Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

The Advances in Bioactivities, Mechanisms of Action and Structural Optimizations of Matrine and its Derivatives

Author(s): Jianwei Xu, Min Lv* and Hui Xu*

Volume 22, Issue 13, 2022

Published on: 25 February, 2022

Page: [1716 - 1734] Pages: 19

DOI: 10.2174/1389557522666220113124717

Price: $65

Abstract

Matrine, a tetracyclo-quinolizidine alkaloid, is isolated from the industrial crop plant Sophora flavescens. Due to a wide range of pharmacological and agricultural properties, the research on the phytochemistry, pharmacology, toxicology, and mechanisms of action of matrine and its derivatives has received much attention. On the other hand, to improve their biological activities, the study on structural optimizations and structure-activity relationships of matrine and its derivatives has also attached more and more importance. In this review article, the updates regarding the advances in bioactivities, mechanisms of action, structural modifications, and structure-activity relationships of matrine and its derivatives from 2017 to 2020 are presented. We hope that this review will provide a reference for the development and application of matrine and its derivatives as drugs or pesticides in the future.

Keywords: Matrine, structural modification, biological activity, mechanism of action, structure-activity relationship, pesticide.

Graphical Abstract

[1]
Jin, X.; Liu, M.Y.; Zhang, D.F.; Zhong, X.; Du, K.; Qian, P.; Gao, H.; Wei, M.J. Natural products as a potential modulator of microglial polarization in neurodegenerative diseases. Pharmacol. Res., 2019, 145, 104253.
[http://dx.doi.org/10.1016/j.phrs.2019.104253] [PMID: 31059788]
[2]
Li, J.; Yao, Y.; Han, H.Q.; Li, W.Q.; Li, N.; Miao, Z.H. Effect of matrine on learning and memory function and neuroinflammation in LPS-induced Alzheimer’s disease mice model. Chin. J. Exp. Trad. Med. Form., 2018, 24(24), 134-139.
[http://dx.doi.org/10.13422/j.cnki.syfjx.20182430]
[3]
Ma, W.; Xu, J.; Zhang, Y.; Zhang, H.; Zhang, Z.; Zhou, L.; Wang, X.; Liu, H.; Chen, Y.; Du, P.; Min, N.; Liu, Z.; Yin, Y. Matrine pre-treatment suppresses AGEs- induced HCSMCs fibrotic responses by regulating Poldip2/mTOR pathway. Eur. J. Pharmacol., 2019, 865, 172746.
[http://dx.doi.org/10.1016/j.ejphar.2019.172746] [PMID: 31634459]
[4]
Mahzari, A.; Zeng, X.Y.; Zhou, X.; Li, S.; Xu, J.; Tan, W.; Vlahos, R.; Robinson, S.; Ye, J.M. Repurposing matrine for the treatment of hepatosteatosis and associated disorders in glucose homeostasis in mice. Acta Pharmacol. Sin., 2018, 39(11), 1753-1759.
[http://dx.doi.org/10.1038/s41401-018-0016-8] [PMID: 29980742]
[5]
Jia, F.; Zhou, Q.; Li, X.; Zhou, X. Total alkaloids of Sophora alopecuroides and matrine inhibit auto-inducer 2 in the biofilms of Staphylo-coccus epidermidis. Microb. Pathog., 2019, 136, 103698.
[http://dx.doi.org/10.1016/j.micpath.2019.103698] [PMID: 31470047]
[6]
Yu, S.; Liu, M.; Hu, K. Natural products: Potential therapeutic agents in multiple sclerosis. Int. Immunopharmacol., 2019, 67, 87-97.
[http://dx.doi.org/10.1016/j.intimp.2018.11.036] [PMID: 30537635]
[7]
Liu, C.; Yang, S.; Wang, K.; Bao, X.; Liu, Y.; Zhou, S.; Liu, H.; Qiu, Y.; Wang, T.; Yu, H. Alkaloids from Traditional Chinese Medicine against hepatocellular carcinoma. Biomed. Pharmacother., 2019, 120, 109543.
[http://dx.doi.org/10.1016/j.biopha.2019.109543] [PMID: 31655311]
[8]
Zhang, B.C.; Xu, H. Research progress of agricultural bioactivities and structural modifications of matrine and its analogues. Chin. J. Pesti. Sci., 2019, 21(5-6), 609-626.
[http://dx.doi.org/10.16801/j.issn.1008-7303.2019.0099]
[9]
Huang, J.; Xu, H. Matrine: Bioactivities and structural modifications. Curr. Top. Med. Chem., 2016, 16(28), 3365-3378.
[http://dx.doi.org/10.2174/1568026616666160506131012] [PMID: 27150374]
[10]
Wang, R.; Liu, H.; Shao, Y.; Wang, K.; Yin, S.; Qiu, Y.; Wu, H.; Liu, E.; Wang, T.; Gao, X.; Yu, H. Sophoridine inhibits human colorectal cancer progression via targeting MAPKAPK2. Mol. Cancer Res., 2019, 17(12), 2469-2479.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0553] [PMID: 31575657]
[11]
Gu, C.; Lu, H.; Qian, Z. Matrine reduces the secretion of exosomal circSLC7A6 from cancer-associated fibroblast to inhibit tumorigenesis of colorectal cancer by regulating CXCR5. Biochem. Biophys. Res. Commun., 2020, 527(3), 638-645.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.142] [PMID: 32423804]
[12]
Gu, Y.Y.; Chen, M.H.; May, B.H.; Liao, X.Z.; Liu, J.H.; Tao, L.T.; Man-Yuen Sze, D.; Zhang, A.L.; Mo, S.L. Matrine induces apoptosis in multiple colorectal cancer cell lines in vitro and inhibits tumour growth with minimum side effects in vivo via Bcl-2 and caspase-3. Phytomedicine, 2018, 51, 214-225.
[http://dx.doi.org/10.1016/j.phymed.2018.10.004] [PMID: 30466620]
[13]
Zhang, Y.; Wang, M.; Xu, X.; Liu, Y.; Xiao, C. Matrine promotes apoptosis in SW480 colorectal cancer cells via elevating MIEF1-related mitochondrial division in a manner dependent on LATS2-Hippo pathway. J. Cell. Physiol., 2019, 234(12), 22731-22741.
[http://dx.doi.org/10.1002/jcp.28838] [PMID: 31119752]
[14]
Chang, C.; Liu, J. Matrine treatment triggers apoptosis in colon cancer cells. Indian J. Pharm. Sci., 2020, 82, 59-65.
[http://dx.doi.org/10.36468/pharmaceutical-sciences.sp1.61]
[15]
Duan, L.; Deng, L.; Wang, D.; Ma, S.; Li, C.; Zhao, D. Treatment mechanism of matrine in combination with irinotecan for colon cancer. Oncol. Lett., 2017, 14(2), 2300-2304.
[http://dx.doi.org/10.3892/ol.2017.6407] [PMID: 28781667]
[16]
Hong, X.; Zhong, L.; Xie, Y.; Zheng, K.; Pang, J.; Li, Y.; Yang, Y.; Xu, X.; Mi, P.; Cao, H.; Zhang, W.; Hu, T.; Song, G.; Wang, D.; Zhan, Y.Y. Matrine reverses the warburg effect and suppresses colon cancer cell growth via negatively regulating HIF-1 alpha. Front. Pharmacol., 2019, 10, 1437.
[http://dx.doi.org/10.3389/fphar.2019.01437] [PMID: 31849679]
[17]
Yang, J.; He, D.; Peng, Y.; Zhong, H.; Deng, Y.; Yu, Z.; Guan, C.; Zuo, Y.; Xu, Z. Matrine suppresses the migration and invasion of NSCLC cells by inhibiting PAX2-induced epithelial-mesenchymal transition. OncoTargets Ther., 2017, 10, 5209-5217.
[http://dx.doi.org/10.2147/OTT.S149609] [PMID: 29138573]
[18]
Xie, W.; Lu, J.; Lu, Q.; Wang, X.; Long, H.; Huang, J.; Guo, Z. Matrine inhibits the proliferation and migration of lung cancer cells through regulation of the protein kinase B/glycogen synthase kinase-3β signaling pathways. Exp. Ther. Med., 2018, 16(2), 723-729.
[http://dx.doi.org/10.3892/etm.2018.6266] [PMID: 30112033]
[19]
Guo, S.; Chen, Y.; Pang, C.; Wang, X.; Shi, S.; Zhang, H.; An, H.; Zhan, Y. Matrine is a novel inhibitor of the TMEM16A chloride channel with antilung adenocarcinoma effects. J. Cell. Physiol., 2019, 234(6), 8698-8708.
[http://dx.doi.org/10.1002/jcp.27529] [PMID: 30370542]
[20]
Lu, Z.; Xiao, Y.; Liu, X.; Zhang, Z.; Xiao, F.; Bi, Y. Matrine reduces the proliferation of A549 cells via the p53/p21/PCNA/eIF4E signaling pathway. Mol. Med. Rep., 2017, 15(5), 2415-2422.
[http://dx.doi.org/10.3892/mmr.2017.6331] [PMID: 28447756]
[21]
Pu, J.; Tang, X.; Zhuang, X.; Hu, Z.; He, K.; Wu, Y.; Dai, T. Matrine induces apoptosis via targeting CCR7 and enhances the effect of anti-cancer drugs in non-small cell lung cancer in vitro. Innate Immun., 2018, 24(7), 394-399.
[http://dx.doi.org/10.1177/1753425918800555] [PMID: 30236029]
[22]
Hao, Y.; Yin, H.; Zhu, C.; Li, F.; Zhang, Y.; Li, Y.; Wang, X.; Li, D. Matrine inhibits proliferation and promotes autophagy and apoptosis in non-small cell lung cancer cells by deactivating PI3K/AKT/mTOR pathway. Nan Fang Yi Ke Da Xue Xue Bao, 2019, 39(7), 760-765.
[http://dx.doi.org/10.12122/j.issn.1673-4254.2019.07.02] [PMID: 31340906]
[23]
An, Q.; Han, C.; Zhou, Y.; Li, F.; Li, D.; Zhang, X.; Yu, Z.; Duan, Z.; Kan, Q. Matrine induces cell cycle arrest and apoptosis with reco-very of the expression of miR-126 in the A549 non-small cell lung cancer cell line. Mol. Med. Rep., 2016, 14(5), 4042-4048.
[http://dx.doi.org/10.3892/mmr.2016.5753] [PMID: 27665734]
[24]
Guo, H.; Zhou, S.; Ran, R. Mechanism of the matrine in regulating autophagy of hepatocellular carcinoma cell line HepG2. China Pharm., 2019, 28(6), 14-17.
[http://dx.doi.org/10.3969/j.issn.1006-4931.2019.06.005]
[25]
Dai, H.L.; Dong, C.; Xu, L.; Han, Y.Q.; Li, H. Effect of matrine and oxymatrine on proliferation and apoptosis and signaling transduction of janus kinase-signal transduction and activators of transcription family in SMMC -7721 cell line. Chin. J. Exp. Surg., 2017, 34(1), 61-64.
[http://dx.doi.org/10.3760/cma.j.issn.1001-9030.2017.01.018]
[26]
Wu, L.; Wang, G.; Wei, J.; Huang, N.; Zhang, S.; Yang, F.; Li, M.; Zhou, G.; Wang, L. Matrine derivative YF-18 inhibits lung cancer cell proliferation and migration through down-regulating Skp2. Oncotarget, 2017, 8(7), 11729-11738.
[http://dx.doi.org/10.18632/oncotarget.14329] [PMID: 28036296]
[27]
Sun, X.; Zhuo, X.B.; Hu, Y.P.; Zheng, X.; Zhao, Q.J. A novel matrine derivative WM622 inhibits hepatocellular carcinoma by inhibiting PI3K/AKT signaling pathways. Mol. Cell. Biochem., 2018, 449(1-2), 47-54.
[http://dx.doi.org/10.1007/s11010-018-3341-9] [PMID: 29532226]
[28]
Zou, Y.; Sarem, M.; Xiang, S.; Hu, H.; Xu, W.; Shastri, V.P. Autophagy inhibition enhances Matrine derivative MASM induced apoptosis in cancer cells via a mechanism involving reactive oxygen species-mediated PI3K/Akt/mTOR and Erk/p38 signaling. BMC Cancer, 2019, 19(1), 949.
[http://dx.doi.org/10.1186/s12885-019-6199-7] [PMID: 31615459]
[29]
Zhou, Z.D.; Liu, J.M.; Yang, Y.X.; Ye, X.Y.; Gao, J.H. Effects of matrine on ultrastructure of hippocampal synapse in Alzheimer’s disea-se model rats. World Sci. Technol./Modern. Tradit. Chin. Med. Mater. Med., 2019, 21(4), 629-634.
[http://dx.doi.org/10.11842/wst.2019.04.010]
[30]
Sun, K.; Bai, Y.; Zhao, R.; Guo, Z.; Su, X.; Li, P.; Yang, P. Neuroprotective effects of matrine on scopolamine-induced amnesia via inhibi-tion of AChE/BuChE and oxidative stress. Metab. Brain Dis., 2019, 34(1), 173-181.
[http://dx.doi.org/10.1007/s11011-018-0335-y] [PMID: 30406376]
[31]
Liu, Z.; Zhang, Y.; Tang, Z.; Xu, J.; Ma, M.; Pan, S.; Qiu, C.; Guan, G.; Wang, J. Matrine attenuates cardiac fibrosis by affecting ATF6 signaling pathway in diabetic cardiomyopathy. Eur. J. Pharmacol., 2017, 804, 21-30.
[http://dx.doi.org/10.1016/j.ejphar.2017.03.061] [PMID: 28373137]
[32]
Hosseini, S.; Imenshahidi, M.; Hosseinzadeh, H.; Karimi, G. Effects of plant extracts and bioactive compounds on attenuation of bleomy-cin-induced pulmonary fibrosis. Biomed. Pharmacother., 2018, 107, 1454-1465.
[http://dx.doi.org/10.1016/j.biopha.2018.08.111] [PMID: 30257362]
[33]
Aamir, K.; Khan, H.U.; Sethi, G.; Hossain, M.A.; Arya, A. Wnt signaling mediates TLR pathway and promote unrestrained adipogenesis and metaflammation: Therapeutic targets for obesity and type 2 diabetes. Pharmacol. Res., 2019., 104602.
[http://dx.doi.org/10.1016/j.phrs.2019.104602] [PMID: 31846761]
[34]
Zhang, Y.; Cui, L.; Guan, G.; Wang, J.; Qiu, C.; Yang, T.; Guo, Y.; Liu, Z. Matrine suppresses cardiac fibrosis by inhibiting the TGF β/Smad pathway in experimental diabetic cardiomyopathy. Mol. Med. Rep., 2018, 17(1), 1775-1781.
[http://dx.doi.org/10.3892/mmr.2017.8054] [PMID: 29138820]
[35]
Ma, J.; Ma, S.; Yin, C.; Wu, H. Matrine reduces susceptibility to postinfarct atrial fibrillation in rats due to antifibrotic properties. J. Cardiovasc. Electrophysiol., 2018, 29(4), 616-627.
[http://dx.doi.org/10.1111/jce.13448] [PMID: 29377366]
[36]
Li, Y.Z.; Peng, X.; Ma, Y.H.; Li, F.J.; Liao, Y.H. Matrine suppresses lipopolysaccharide-induced fibrosis in human peritoneal mesothelial cells by inhibiting the epithelial-mesenchymal transition. Chin. Med. J. (Engl.), 2019, 132(6), 664-670.
[http://dx.doi.org/10.1097/CM9.0000000000000127] [PMID: 30855347]
[37]
Bahri, S.; Ben Ali, R.; Abidi, A.; Jameleddine, S. The efficacy of plant extract and bioactive compounds approaches in the treatment of pulmonary fibrosis: A systematic review. Biomed. Pharmacother., 2017, 93, 666-673.
[http://dx.doi.org/10.1016/j.biopha.2017.06.052] [PMID: 28688290]
[38]
Zhang, X.; Hu, C.; Zhang, N.; Wei, W.Y.; Li, L.L.; Wu, H.M.; Ma, Z.G.; Tang, Q.Z. Matrine attenuates pathological cardiac fibrosis via RPS5/p38 in mice. Acta Pharmacol. Sin., 2021, 42(4), 573-584.
[http://dx.doi.org/10.1038/s41401-020-0473-8] [PMID: 32694761]
[39]
Wu, J.; Hu, G.; Dong, Y.; Ma, R.; Yu, Z.; Jiang, S.; Han, Y.; Yu, K.; Zhang, S. Matrine induces Akt/mTOR signalling inhibition-mediated autophagy and apoptosis in acute myeloid leukaemia cells. J. Cell. Mol. Med., 2017, 21(6), 1171-1181.
[http://dx.doi.org/10.1111/jcmm.13049] [PMID: 28026112]
[40]
Ma, L.; Xu, Z.; Wang, J.; Zhu, Z.; Lin, G.; Jiang, L.; Lu, X.; Zou, C. Matrine inhibits BCR/ABL mediated ERK/MAPK pathway in human leukemia cells. Oncotarget, 2017, 8(65), 108880-108889.
[http://dx.doi.org/10.18632/oncotarget.22353] [PMID: 29312576]
[41]
Hao, Y.; Zhang, N.; Wei, N.; Yin, H.; Zhang, Y.; Xu, H.; Zhu, C.; Li, D. Matrine induces apoptosis in acute myeloid leukemia cells by inhibiting the PI3K/Akt/mTOR signaling pathway. Oncol. Lett., 2019, 18(3), 2891-2896.
[http://dx.doi.org/10.3892/ol.2019.10649] [PMID: 31452769]
[42]
Lin, G.; Wu, Y.; Cai, F.; Li, Z.; Su, S.; Wang, J.; Cao, J.; Ma, L. Matrine promotes human myeloid leukemia cells apoptosis through war-burg effect mediated by hexokinase 2. Front. Pharmacol., 2019, 10, 1069.
[http://dx.doi.org/10.3389/fphar.2019.01069] [PMID: 31607919]
[43]
Yang, L.M.; Huang, X.H.; Cao, W.; Lin, N.X. Protective effects of matrine on α-naphthl isocyanate-induced cholestatic liver injury in rats. Chung Kuo Yao Hsueh Tsa Chih, 2018, 53(10), 783-787.
[http://dx.doi.org/10.11669/cpj.2018.10.005]
[44]
Shi, J.; Han, G.; Wang, J.; Han, X.; Zhao, M.; Duan, X.; Mi, L.; Li, N.; Yin, X.; Shi, H.; Li, C.; Xu, J.; Yin, F. Matrine promotes hepatic oval cells differentiation into hepatocytes and alleviates liver injury by suppression of Notch signalling pathway. Life Sci., 2020, 261, 118354.
[http://dx.doi.org/10.1016/j.lfs.2020.118354] [PMID: 32866517]
[45]
Yang, Z.; Wang, L.; Wang, X. Matrine induces the hepatic differentiation of WB-F344 rat hepatic progenitor cells and inhibits Jag-ged 1/HES1 signaling. Mol. Med. Rep., 2016, 14(4), 3841-3847.
[http://dx.doi.org/10.3892/mmr.2016.5668] [PMID: 27573552]
[46]
Pan, J.; Hao, X.; Yao, H.; Ge, K.; Ma, L.; Ma, W. Matrine inhibits mycelia growth of Botryosphaeria dothidea by affecting membrane per-meability. J. For. Res., 2019, 30(3), 1105-1113.
[http://dx.doi.org/10.1007/s11676-019-00883-3]
[47]
Tanabe, N.; Kuboyama, T.; Tohda, C. Matrine directly activates extracellular heat shock protein 90, resulting in axonal growth and fun-ctional recovery in spinal cord injured-mice. Front. Pharmacol., 2018, 9, 446.
[http://dx.doi.org/10.3389/fphar.2018.00446] [PMID: 29867458]
[48]
Tanabe, N.; Kuboyama, T.; Tohda, C. Matrine promotes neural circuit remodeling to regulate motor function in a mouse model of chronic spinal cord injury. Neural Regen. Res., 2019, 14(11), 1961-1967.
[http://dx.doi.org/10.4103/1673-5374.259625] [PMID: 31290454]
[49]
Zhang, M.L.; Zhang, X.J.; Kang, J.; Zhang, H.J.; Chen, X.L.; Liu, N.; Liu, S.Q.; Ma, W.D.; Zhang, G.X.; Zhu, L. Matrine promotes NT3 expression in CNS cells in experimental autoimmune encephalomyelitis. Neurosci. Lett., 2017, 649, 100-106.
[http://dx.doi.org/10.1016/j.neulet.2017.04.005] [PMID: 28392360]
[50]
Kan, Q.C.; Zhang, H.J.; Zhang, Y.; Li, X.; Xu, Y.M.; Thome, R.; Zhang, M.L.; Liu, N.; Chu, Y.J.; Zhang, G.X.; Zhu, L. Matrine treatment blocks nogoA-induced neural inhibitory signaling pathway in ongoing experimental autoimmune encephalomyelitis. Mol. Neurobiol., 2017, 54(10), 8404-8418.
[http://dx.doi.org/10.1007/s12035-016-0333-1] [PMID: 27933584]
[51]
Chen, Z.Q.; Li, Z.Y.; Yang, C.Z.; Lin, R.T.; Lin, L.Z.; Sun, L.L. Chinese herbal medicine for epidermal growth factor receptor inhibitor-induced skin rash in patients with malignancy: An updated meta-analysis of 23 randomized controlled trials. Complement. Ther. Med., 2019, 47, 102167.
[http://dx.doi.org/10.1016/j.ctim.2019.08.001] [PMID: 31780021]
[52]
Jiang, J.; Wang, G. Matrine protects PC12 cells from lipopolysaccharide-evoked inflammatory injury via upregulation of miR-9. Pharm. Biol., 2020, 58(1), 314-320.
[http://dx.doi.org/10.1080/13880209.2020.1719165] [PMID: 32297823]
[53]
Wu, G.; Zhou, W.; Zhao, J.; Pan, X.; Sun, Y.; Xu, H.; Shi, P.; Geng, C.; Gao, L.; Tian, X. Matrine alleviates lipopolysaccharide-induced intestinal inflammation and oxidative stress via CCR7 signal. Oncotarget, 2017, 8(7), 11621-11628.
[http://dx.doi.org/10.18632/oncotarget.14598] [PMID: 28086227]
[54]
Zhou, J.; Ma, W.; Wang, X.; Liu, H.; Miao, Y.; Wang, J.; Du, P.; Chen, Y.; Zhang, Y.; Liu, Z. Matrine suppresses reactive oxygen species (ROS)-mediated MKKs/p38-induced inflammation in oxidized low-density lipoprotein (ox-LDL)-stimulated macrophages. Med. Sci. Monit., 2019, 25, 4130-4136.
[http://dx.doi.org/10.12659/MSM.917151] [PMID: 31156213]
[55]
Yu, X.; Seow, H.J.; Wang, H.; Anthony, D.; Bozinovski, S.; Lin, L.; Ye, J.M.; Vlahos, R. Matrine reduces cigarette smoke-induced airway neutrophilic inflammation by enhancing neutrophil apoptosis. Clin. Sci. (Lond.), 2019, 133(4), 551-564.
[http://dx.doi.org/10.1042/CS20180912] [PMID: 30733313]
[56]
Zhang, Y.; Yang, X.; Qiu, C.; Liu, F.; Liu, P.; Liu, Z. Matrine suppresses AGE-induced HAEC injury by inhibiting ROS-mediated NRLP3 inflammasome activation. Eur. J. Pharmacol., 2018, 822, 207-211.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.029] [PMID: 29374549]
[57]
Mahzari, A.; Li, S.; Zhou, X.; Li, D.; Fouda, S.; Alhomrani, M.; Alzahrani, W.; Robinson, S.R.; Ye, J.M. Matrine protects against MCD-induced development of NASH via upregulating HSP72 and downregulating mTOR in a manner distinctive from metformin. Front. Pharmacol., 2019, 10, 405.
[http://dx.doi.org/10.3389/fphar.2019.00405] [PMID: 31068812]
[58]
Sun, D.; Wang, J.; Yang, N.; Ma, H. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. Biochem. Biophys. Res. Commun., 2016, 477(1), 83-90.
[http://dx.doi.org/10.1016/j.bbrc.2016.06.024] [PMID: 27286706]
[59]
Chen, X.; Zhi, X.; Pan, P.; Cui, J.; Cao, L.; Weng, W.; Zhou, Q.; Wang, L.; Zhai, X.; Zhao, Q.; Hu, H.; Huang, B.; Su, J. Matrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis. FASEB J., 2017, 31(11), 4855-4865.
[http://dx.doi.org/10.1096/fj.201700316R] [PMID: 28739641]
[60]
Li, J.; Wang, X.; Yang, F.; Yuan, J.; Cui, Q.; Nie, F.; Zhang, J. Matrine enhances osteogenic differentiation of bone marrow-derived mesen-chymal stem cells and promotes bone regeneration in rapid maxillary expansion. Arch. Oral Biol., 2020, 118, 104862.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104862] [PMID: 32810708]
[61]
Xia, D.; Wu, J.; Xing, M.; Wang, Y.; Zhang, H.; Xia, Y.; Zhou, P.; Xu, S. Iron overload threatens the growth of osteoblast cells via inhibi-ting the PI3K/AKT/FOXO3a/DUSP14 signaling pathway. J. Cell. Physiol., 2019, 234(9), 15668-15677.
[http://dx.doi.org/10.1002/jcp.28217] [PMID: 30693516]
[62]
Xin, Z.; Jin, C.; Chao, L.; Zheng, Z.; Liehu, C.; Panpan, P.; Weizong, W.; Xiao, Z.; Qingjie, Z.; Honggang, H.; Longjuan, Q.; Xiao, C.; Jia-can, S. A matrine derivative M54 suppresses osteoclastogenesis and prevents ovariectomy-induced bone loss by targeting ribosomal pro-tein S5. Front. Pharmacol., 2018, 9, 22.
[http://dx.doi.org/10.3389/fphar.2018.00022] [PMID: 29441015]
[63]
Zhang, Y.B.; Zhang, X.L.; Chen, N.H.; Wu, Z.N.; Ye, W.C.; Li, Y.L.; Wang, G.C. Four matrine-based alkaloids with antiviral activities against HBV from the seeds of Sophora alopecuroides. Org. Lett., 2017, 19(2), 424-427.
[http://dx.doi.org/10.1021/acs.orglett.6b03685] [PMID: 28067050]
[64]
Sun, N.; Zhang, H.; Sun, P.; Khan, A.; Guo, J.; Zheng, X.; Sun, Y.; Fan, K.; Yin, W.; Li, H. Matrine exhibits antiviral activity in a PRRSV/PCV2 co-infected mouse model. Phytomedicine, 2020, 77, 153289.
[http://dx.doi.org/10.1016/j.phymed.2020.153289] [PMID: 32771536]
[65]
Fang, X.D.; Ouyang, G.C.; Lu, H.L.; Guo, M.F.; Wu, W.N. Ecological control of citrus pests primarily using predatory mites and the bio-rational pesticide matrine. Int. J. Pest Manage., 2018, 64(3), 262-270.
[http://dx.doi.org/10.1080/09670874.2017.1394507]
[66]
Saleem, M.S.; Batool, T.S.; Akbar, M.F.; Raza, S.; Shahzad, S. fficiency of botanical pesticides against some pests infesting hydroponic cucumber, cultivated under greenhouse conditions. Egypt. J. Biol. Pest Control, 2019, 29.
[http://dx.doi.org/10.1186/s41938-019-0138-4]
[67]
Dai, W.; Li, Y.; Zhu, J.; Ge, L.Q.; Yang, G.Q.; Liu, F. Selectivity and sublethal effects of some frequently-used biopesticides on the preda-tor Cyrtorhinus lividipennis Reuter (Hemiptera: Miridae). J. Integr. Agric., 2019, 18(1), 124-133.
[http://dx.doi.org/10.1016/S2095-3119(17)61845-8]
[68]
Mao, L.S. Virulence determination and pantana simplex larvae control effect of 5 kinds of botanical insecticides. World Bamb. Ratt., 2018, 16(3), 6-10.
[http://dx.doi.org/10.13640/j.cnki.wbr.2018.03.002]
[69]
Cheng, X.; He, H.; Wang, W.X.; Dong, F.; Zhang, H.; Ye, J.; Tan, C.; Wu, Y.; Lv, X.; Jiang, X.; Qin, X. Semi-synthesis and characterization of some new matrine derivatives as insecticidal agents. Pest Manag. Sci., 2020, 76(8), 2711-2719.
[http://dx.doi.org/10.1002/ps.5817] [PMID: 32166856]
[70]
Li, L.; Ma, L.; Wang, D.; Jia, H.; Yu, M.; Gu, Y.; Shang, H.; Zou, Z. Design and synthesis of matrine derivatives as novel anti-pulmonary fibrotic agents via repression of the TGF/Smad pathway. Molecules, 2019, 24(6), 1108.
[http://dx.doi.org/10.3390/molecules24061108] [PMID: 30897818]
[71]
Li, Z.; Wu, L.C.; Cai, B.; Luo, M.Y.; Huang, M.T.; Rashid, H.U.; Yang, Y.W.; Jiang, J.; Wang, L.S. Design, synthesis, and biological eva-luation of thiomatrine derivatives as potential anticancer agents. Med. Chem. Res., 2018, 27(8), 1941-1955.
[http://dx.doi.org/10.1007/s00044-018-2205-x]
[72]
Li, Z.; Luo, M.; Cai, B.; Wu, L.; Huang, M. Haroon-Ur-Rashid; Jiang, J.; Wang, L. Design, synthesis and biological evaluation of matrine derivatives as potential anticancer agents. Bioorg. Med. Chem. Lett., 2018, 28(4), 677-683.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.017] [PMID: 29395978]
[73]
Xu, Y.; Wu, L.; Dai, H.; Gao, M.; Ur Rashid, H.; Wang, H.; Xie, P.; Liu, X.; Jiang, J.; Wang, L. Novel alpha, beta-unsaturated sophoridinic derivatives: Design, synthesis, molecular docking and anti-cancer activities. Molecules, 2017, 22(11), 1967.
[http://dx.doi.org/10.3390/molecules22111967] [PMID: 29135958]
[74]
Jiang, L.; Wu, L.; Yang, F.; Almosnid, N.; Liu, X.; Jiang, J.; Altman, E.; Wang, L.; Gao, Y. Synthesis, biological evaluation and mechanism studies of matrine derivatives as anticancer agents. Oncol. Lett., 2017, 14(3), 3057-3064.
[http://dx.doi.org/10.3892/ol.2017.6475] [PMID: 28927053]
[75]
Huang, J.L.; Li, S.C.; Lv, M.; Li, T.Z.; Hao, M.; Zhang, S.Y.; Xu, H. Non-food bioactive products for insecticides (II): Insights into agri-cultural activities of matrine-type alkaloid analogs as botanical pesticides. Ind. Crops Prod., 2020, 154, 112759.
[http://dx.doi.org/10.1016/j.indcrop.2020.112759]
[76]
Li, S.C.; Sun, Z.Q.; Zhang, B.C.; Lv, M.; Xu, H. Non-food bioactive products: Semisynthesis, biological activities, and mechanisms of action of oximinoether derivatives of matrine from Sophora flavescens. Ind. Crops Prod., 2019, 131, 134-141.
[http://dx.doi.org/10.1016/j.indcrop.2019.01.049]
[77]
Kong, W.; Bao, Y.; Ma, Q.; Xu, H. Synthesis and biological activities of novel pyrazolomatrine derivatives. Bioorg. Med. Chem. Lett., 2018, 28(20), 3338-3341.
[http://dx.doi.org/10.1016/j.bmcl.2018.09.008] [PMID: 30217413]
[78]
Huang, J.; Xiang, S.Y.; Lv, M.; Yang, L.M.; Zhang, Y.; Zheng, Y.T.; Xu, H. 14-Formyl-15-aryloxy/methoxymatrine and 14-aryloxymethylidenylmatrine derivatives as anti-HIV-1 agents. Med. Chem., 2018, 14(3), 249-252.
[http://dx.doi.org/10.2174/1573406413666171002120310] [PMID: 28969577]
[79]
Huang, J.L.; Lv, M.; Xu, H. Semisynthesis of some matrine ether derivatives as insecticidal agents. RSC Advances, 2017, 7(26), 15997-16004.
