ebrahimi MT, Mortazavian AM. Ethnic fermented foods and beverage of Iran. In: Ethnic fermented foods and alcoholic beverages of Asia. New Delhi: Springer 2016; pp. 309-22.
[http://dx.doi.org/10.1007/978-81-322-2800-4_12]
[188]
Ricke SC, Koo OK, Keeton JT. Fermented meat, poultry, and fish products. Food microbiology: fundamentals and frontiers 2012; 857-80.
[http://dx.doi.org/10.1128/9781555818463.ch34]
[189]
Dimidi E, Cox SR, Rossi M, Whelan K. Fermented foods: definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients 2019; 11(8): 1806.
[http://dx.doi.org/10.3390/nu11081806] [PMID: 31387262]
[190]
Shankar SK, Mulimani VH. α-galactosidase production by Aspergillus oryzae in solid-state fermentation. Bioresour Technol 2007; 98(4): 958-61.
[http://dx.doi.org/10.1016/j.biortech.2006.03.013] [PMID: 16713256]
[191]
Vivarelli S, Salemi R, Candido S, et al. Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel) 2019; 11(1): 38.
[http://dx.doi.org/10.3390/cancers11010038] [PMID: 30609850]
[192]
Drago L, Mombelli B, Ciardo G, De Vecchi E, Gismondo MR. Effects of three different fish oil formulations on Helicobacter pylori growth and viability: in vitro study. J Chemother 1999; 11(3): 207-10.
[http://dx.doi.org/10.1179/joc.1999.11.3.207] [PMID: 10435683]
[193]
Rani B, Khetarpaul N. Probiotic fermented food mixtures: possible applications in clinical anti-diarrhoea usage. Nutr Health 1998; 12(2): 97-105.
[http://dx.doi.org/10.1177/026010609801200202] [PMID: 9502235]
[194]
Halpin-Dohnalek MI, Hilty MD, Bynum DG. New patents. Trends Food Sci Technol 1999; 10: 186.
[195]
Gallaher DD, Stallings WH, Blessing LL, Busta FF, Brady LJ. Probiotics, cecal microflora, and aberrant crypts in the rat colon. J Nutr 1996; 126(5): 1362-71.
[http://dx.doi.org/10.1093/jn/126.5.1362] [PMID: 8618132]
[196]
Majamaa H, Isolauri E. Probiotics: a novel approach in the management of food allergy. J Allergy Clin Immunol 1997; 99(2): 179-85.
[http://dx.doi.org/10.1016/S0091-6749(97)70093-9] [PMID: 9042042]
[197]
Lykova EA, Bondarenko VM, Izachik IuA, et al. [The probiotic correction of microecological and immune disorders in gastroduodenal pathology in children]. Zh Mikrobiol Epidemiol Immunobiol 1996; (2): 88-91.
[PMID: 8701669]
[198]
Boros LG, Nichelatti M, Shoenfeld Y. Fermented wheat germ extract (Avemar) in the treatment of cancer and autoimmune diseases. Ann N Y Acad Sci 2005; 1051(1): 529-42.
[http://dx.doi.org/10.1196/annals.1361.097] [PMID: 16126993]
[199]
Szende B, Marcsek Z, Kocsis Z, Tompa A. Effect of simultaneous administration of Avemar and cytostatic drugs on viability of cell cultures, growth of experimental tumors, and survival tumor-bearing mice. Cancer Biother Radiopharm 2004; 19(3): 343-9.
[http://dx.doi.org/10.1089/1084978041425016] [PMID: 15285880]
[200]
Ray RC, El Sheikha AF, Kumar S. Oriental fermented functional (probiotic) foods. Microorganisms and fermentation of traditional foods. In: Food biology series. Boca Raton: Science Publishers Inc. 2014; pp. 283-311.
[201]
Arliss RM, Biermann CA. Do soy isoflavones lower cholesterol, inhibit atherosclerosis, and play a role in cancer prevention? Holist Nurs Pract 2002; 16(5): 40-8.
[http://dx.doi.org/10.1097/00004650-200210000-00009] [PMID: 12465217]
[202]
Sumi H, Hamada H, Tsushima H, Mihara H, Muraki H. A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experientia 1987; 43(10): 1110-1.
[http://dx.doi.org/10.1007/BF01956052] [PMID: 3478223]
[203]
Kim B, Hong VM, Yang J, et al. Kim JE. A review of fermented foods with beneficial effects on brain and cognitive function. Prev Nutr Food Sci 2016; 21(4): 297-309.
[http://dx.doi.org/10.3746/pnf.2016.21.4.297] [PMID: 28078251]
[204]
Ano Y, Kutsukake T, Hoshi A, Yoshida A, Nakayama H. Identification of a novel dehydroergosterol enhancing microglial anti-inflammatory activity in a dairy product fermented with Penicillium candidum. PLoS One 2015; 10(3): e0116598.
[http://dx.doi.org/10.1371/journal.pone.0116598] [PMID: 25760331]
[205]
Palmer DJ, Huang RC, Craig JM, Prescott SL. Nutritional influences on epigenetic programming: asthma, allergy, and obesity. Immunol Allergy Clin North Am 2014; 34(4): 825-37.
[http://dx.doi.org/10.1016/j.iac.2014.07.003] [PMID: 25282294]
[206]
Szlufman C, Shemesh M. Role of probiotic Bacilli in developing synbiotic food: challenges and opportunities. Front Microbiol 2021; 12: 638830.
[http://dx.doi.org/10.3389/fmicb.2021.638830] [PMID: 33912147]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy