Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Aptamers Against COVID-19: An Untested Opportunity

Author(s): Annekathrin Haberland* and Johannes Müller

Volume 22, Issue 13, 2022

Published on: 16 February, 2022

Page: [1708 - 1715] Pages: 8

DOI: 10.2174/1389557522666220112094951

open access plus

Abstract

Given the lack of success in the development of effective drugs to treat COVID-19, which show “game-changing” potential, it is necessary to explore drugs with different modes of action. Single mode-of-action drugs have not been succeeded in curing COVID-19, which is a highly complex disease. This is the case for direct antivirals and anti-inflammatory drugs, both of which treat different phases of the disease. Aptamers are molecules that deliver different modes of action, allowing their effects to be bundled, which, when combined, support their therapeutic efficacy.

In this minireview, we summarise the current activities in the development of aptamers for the treatment of COVID-19 and long-COVID. A special emphasis is placed on the capability of their multiple modes of action, which is a promising approach for treating complex diseases such as COVID-19.

Keywords: Aptamer, BC 007, COVID-19, long-COVID-19, multiple modes-of-action, SARS-CoV-2.

Graphical Abstract

[1]
Salway, R.J.; Silvestri, D.; Wei, E.K.; Bouton, M. Using information technology to improve COVID-19 care at new york city health + hos-pitals. Health Aff. (Millwood), 2020, 39(9), 1601-1604.
[http://dx.doi.org/10.1377/hlthaff.2020.00930] [PMID: 32673131]
[2]
Rohilla, S. Designing therapeutic strategies to combat severe acute respiratory syndrome coronavirus-2 disease: COVID-19. Drug Dev. Res., 2021, 82(1), 12-26.
[http://dx.doi.org/10.1002/ddr.21720] [PMID: 33216381]
[3]
Hu, F.; Chen, F.; Ou, Z.; Fan, Q.; Tan, X.; Wang, Y.; Pan, Y.; Ke, B.; Li, L.; Guan, Y.; Mo, X.; Wang, J.; Wang, J.; Luo, C.; Wen, X.; Li, M.; Ren, P.; Ke, C.; Li, J.; Lei, C.; Tang, X.; Li, F. A compromised specific humoral immune response against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding in the gastrointestinal tract. Cell. Mol. Immunol., 2020, 17(11), 1119-1125.
[http://dx.doi.org/10.1038/s41423-020-00550-2] [PMID: 33037400]
[4]
Gozzo, L.; Longo, L.; Vitale, D.C.; Drago, F. Dexamethasone Treatment for Covid-19, a Curious Precedent Highlighting a Regulatory Gap. Front. Pharmacol., 2020, 11, 621934.
[http://dx.doi.org/10.3389/fphar.2020.621934] [PMID: 33329008]
[5]
Shabalin, I.G.; Czub, M.P.; Majorek, K.A.; Brzezinski, D.; Grabowski, M.; Cooper, D.R.; Panasiuk, M.; Chruszcz, M.; Minor, W. Molecu-lar determinants of vascular transport of dexamethasone in COVID-19 therapy. IUCrJ, 2020, 7(Pt 6)
[http://dx.doi.org/10.1107/S2052252520012944] [PMID: 33063792]
[6]
Mahase, E. Covid-19: Molnupiravir reduces risk of hospital admission or death by 50% in patients at risk, MSD reports. BMJ, 2021, 375, n2422.
[http://dx.doi.org/10.1136/bmj.n2422] [PMID: 34607801]
[7]
Roy, A.; Chaguturu, R. Chapter 3 - Holistic Drug Targeting. Innovative Approaches in Drug Discovery; Patwardhan, B; Chaguturu, R., Ed.; Academic Press: Boston, 2017, pp. 65-88.
[http://dx.doi.org/10.1016/B978-0-12-801814-9.00003-9]
[8]
Zhou, G.; Wilson, G.; Hebbard, L.; Duan, W.; Liddle, C.; George, J.; Qiao, L. Aptamers: A promising chemical antibody for cancer thera-py. Oncotarget, 2016, 7(12), 13446-13463.
[http://dx.doi.org/10.18632/oncotarget.7178] [PMID: 26863567]
[9]
Tucker, W.O.; Shum, K.T.; Tanner, J.A. G-quadruplex DNA aptamers and their ligands: Structure, function and application. Curr. Pharm. Des., 2012, 18(14), 2014-2026.
[http://dx.doi.org/10.2174/138161212799958477] [PMID: 22376117]
[10]
Behbahani, M.; Mohabatkar, H.; Hosseini, B. In silico design of quadruplex aptamers against the spike protein of SARS-CoV-2. Info. Med. Unlocked, 2021, 26, 100757.
[http://dx.doi.org/10.1016/j.imu.2021.100757] [PMID: 34664030]
[11]
Dzuvor, C. Rethinking aptamers as nanotheranostic tools for Sars-Cov-2 and Covid-19 infection. 2020.
[http://dx.doi.org/10.20944/preprints202008.0353.v1]
[12]
Torabi, R.; Ranjbar, R.; Halaji, M.; Heiat, M. Aptamers, the bivalent agents as probes and therapies for coronavirus infections: A systema-tic review. Mol. Cell. Probes, 2020, 53, 101636.
[http://dx.doi.org/10.1016/j.mcp.2020.101636] [PMID: 32634550]
[13]
Kim, T-H.; Lee, S-W. Aptamers for anti-viral therapeutics and diagnostics. Int. J. Mol. Sci., 2021, 22(8), 4168.
[http://dx.doi.org/10.3390/ijms22084168] [PMID: 33920628]
[14]
Krüger, A.; de Jesus Santos, A.P.; de Sá, V.; Ulrich, H.; Wrenger, C. Aptamer applications in emerging viral diseases. Pharmaceuticals (Basel), 2021, 14(7), 622.
[http://dx.doi.org/10.3390/ph14070622] [PMID: 34203242]
[15]
Musafia, B.; Oren-Banaroya, R.; Noiman, S. Designing anti-influenza aptamers: Novel quantitative structure activity relationship approach gives insights into aptamer-virus interaction. PLoS One, 2014, 9(5), e97696.
[http://dx.doi.org/10.1371/journal.pone.0097696] [PMID: 24846127]
[16]
Bala, J.; Chinnapaiyan, S.; Dutta, R.K.; Unwalla, H. Aptamers in HIV research diagnosis and therapy. RNA Biol., 2018, 15(3), 327-337.
[http://dx.doi.org/10.1080/15476286.2017.1414131] [PMID: 29431588]
[17]
Marchand, C.; Maddali, K.; Métifiot, M.; Pommier, Y. HIV-1 IN inhibitors: 2010 update and perspectives. Curr. Top. Med. Chem., 2009, 9(11), 1016-1037.
[http://dx.doi.org/10.2174/156802609789630910] [PMID: 19747122]
[18]
González, V.M.; Martín, M.E.; Fernández, G.; García-Sacristán, A. Use of aptamers as diagnostics tools and antiviral agents for human viruses. Pharmaceuticals (Basel), 2016, 9(4), E78.
[http://dx.doi.org/10.3390/ph9040078] [PMID: 27999271]
[19]
Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines - a new era in vaccinology. Nat. Rev. Drug Discov., 2018, 17(4), 261-279.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[20]
Schmitz, A.; Weber, A.; Bayin, M.; Breuers, S.; Fieberg, V.; Famulok, M.; Mayer, G.A. SARS-CoV-2 spike binding DNA aptamer that inhibits pseudovirus infection by an RBD-independent mechanism. Angew. Chem. Int. Ed. Engl., 2021, 60(18), 10279-10285.
[http://dx.doi.org/10.1002/anie.202100316] [PMID: 33683787]
[21]
Bock, L.C.; Griffin, L.C.; Latham, J.A.; Vermaas, E.H.; Toole, J.J. Selection of single-stranded DNA molecules that bind and inhibit hu-man thrombin. Nature, 1992, 355(6360), 564-566.
[http://dx.doi.org/10.1038/355564a0] [PMID: 1741036]
[22]
Haberland, A.; Holtzhauer, M.; Schlichtiger, A.; Bartel, S.; Schimke, I.; Müller, J.; Dandel, M.; Luppa, P.B.; Wallukat, G. Aptamer BC 007 - A broad spectrum neutralizer of pathogenic autoantibodies against G-protein-coupled receptors. Eur. J. Pharmacol., 2016, 789, 37-45.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.061] [PMID: 27375076]
[23]
Müller, J. The DNA-Based drug BC 007 neutralizes agonistically acting autoantibodies directed against G protein–coupled Receptors suc-cessful mode of action demonstrated in clinical phase 1 trial. Chem. Today, 2019, 37(2), 65-67.
[24]
Becker, N-P.; Haberland, A.; Wenzel, K.; Göttel, P.; Wallukat, G.; Davideit, H.; Schulze-Rothe, S.; Hönicke, A-S.; Schimke, I.; Bartel, S.; Grossmann, M.; Sinn, A.; Iavarone, L.; Boergermann, J.H.; Prilliman, K.; Golor, G.; Müller, J.; Becker, S.; Three-Part, A.A. Three-Part, randomised study to investigate the safety, Tolerability, Pharmacokinetics and Mode of action of BC 007, neutraliser of pathogenic auto-antibodies against G-Protein coupled receptors in healthy, young and elderly subjects. Clin. Drug Investig., 2020, 40(5), 433-447.
[http://dx.doi.org/10.1007/s40261-020-00903-9] [PMID: 32222912]
[25]
Weisshoff, H.; Krylova, O.; Nikolenko, H.; Düngen, H-D.; Dallmann, A.; Becker, S.; Göttel, P.; Müller, J.; Haberland, A. Aptamer BC 007 - Efficient binder of spreading-crucial SARS-CoV-2 proteins. Heliyon, 2020, 6(11), e05421.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05421] [PMID: 33163683]
[26]
Jang, K.J.; Lee, N-R.; Yeo, W-S.; Jeong, Y-J.; Kim, D-E. Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/Helicase. Biochem. Biophys. Res. Commun., 2008, 366(3), 738-744.
[http://dx.doi.org/10.1016/j.bbrc.2007.12.020] [PMID: 18082623]
[27]
Parashar, N.C.; Poddar, J.; Chakrabarti, S.; Parashar, G. Repurposing of SARS-CoV nucleocapsid protein specific nuclease resistant RNA aptamer for therapeutics against SARS-CoV-2. Infect. Genet. Evol., 2020, 85, 104497.
[http://dx.doi.org/10.1016/j.meegid.2020.104497] [PMID: 32791240]
[28]
Shum, K.T.; Tanner, J.A. Differential inhibitory activities and stabilisation of DNA aptamers against the SARS coronavirus helicase. ChemBioChem, 2008, 9(18), 3037-3045.
[http://dx.doi.org/10.1002/cbic.200800491] [PMID: 19031435]
[29]
Tan, J.; Kusov, Y.; Mutschall, D.; Tech, S.; Nagarajan, K.; Hilgenfeld, R.; Schmidt, C.L. The “SARS-unique domain” (SUD) of SARS co-ronavirus is an oligo(G)-binding protein. Biochem. Biophys. Res. Commun., 2007, 364(4), 877-882.
[http://dx.doi.org/10.1016/j.bbrc.2007.10.081] [PMID: 17976532]
[30]
Tan, J.; Vonrhein, C.; Smart, O.S.; Bricogne, G.; Bollati, M.; Kusov, Y.; Hansen, G.; Mesters, J.R.; Schmidt, C.L.; Hilgenfeld, R. The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes. PLoS Pathog., 2009, 5(5), e1000428.
[http://dx.doi.org/10.1371/journal.ppat.1000428] [PMID: 19436709]
[31]
Schultze, P.; Macaya, R.F.; Feigon, J. Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J. Mol. Biol., 1994, 235(5), 1532-1547.
[http://dx.doi.org/10.1006/jmbi.1994.1105] [PMID: 8107090]
[32]
Russo Krauss, I.; Napolitano, V.; Petraccone, L.; Troisi, R.; Spiridonova, V.; Mattia, C.A.; Sica, F. Duplex/quadruplex oligonucleotides: Role of the duplex domain in the stabilization of a new generation of highly effective anti-thrombin aptamers. Int. J. Biol. Macromol., 2018, 107(Pt B), 1697-1705.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.10.033] [PMID: 29024684]
[33]
Kikin, O.; D’Antonio, L.; Bagga, P.S. QGRS Mapper: A webbased server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res., 2006, 34(Web Server issue), W676-682.
[http://dx.doi.org/10.1093/nar/gkl253] [PMID: 16845096]
[34]
Teng, Y.; Girvan, A.C.; Casson, L.K.; Pierce, W.M., Jr; Qian, M.; Thomas, S.D.; Bates, P.J. AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res., 2007, 67(21), 10491-10500.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-4206] [PMID: 17974993]
[35]
Ugrinova, I.; Petrova, M.; Chalabi-Dchar, M.; Bouvet, P. Multifaceted nucleolin protein and its molecular partners in oncogenesis. Adv. Protein Chem. Struct. Biol., 2018, 111, 133-164.
[http://dx.doi.org/10.1016/bs.apcsb.2017.08.001]
[36]
Stamm, S.; Lodmell, J.S. C/D box snoRNAs in viral infections: RNA viruses use old dogs for new tricks. Noncoding RNA Res., 2019, 4(2), 46-53.
[http://dx.doi.org/10.1016/j.ncrna.2019.02.001] [PMID: 31193534]
[37]
Girvan, A.C.; Teng, Y.; Casson, L.K.; Thomas, S.D.; Jüliger, S.; Ball, M.W.; Klein, J.B.; Pierce, W.M., Jr; Barve, S.S.; Bates, P.J. AGRO100 inhibits activation of nuclear factor-kappaB (NF-kappaB) by forming a complex with NF-kappaB essential modulator (NEMO) and nu-cleolin. Mol. Cancer Ther., 2006, 5(7), 1790-1799.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0361] [PMID: 16891465]
[38]
Bhandari, R.; Khanna, G.; Kaushik, D.; Kuhad, A. Divulging the intricacies of crosstalk between NF-Kb and Nrf2-Keap1 pathway in neu-rological complications of COVID-19. Mol. Neurobiol., 2021, 58(7), 3347-3361.
[http://dx.doi.org/10.1007/s12035-021-02344-7] [PMID: 33683626]
[39]
Lin, M.; Zhang, J.; Wan, H.; Yan, C.; Xia, F. rationally designed multivalent aptamers targeting cell surface for biomedical applications. ACS Appl. Mater. Interfaces, 2021, 13(8), 9369-9389.
[http://dx.doi.org/10.1021/acsami.0c15644] [PMID: 33146988]
[40]
Liu, X.; Wang, Y-L.; Wu, J.; Qi, J.; Zeng, Z.; Wan, Q.; Chen, Z.; Manandhar, P.; Cavener, V.S.; Boyle, N.R.; Fu, X.; Salazar, E.; Kuchipudi, S.V.; Kapur, V.; Zhang, X.; Umetani, M.; Sen, M.; Willson, R.C.; Chen, S-H.; Zu, Y. Neutralizing aptamers Block S/RBD-ACE2 interacti-ons and prevent host cell infection. Angew. Chem. Int. Ed. Engl., 2021, 60(18), 10273-10278.
[http://dx.doi.org/10.1002/anie.202100345] [PMID: 33684258]
[41]
Song, Y.; Song, J.; Wei, X.; Huang, M.; Sun, M.; Zhu, L.; Lin, B.; Shen, H.; Zhu, Z.; Yang, C. Discovery of aptamers targeting the receptor-binding domain of the SARS-CoV-2 spike glycoprotein. Anal. Chem., 2020, 92(14), 9895-9900.
[http://dx.doi.org/10.1021/acs.analchem.0c01394] [PMID: 32551560]
[42]
Sun, M.; Liu, S.; Wei, X.; Wan, S.; Huang, M.; Song, T.; Lu, Y.; Weng, X.; Lin, Z.; Chen, H.; Song, Y.; Yang, C. Aptamer blocking strategy inhibits SARS-CoV-2 virus infection. Angew. Chem. Int. Ed. Engl., 2021, 60(18), 10266-10272.
[http://dx.doi.org/10.1002/anie.202100225] [PMID: 33561300]
[43]
Singh, N.K.; Ray, P.; Carlin, A.F.; Magallanes, C.; Morgan, S.C.; Laurent, L.C.; Aronoff-Spencer, E.S.; Hall, D.A. Hitting the diagnostic sweet spot: Point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer. Biosens. Bioelectron., 2021, 180, 113111.
[http://dx.doi.org/10.1016/j.bios.2021.113111] [PMID: 33743492]
[44]
Yang, G.; Li, Z.; Mohammed, I.; Zhao, L.; Wei, W.; Xiao, H.; Guo, W.; Zhao, Y.; Qu, F.; Huang, Y. Identification of SARS-CoV-2-against aptamer with high neutralization activity by blocking the RBD domain of spike protein 1. Signal Transduct. Target. Ther., 2021, 6(1), 227.
[http://dx.doi.org/10.1038/s41392-021-00649-6] [PMID: 34112756]
[45]
Rodriguez-Perez, A.I.; Labandeira, C.M.; Pedrosa, M.A.; Valenzuela, R.; Suarez-Quintanilla, J.A.; Cortes-Ayaso, M.; Mayán-Conesa, P.; Labandeira-Garcia, J.L. Autoantibodies against ACE2 and angiotensin type-1 receptors increase severity of COVID-19. J. Autoimmun., 2021, 122, 102683.
[http://dx.doi.org/10.1016/j.jaut.2021.102683] [PMID: 34144328]
[46]
Wallukat, G.; Hohberger, B.; Wenzel, K.; Fürst, J.; Schulze-Rothe, S.; Wallukat, A.; Hönicke, A.S.; Müller, J. Functional autoantibodies against G-protein coupled receptors in patients with persistent Long-COVID-19 symptoms. J. Transl. Autoimmun., 2021, 4, 100100.
[http://dx.doi.org/10.1016/j.jtauto.2021.100100] [PMID: 33880442]
[47]
Hohberger, B.; Harrer, T.; Mardin, C.; Kruse, F.; Hoffmanns, J.; Rogge, L.; Heltmann, F.; Moritz, M.F.; Szweczxykowski, C.; Schotten-hamml, J.; Kräter, M.; Bergua, A.; Zenkel, M.; Gießl, A.; Schlötzer-Schrehardt, U.; Lämmer, R.; Herrmann, M.; Haberland, A.; Göttel, P.; Müller, J.; Wallukat, G. Neutralization of Autoantibodies Targeting G-Protein Coupled Receptors Improves Capillary Impairment and Fati-gue Symptoms after COVID-19 Infection; Social Science Research Network: Rochester, NY, 2021. https://papers.ssrn.com/abstract=3879488
[48]
Wang, E.Y.; Mao, T.; Klein, J.; Dai, Y.; Huck, J.D.; Jaycox, J.R.; Liu, F.; Zhou, T.; Israelow, B.; Wong, P.; Coppi, A.; Lucas, C.; Silva, J.; Oh, J.E.; Song, E.; Perotti, E.S.; Zheng, N.S.; Fischer, S.; Campbell, M.; Fournier, J.B.; Wyllie, A.L.; Vogels, C.B.F.; Ott, I.M.; Kalinich, C.C.; Petrone, M.E.; Watkins, A.E.; Dela Cruz, C.; Farhadian, S.F.; Schulz, W.L.; Ma, S.; Grubaugh, N.D.; Ko, A.I.; Iwasaki, A.; Ring, A.M. Diverse functional autoantibodies in patients with COVID-19. Nature, 2021, 595(7866), 283-288.
[http://dx.doi.org/10.1038/s41586-021-03631-y] [PMID: 34010947]
[49]
Khamsi, R. Rogue antibodies could be driving severe COVID-19. Nature, 2021, 590(7844), 29-31.
[http://dx.doi.org/10.1038/d41586-021-00149-1] [PMID: 33469204]
[50]
Mackman, N.; Antoniak, S.; Wolberg, A.S.; Kasthuri, R.; Key, N.S. Coagulation abnormalities and thrombosis in patients infected with SARS-CoV-2 and other pandemic viruses. Arterioscler. Thromb. Vasc. Biol., 2020, 40(9), 2033-2044.
[http://dx.doi.org/10.1161/ATVBAHA.120.314514] [PMID: 32657623]
[51]
Talasaz, A.H.; Sadeghipour, P.; Kakavand, H.; Aghakouchakzadeh, M.; Kordzadeh-Kermani, E.; Van Tassell, B.W.; Gheymati, A.; Arian-nejad, H.; Hosseini, S.H.; Jamalkhani, S.; Sholzberg, M.; Monreal, M.; Jimenez, D.; Piazza, G.; Parikh, S.A.; Kirtane, A.J.; Eikelboom, J.W.; Connors, J.M.; Hunt, B.J.; Konstantinides, S.V.; Cushman, M.; Weitz, J.I.; Stone, G.W.; Krumholz, H.M.; Lip, G.Y.H.; Goldhaber, S.Z.; Bikdeli, B. Recent randomized trials of antithrombotic therapy for patients with covid-19: jacc state-of-the-art review. J. Am. Coll. Cardiol., 2021, 77(15), 1903-1921.
[http://dx.doi.org/10.1016/j.jacc.2021.02.035] [PMID: 33741176]
[52]
Mennuni, M.G.; Renda, G.; Grisafi, L.; Rognoni, A.; Colombo, C.; Lio, V.; Foglietta, M.; Petrilli, I.; Pirisi, M.; Spinoni, E.; Azzolina, D.; Hayden, E.; Aimaretti, G.; Avanzi, G.C.; Bellan, M.; Cantaluppi, V.; Capponi, A.; Castello, L.M.; D’Ardes, D.; Corte, F.D.; Gallina, S.; Krengli, M.; Malerba, M.; Pierdomenico, S.D.; Savoia, P.; Zeppegno, P.; Sainaghi, P.P.; Cipollone, F.; Patti, G. Clinical outcome with diffe-rent doses of low-molecular-weight heparin in patients hospitalized for COVID-19. J. Thromb. Thrombolysis, 2021, 52(3), 782-790.
[http://dx.doi.org/10.1007/s11239-021-02401-x] [PMID: 33649979]
[53]
Liu, X.; Zhang, X.; Xiao, Y.; Gao, T.; Wang, G.; Wang, Z.; Zhang, Z.; Hu, Y.; Dong, Q.; Zhao, S.; Yu, L.; Zhang, S.; Li, H.; Li, K.; Chen, W.; Bian, X.; Mao, Q.; Cao, C. Heparin-induced thrombocytopenia is associated with a high risk of mortality in critical COVID-19 patients receiving heparin-involved treatment. MedRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.23.20076851]
[54]
Daviet, F.; Guervilly, C.; Baldesi, O.; Bernard-Guervilly, F.; Pilarczyk, E.; Genin, A.; Lefebvre, L.; Forel, J.M.; Papazian, L.; Camoin-Jau, L. Heparin-Induced thrombocytopenia in severe COVID-19. Circulation, 2020, 142(19), 1875-1877.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.049015] [PMID: 32990022]
[55]
Xiao, X.; Li, H.; Zhao, L.; Zhang, Y.; Liu, Z. Oligonucleotide aptamers: Recent advances in their screening, molecular conformation and therapeutic applications. Biomed. Pharmacother., 2021, 143, 112232.
[http://dx.doi.org/10.1016/j.biopha.2021.112232] [PMID: 34649356]
[56]
Rosenberg, J.E.; Bambury, R.M.; Van Allen, E.M.; Drabkin, H.A.; Lara, P.N., Jr; Harzstark, A.L.; Wagle, N.; Figlin, R.A.; Smith, G.W.; Garraway, L.A.; Choueiri, T.; Erlandsson, F.; Laber, D.A. A phase II trial of AS1411 (a novel nucleolin-targeted DNA aptamer) in metas-tatic renal cell carcinoma. Invest. New Drugs, 2014, 32(1), 178-187.
[http://dx.doi.org/10.1007/s10637-013-0045-6] [PMID: 24242861]

© 2024 Bentham Science Publishers | Privacy Policy