[http://dx.doi.org/10.1039/C7RA00954B]
[80]
Huang, J.; Lv, M.; Thapa, S.; Xu, H. Synthesis of novel quinolinomatrine derivatives and their insecticidal/acaricidal activities. Bioorg. Med. Chem. Lett., 2018, 28(10), 1753-1757.
[http://dx.doi.org/10.1016/j.bmcl.2018.04.029] [PMID: 29685655]
[81]
Ni, W.; Li, C.; Liu, Y.; Song, H.; Wang, L.; Song, H.; Wang, Q. Various bioactivity and relationship of structure activity of matrine analo-gues. J. Agric. Food Chem., 2017, 65(10), 2039-2047.
[http://dx.doi.org/10.1021/acs.jafc.6b05474] [PMID: 28248103]
[82]
Jing, D.W.; Wang, H.D.; Xu, Y.M.; Liu, X.; Wang, L.S. Synthesis and antitumor activities of novel 15-N-substituted matrine imine deriva-tives. Chin. J. Synth. Chem., 2019, 6, 418-423.
[http://dx.doi.org/10.15952/j.cnki.cjsc.1005-1511.18020]
[83]
Xu, Y.; Jing, D.; Chen, R.; Rashid, H.U.; Jiang, J.; Liu, X.; Wang, L.; Xie, P. Design, synthesis and evaluation of novel sophoridinic imine derivatives containing conjugated planar structure as potent anticancer agents. Bioorg. Med. Chem., 2018, 26(14), 4136-4144.
[http://dx.doi.org/10.1016/j.bmc.2018.07.001] [PMID: 30007563]
[84]
Zhang, C.; Li, X.; Li, X.; Hu, J.; Zhu, L.; Li, Y.; Jiang, J.; Wang, Z.; Yang, W. A simple matrine derivative for the facile syntheses of me-soporous zeolites ITQ-37 and ITQ-43. Chem. Commun. (Camb.), 2019, 55(19), 2753-2756.
[http://dx.doi.org/10.1039/C8CC08196D] [PMID: 30672935]
[85]
Li, S.; Lv, M.; Ma, Y.; Ma, M.; Xu, H. Non-food bioactive products for insecticides (I): Pesticidal activities and control efficieny of deri-vatives based on the natural alkaloid matrine. Ind. Crops Prod., 2020, 153, 112480.
[http://dx.doi.org/10.1016/j.indcrop.2020.112480]
[86]
Lv, M.; Sun, Z.; Li, S.; Zhang, S.; Xu, H. Non-food bioactive products for insecticides (II): Investigation on stress responses of Te-tranychus cinnabarinus Boisduval against a derivative of the alkaloid matrine. Bioorg. Med. Chem. Lett., 2020, 30(16), 127346.
[http://dx.doi.org/10.1016/j.bmcl.2020.127346] [PMID: 32631545]
[87]
Zhang, B.; Sun, Z.; Lv, M.; Xu, H. Semisynthesis of matrinic acid/alcohol/ester derivatives, their pesticidal activities, and investigation of mechanisms of action against Tetranychus cinnabarinus. J. Agric. Food Chem., 2018, 66(49), 12898-12910.
[http://dx.doi.org/10.1021/acs.jafc.8b04965] [PMID: 30452245]
[88]
Xu, H.; Xu, M.; Sun, Z.; Li, S. Preparation of matrinic/oxymatrinic amide derivatives as insecticidal/acaricidal agents and study on the mechanisms of action against Tetranychus cinnabarinus. J. Agric. Food Chem., 2019, 67(44), 12182-12190.
[http://dx.doi.org/10.1021/acs.jafc.9b05092] [PMID: 31609606]
[89]
Xu, J.; Sun, Z.; Hao, M.; Lv, M.; Xu, H. Evaluation of biological activities, and exploration on mechanism of action of matrine-cholesterol derivatives. Bioorg. Chem., 2020, 94, 103439.
[http://dx.doi.org/10.1016/j.bioorg.2019.103439] [PMID: 31776033]
[90]
Lv, M.; Liu, G.; Jia, M.; Xu, H. Synthesis of matrinic amide derivatives containing 1,3,4-thiadiazole scaffold as insecticidal/acaricidal agents. Bioorg. Chem., 2018, 81, 88-92.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.034] [PMID: 30118989]
[91]
Xu, Y.M.; Liang, P.Y.; Ur Rashid, H.; Wu, L.C.; Xie, P.; Wang, H.D.; Zhang, S.Y.; Wang, L.S.; Jiang, J. Design, synthesis, and biological evaluation of matrine derivatives possessing piperazine moiety as antitumor agents. Med. Chem. Res., 2019, 28(10), 1618-1627.
[http://dx.doi.org/10.1007/s00044-019-02398-2]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy