Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Biotherapy using Sperm Cell-oriented Transportation of Therapeutics in Female Reproductive Tract Cancer

Author(s): Priyank Shah and Pravin Shende*

Volume 23, Issue 11, 2022

Published on: 31 March, 2022

Page: [1359 - 1366] Pages: 8

DOI: 10.2174/1389201023666220113111441

Price: $65

Abstract

Female reproductive tract cancers like ovarian, cervical, vaginal, etc. have led to a serious concern for reproductive health as well as an increase in physical and psychological stresses amongst women. Various conventional techniques like surgery, radiation and chemotherapy are employed but possess limitations such as organ toxicity, infection, nausea, vomiting, etc. Also, several nanotechnology-based synthetic vehicle delivery systems like liposomes, nanoparticles, etc. are used but they lack targeting efficiency that results in poor propulsion and control. Therefore, there is a need for naturally-driven drug carriers to overcome such limitations. Sperm-based drug delivery is the new area for targeted delivery that offers self-propulsion to tumor sites, higher biocompatibility, longer lifespan and increased tissue penetration with enhanced localization. Drug-loaded sperm cells are harnessed with micro/nanomotor that will guide them to the intended target site. The critical analysis of the sperm-based drug delivery system was executed and summarized along with the current challenges. This article deals with the art of delivering the anticancer drug to female reproductive cancer sites with proof-of-concept-based research data and critical discussion on challenges in formulating the sperm-based delivery with a future perspective.

Keywords: Stem cell, micro/nanomotors, drug delivery, biotherapy, bio-inspired, cancer.

Graphical Abstract

[1]
Donkers, H.; Smits, A.; Eleuteri, A.; Bekkers, R.; Massuger, L.; Galaal, K. Body mass index and sexual function in women with gynaeco-logical cancer. Psychooncology, 2019, 28(1), 48-53.
[http://dx.doi.org/10.1002/pon.4908] [PMID: 30286263]
[2]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[3]
Labidi-Galy, S.I.; Papp, E.; Hallberg, D.; Niknafs, N.; Adleff, V.; Noe, M.; Bhattacharya, R.; Novak, M.; Jones, S.; Phallen, J.; Hruban, C.A.; Hirsch, M.S.; Lin, D.I.; Schwartz, L.; Maire, C.L.; Tille, J.C.; Bowden, M.; Ayhan, A.; Wood, L.D.; Scharpf, R.B.; Kurman, R.; Wang, T.L.; Shih, I.M.; Karchin, R.; Drapkin, R.; Velculescu, V.E. High grade serous ovarian carcinomas originate in the fallopian tube. Nat. Commun., 2017, 8(1), 1093.
[http://dx.doi.org/10.1038/s41467-017-00962-1] [PMID: 29061967]
[4]
Yavas, G.; Dogan, N.U.; Yavas, C.; Benzer, N.; Yuce, D.; Celik, C. Prospective assessment of quality of life and psychological distress in patients with gynecologic malignancy: A 1-year prospective study. Int. J. Gynecol. Cancer, 2012, 22(6), 1096-1101.
[http://dx.doi.org/10.1097/IGC.0b013e3182559c03] [PMID: 22672986]
[5]
Carter, J.; Stabile, C.; Gunn, A.; Sonoda, Y. The physical consequences of gynecologic cancer surgery and their impact on sexual, emotion-al, and quality of life issues. J. Sex. Med., 2013, 10(Suppl. 1), 21-34.
[http://dx.doi.org/10.1111/jsm.12002] [PMID: 23387909]
[6]
Damyanov, C.A.; Maslev, I.K.; Pavlov, V.S. Conventional Treatment of Cancer Realities and Problems. Ann. Complement. Altern. Med., 2018, 1, 1-9.
[7]
Tran, C.; Damaser, M.S. Stem cells as drug delivery methods: Application of stem cell secretome for regeneration. Adv. Drug Deliv. Rev., 2015, 82-83, 1-11.
[http://dx.doi.org/10.1016/j.addr.2014.10.007] [PMID: 25451858]
[8]
Eroğlu, İ.; İbrahim, M. Liposome-ligand conjugates: A review on the current state of art. J. Drug Target., 2020, 28(3), 225-244.
[http://dx.doi.org/10.1080/1061186X.2019.1648479] [PMID: 31339374]
[9]
Yeo, R.W.Y.; Lai, R.C.; Zhang, B.; Tan, S.S.; Yin, Y.; Teh, B.J.; Lim, S.K. Mesenchymal stem cell: An efficient mass producer of exosomes for drug delivery. Adv. Drug Deliv. Rev., 2013, 65(3), 336-341.
[http://dx.doi.org/10.1016/j.addr.2012.07.001] [PMID: 22780955]
[10]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[11]
Das, R.K.; Zouani, O.F. A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Biomaterials, 2014, 35(20), 5278-5293.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.044] [PMID: 24720880]
[12]
Jung, Y.; Bauer, G.; Nolta, J.A. Concise review: Induced pluripotent stem cell-derived mesenchymal stem cells: Progress toward safe clini-cal products. Stem Cells, 2012, 30(1), 42-47.
[http://dx.doi.org/10.1002/stem.727] [PMID: 21898694]
[13]
Lee, J.S.; Feijen, J. Polymersomes for drug delivery: Design, formation and characterization. J. Control. Release, 2012, 161(2), 473-483.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.005] [PMID: 22020381]
[14]
Gillies, E.R.; Fréchet, J.M.J. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 2005, 10(1), 35-43.
[http://dx.doi.org/10.1016/S1359-6446(04)03276-3] [PMID: 15676297]
[15]
Shende, P.; Shah, P. Carbohydrate-based magnetic nanocomposites for effective cancer treatment. Int. J. Biol. Macromol., 2021, 175, 281-293.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.02.044] [PMID: 33571584]
[16]
Shende, P.; Pathan, N. Potential of carbohydrate-conjugated graphene assemblies in biomedical applications. Carbohydr. Polym., 2020., 109442.
[http://dx.doi.org/10.1016/j.carbpol.2020.117385] [PMID: 33436214]
[17]
Öztürk-Atar, K. Eroğlu, H.; Çalış, S. Novel advances in targeted drug delivery. J. Drug Target., 2018, 26(8), 633-642.
[http://dx.doi.org/10.1080/1061186X.2017.1401076] [PMID: 29096554]
[18]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: Myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[19]
Nguyen, H.V.; Faivre, V. Targeted drug delivery therapies inspired by natural taxes. J. Control. Release, 2020, 322, 439-456.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.005] [PMID: 32259545]
[20]
Tan, S.; Wu, T.; Zhang, D.; Zhang, Z. Cell or cell membrane-based drug delivery systems. Theranostics, 2015, 5(8), 863-881.
[http://dx.doi.org/10.7150/thno.11852] [PMID: 26000058]
[21]
Alvarez, L. The tailored sperm cell. J. Plant Res., 2017, 130(3), 455-464.
[http://dx.doi.org/10.1007/s10265-017-0936-2] [PMID: 28357612]
[22]
Gaffney, E.A.; Gadêlha, H.; Smith, D.J.; Blake, J.R.; Kirkman-Brown, J.C. Mammalian Sperm Motility: Observation and Theory. Annu. Rev. Fluid Mech., 2011, 43, 501-528.
[http://dx.doi.org/10.1146/annurev-fluid-121108-145442]
[23]
Cummins, J.M.; Woodall, P.F. On mammalian sperm dimensions. J. Reprod. Fertil., 1985, 75(1), 153-175.
[http://dx.doi.org/10.1530/jrf.0.0750153] [PMID: 4032369]
[24]
Johnson, G.D.; Lalancette, C.; Linnemann, A.K.; Leduc, F.; Boissonneault, G.; Krawetz, S.A. The sperm nucleus: Chromatin, RNA, and the nuclear matrix. Reproduction, 2011, 141(1), 21-36.
[http://dx.doi.org/10.1530/REP-10-0322] [PMID: 20876223]
[25]
Schwarz, L.; Medina-Sánchez, M.; Schmidt, O.G. Sperm-hybrid micromotors: On-board assistance for nature’s bustling swimmers. Reproduction, 2019, 1741-7899.
[http://dx.doi.org/10.1530/REP-19-0096] [PMID: 31600732]
[26]
Singh, A.V.; Ansari, M.H.D.; Mahajan, M.; Srivastava, S.; Kashyap, S.; Dwivedi, P.; Pandit, V.; Katha, U. Sperm cell driven microrobots-Emerging opportunities and challenges for biologically inspired robotic design. Micromachines (Basel), 2020, 11(4), E448.
[http://dx.doi.org/10.3390/mi11040448] [PMID: 32340402]
[27]
Luo, M.; Feng, Y.; Wang, T.; Guan, J. Micro-/Nanorobots at Work in Active Drug Delivery. Adv. Funct. Mater., 2018, 28, 1-23.
[http://dx.doi.org/10.1002/adfm.201706100]
[28]
Xu, H.; Medina-Sánchez, M.; Magdanz, V.; Schwarz, L.; Hebenstreit, F.; Schmidt, O.G. Sperm-Hybrid Micromotor for Targeted Drug De-livery. ACS Nano, 2018, 12(1), 327-337.
[http://dx.doi.org/10.1021/acsnano.7b06398] [PMID: 29202221]
[29]
Rooney, I.A.; Oglesby, T.J.; Atkinson, J.P. Complement in human reproduction: Activation and control. Immunol. Res., 1993, 12(3), 276-294.
[http://dx.doi.org/10.1007/BF02918258] [PMID: 8288946]
[30]
Kelly, R.W.; Holland, P.; Skibinski, G.; Harrison, C.; McMillan, L.; Hargreave, T.; James, K. Extracellular organelles (prostasomes) are immunosuppressive components of human semen. Clin. Exp. Immunol., 1991, 86(3), 550-556.
[http://dx.doi.org/10.1111/j.1365-2249.1991.tb02968.x] [PMID: 1747961]
[31]
Xu, H.; Medina-Sanchez, M.; Brison, D.R.; Edmondson, R.J.; Taylor, S.S.; Nelson, L.; Zeng, K.; Bagley, S.; Ribeiro, C.; Restrepo, L.P. Hu-man Spermbots for Cancer-Relevant. Drug Deliv., 2019.
[32]
Xu, H.; Medina-Sánchez, M.; Schmidt, O.G. Magnetic Micromotors for Multiple Motile Sperm Cells Capture, Transport, and Enzymatic Release. Angew. Chem. Int. Ed. Engl., 2020, 59(35), 15029-15037.
[http://dx.doi.org/10.1002/anie.202005657] [PMID: 32392393]
[33]
Miki, K.; Clapham, D.E. Rheotaxis guides mammalian sperm. Curr. Biol., 2013, 23(6), 443-452.
[http://dx.doi.org/10.1016/j.cub.2013.02.007] [PMID: 23453951]
[34]
Xu, H.; Medina-Sánchez, M.; Maitz, M.F.; Werner, C.; Schmidt, O.G. Sperm Micromotors for Cargo Delivery through Flowing Blood. ACS Nano, 2020, 14(3), 2982-2993.
[http://dx.doi.org/10.1021/acsnano.9b07851] [PMID: 32096976]
[35]
Striggow, F.; Medina-Sánchez, M.; Auernhammer, G.K.; Magdanz, V.; Friedrich, B.M.; Schmidt, O.G. Sperm-Driven Micromotors Moving in Oviduct Fluid and Viscoelastic Media. Small, 2020, 16(24), e2000213.
[http://dx.doi.org/10.1002/smll.202000213] [PMID: 32431083]
[36]
Magdanz, V.; Khalil, I.S.M.; Simmchen, J.; Furtado, G.P.; Mohanty, S.; Gebauer, J.; Xu, H.; Klingner, A.; Aziz, A.; Medina-sánchez, M. IRONSperm: Sperm-templated soft magnetic microrobots. 2020, 1-16..
[37]
Magdanz, V.; Gebauer, J.; Mahdy, D.; Simmchen, J.; Khalil, I.S.M. Sperm-templated magnetic microrobots. Proc. MARSS 2019 4th Int. Conf. Manip. Autom. Robot. Small Scales, 2019, 1-6..
[http://dx.doi.org/10.1109/MARSS.2019.8860953]
[38]
Grimsley, A.; Shah, K.S.; McKibbin, T. Monoclonal antibodies in cancer; . Pharm. Biotechnol. Fundam. Appl. Fourth Ed., 2013, 12, 337-359..
[http://dx.doi.org/10.1007/978-1-4614-6486-0_17]
[39]
Makhluf, S.B.D.; Abu-Mukh, R.; Rubinstein, S.; Breitbart, H.; Gedanken, A. Modified PVA-Fe3O4 nanoparticles as protein carriers into sperm cells. Small, 2008, 4(9), 1453-1458.
[http://dx.doi.org/10.1002/smll.200701308] [PMID: 18680094]
[40]
Suarez, S.S.; Pacey, A.A. Sperm transport in the female reproductive tract. Hum. Reprod. Update, 2006, 12(1), 23-37.
[http://dx.doi.org/10.1093/humupd/dmi047] [PMID: 16272225]
[41]
Magdanz, V.; Schmidt, O.G. Spermbots: Potential impact for drug delivery and assisted reproductive technologies. Expert Opin. Drug Deliv., 2014, 11(8), 1125-1129.
[http://dx.doi.org/10.1517/17425247.2014.924502] [PMID: 24882224]
[42]
Khalil, I.S.M.; Magdanz, V.; Simmchen, J.; Klingner, A.; Misra, S. Resemblance between motile and magnetically actuated sperm cells. Appl. Phys. Lett., 2020, 116, 1-6.
[http://dx.doi.org/10.1063/1.5142470]
[43]
Smikle, C.B.; Turek, P.J. Hypo-osmotic swelling can accurately assess the viability of nonmotile sperm. Mol. Reprod. Dev., 1997, 47(2), 200-203.
[http://dx.doi.org/10.1002/(SICI)1098-2795(199706)47:2<200:AID-MRD11>3.0.CO;2-3] [PMID: 9136122]
[44]
Magdanz, V.; Medina-Sánchez, M.; Chen, Y.; Guix, M.; Schmidt, O.G. How to improve spermbot performance. Adv. Funct. Mater., 2015, 25, 2763-2770.
[http://dx.doi.org/10.1002/adfm.201500015]
[45]
Chinnasamy, T.; Kingsley, J.L.; Inci, F.; Turek, P.J.; Rosen, M.P.; Behr, B.; Tüzel, E.; Demirci, U. Guidance and Self-Sorting of Active Swimmers: 3D Periodic Arrays Increase Persistence Length of Human Sperm Selecting for the Fittest. Adv. Sci. (Weinh.), 2017, 5(2), 1700531.
[http://dx.doi.org/10.1002/advs.201700531] [PMID: 29610725]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy