Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Preparation and Optimization of Peppermint (Mentha pipertia) Essential Oil Nanoemulsion with Effective Herbal Larvicidal, Pupicidal, and Ovicidal Activity against Anopheles stephensi

Author(s): Madhumitha Narasimman, Vijayakumar Natesan*, Vijay Mayakrishnan, Jayaprakash Rajendran, Amalan Venkatesan and Sung-Jin Kim*

Volume 23, Issue 11, 2022

Published on: 24 March, 2022

Page: [1367 - 1376] Pages: 10

DOI: 10.2174/1389201023666211215125621

Price: $65

Abstract

Objectives: The Plasmodium parasite is transmitted directly to humans through the Anopheles mosquito bite and causes vector-borne malaria, leading to the transmission of the disease in Southeast Asia, including India. The problem of persistent toxicity, along with the growing incidence of insect resistance, has led to the use of green pesticides to control the spread of the disease in a cost-effective and environment-friendly manner. Based on this objective, this work investigated the larvicidal, pupicidal, and ovicidal activity of Mentha pipertia using a natural nanoemulsion technique.

Methods: GC-MS characterized essential oils of Mentha pipertia leaves were formulated as a nanoemulsion for herbal larvicidal, pupicidal, and ovicidal activities. Size of the nanoemulsion was analyzed by photon correlation spectroscopy. The herbal activities against Anopheles Stephensi of nanoemulsion were evaluated in terms of the lethal concentration for 50% (LC50) and 90% (LC90) to prove low cost, pollution free active effective formulation.

Results: Chiral, keto, and alcohol groups are obtained from Mentha pipertia leaves’ essential oil, and the nanoemulsions have demonstrated good results in the larvicidal probit analysis, with values of LC50=09.67 ppm and LC90=20.60 ppm. Activity results of the most stable nano formulation with 9.89 nm size showed a significant increase when compared to the bulk.

Conclusion: The nanoemulsion of Mentha pipertia leaves can be a promising eco-friendly widely available, low-cost herbicide against the Anopheles mosquito.

Keywords: Peppermint oil, nanoemulsion, GC–MS, larvicidal activity, mortality, Anopheles stephensi.

Graphical Abstract

[1]
James, A.A. Mosquito molecular genetics: the hands that feed bite back. Science, 1992, 257(5066), 37-38.
[http://dx.doi.org/10.1126/science.1352413] [PMID: 1352413]
[2]
Hanafi-Bojd, A.A.; Vatandoost, H.; Oshaghi, M.A.; Haghdoost, A.A.; Shahi, M.; Sedaghat, M.M.; Abedi, F.; Yeryan, M.; Pakari, A. Ento-mological and epidemiological attributes for malaria transmission and implementation of vector control in southern Iran. Acta Trop., 2012, 121(2), 85-92.
[http://dx.doi.org/10.1016/j.actatropica.2011.04.017] [PMID: 21570940]
[3]
WHO. WHO World Malaria Report, 2015.
[4]
Hodgson, E.; Levi, P.E. Pesticides: an important but underused model for the environmental health sciences. Environ. Health Perspect., 1996, 104(Suppl. 1), 97-106.
[PMID: 8722114]
[5]
WHO. Global Plan for Insecticide Resistance Management in Malaria Vectors (GPIRM). 2012. Available from: . http://whqlibdoc. who.int/Publications/2012/9789241564472 eng.pdf/ (accessed 15.04. 2.).
[6]
World Health Organization. Yellow fever, Available from:. http://www.who.int/topics/yellow_fever/en/
[7]
Sumitha, K.V.; Thoppil, J.E. Larvicidal efficacy and chemical constituents of O. gratissimum L. (Lamiaceae) essential oil against Aedes al-bopictus Skuse (Diptera: Culicidae). Parasitol. Res., 2016, 115(2), 673-680.
[http://dx.doi.org/10.1007/s00436-015-4786-3] [PMID: 26462801]
[8]
Chantraine, J.M. Insecticidal activity of essential oils on Aedes aegypti leaves. Laurent, D.; Ballivian, C.; Saavedra, G.; Ibanez, R.; Vilase-ca, L.A. Insecticidal activity essential oils on Aedes aegypti Leaves. Phytother. Res., 1998, 12, 350-354.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199808)12:5<350:AID-PTR311>3.0.CO;2-7]
[9]
Koga, T.; Hirota, N.; Takumi, K. Bactericidal activities of essential oils of basil and sage against a range of bacteria and the effect of these essential oils on Vibrio Parahaemolyticus. Microbiol. Res., 1999, 154(3), 267-273.
[http://dx.doi.org/10.1016/S0944-5013(99)80024-X] [PMID: 10652788]
[10]
González, J.A.; García-Barriuso, M.; Gordaliza, M.; Amich, F. Traditional plant-based remedies to control insect vectors of disease in the Arribes del Duero (western Spain): an ethnobotanical study. J. Ethnopharmacol., 2011, 138(2), 595-601.
[http://dx.doi.org/10.1016/j.jep.2011.10.003] [PMID: 22001073]
[11]
McClements, D.J. Critical review of techniques and methodologies for characterization of emulsion stability. Crit. Rev. Food Sci. Nutr., 2007, 47(7), 611-649.
[http://dx.doi.org/10.1080/10408390701289292] [PMID: 17943495]
[12]
Lin, C.; Chen, L. Comparison of fuel properties and emission characteristics of two- and three-phase ambitious prepared by ultrasonically vibrating and mechanically homogenizing amplification methods. Fuel, 2008, 87, 2154-2161.
[http://dx.doi.org/10.1016/j.fuel.2007.12.017]
[13]
World Health Organization. Guidelines for laboratory and field testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005; WHO: Geneva, 2005.
[14]
Lanchote, V.L.; Bonato, P.S.; Cerdeira, A.L. HPLC screening and GC-MS confirmation of triazine herbicides residues in drinking water from sugar cane area in Brazil. Water Air Soil Pollut., 2000, 118, 329-338.
[http://dx.doi.org/10.1023/A:1005147405509]
[15]
Adams, R.P. Identification of essential oil components by gas chromatography/mass spectrometry, 4th ed; Allured Publishing Corp: Carol Stream, IL, USA, 2007.
[16]
Vandendool, H.; Kratz, P.D.J.A. A generalization of the retention index system including linear temperature programmed gas–liquid parti-tion chromatography. J. Chromatogr. A, 1963, 11, 463-471.
[http://dx.doi.org/10.1016/S0021-9673(01)80947-X] [PMID: 14062605]
[17]
Ostertag, F.; Weiss, J.; McClements, D.J. Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. J. Colloid Interface Sci., 2012, 388(1), 95-102.
[http://dx.doi.org/10.1016/j.jcis.2012.07.089] [PMID: 22981587]
[18]
Clayton, K.N.; Salameh, J.W.; Wereley, S.T.; Kinzer-Ursem, T.L. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry. Biomicrofluidics, 2016, 10(5), 054107.
[http://dx.doi.org/10.1063/1.4962992] [PMID: 27703593]
[19]
Fernandes, C.P.; Mascarenhas, M.P.; Zibetti, F.M.; Lima, B.G.; Oliveira, R.P.R.F.; Rocha, L.; Falcao, D.Q. HLB value, an important pa-rameter for the development of essential oil phytopharmaceuticals. Rev. Bras. Farmacogn., 2013, 23, 108-114.
[http://dx.doi.org/10.1590/S0102-695X2012005000127]
[20]
Guttoff, M.; Saberi, A.H.; McClements, D.J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food Chem., 2015, 171, 117-122.
[http://dx.doi.org/10.1016/j.foodchem.2014.08.087] [PMID: 25308650]
[21]
Anjali, C.H.; Sharma, Y.; Mukherjee, A.; Chandrasekaran, N. Neem oil (Azadirachta indica) nanoemulsion--a potent larvicidal agent against Culex quinquefasciatus. Pest Manag. Sci., 2012, 68(2), 158-163.
[http://dx.doi.org/10.1002/ps.2233] [PMID: 21726037]
[22]
Soonwera, M.; Phasomkusolsil, S. Adulticidal, larvicidal, pupicidal and oviposition deterrent activities of essential oil from Zanthoxylum limonella Alston (Rutaceae) against Aedes aegypti (L.) and Culex quinquefasciatus (Say). Asian Pac. J. Trop. Biomed., 2017, 7(11), 967-978.
[http://dx.doi.org/10.1016/j.apjtb.2017.09.019]
[23]
Govindarajan, M. Bioefficacy of Cassia fistula Linn. (Leguminosae) leaf extract against chikungunya vector, Aedes aegypti (Diptera: Cu-licidae). Eur. Rev. Med. Pharmacol. Sci., 2009, 13(2), 99-103.
[PMID: 19499844]
[24]
Panneerselvam, C.; Murugan, K.; Kovendan, K.; Mahesh Kumar, P. Mosquito larvicidal, pupicidal, adulticidal, and repellent activity of Ar-temisia nilagirica (Family: Compositae) against anopheles stephensi and aedes aegypti. Parasitol. Res., 2012, 111(6), 2241-2251.
[http://dx.doi.org/10.1007/s00436-012-3073-9] [PMID: 22903417]
[25]
Sakuma, M. Probit analysis of preference data. Appl. Entomol. Zool., 1998, 33(3), 339-347.
[http://dx.doi.org/10.1303/aez.33.339]
[26]
Su, T.; Mulla, M.S. Ovicidal activity of neem products (azadirachtin) against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J. Am. Mosq. Control Assoc., 1998, 14(2), 204-209.
[PMID: 9673924]
[27]
Sharafati Chaleshtori, R.; Rokni, N.; Razavilar, V.; Rafieian Kopaei, M. The evaluation of the antibacterial and antioxidant activity of tarra-gon (Artemisia dracunculus. L.) essential oil and its chemical composition. Jundishapur J. Microbiol., 2013, 6(9), 1-6.
[http://dx.doi.org/10.5812/jjm.7877]
[28]
Kordali, S.; Kotan, R.; Mavi, A.; Cakir, A.; Ala, A.; Yildirim, A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Ar-temisia santonicum, and Artemisia spicigera essential oils. J. Agric. Food Chem., 2005, 53(24), 9452-9458.
[http://dx.doi.org/10.1021/jf0516538] [PMID: 16302761]
[29]
Arabhosseini, A.; Padhye, S.; van Beek, T.A.; van Boxtel, A.J.; Huisman, W.; Posthumus, M.A.; Müller, J. Loss of essential oil of tarragon (Artemisia dracunculus L.) due to drying. J. Sci. Food Agric., 2006, 86(15), 2543-2550.
[http://dx.doi.org/10.1002/jsfa.2641]
[30]
Mohammadi, R.; Khoobdel, M.; Negahban, M.; Khani, S. Nanoemulsified Mentha piperita and Eucalyptus globulus oils exhibit enhanced repellent activities against Anopheles stephensi. Asian Pac. J. Trop. Med., 2019, 12(11), 520-527.
[http://dx.doi.org/10.4103/1995-7645.271292]
[31]
Mohsen, B.; Mehdi, T.H.; Abdollah, G.P. Quantity and chemical composition of essential oil of peppermint (Mentha × piperita L.) leaves under different drying methods. Int. J. Food Prop., 2018, 21(1), 267-276.
[http://dx.doi.org/10.1080/10942912.2018.1453839]
[32]
McClements, D.J. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 2011, 7, 2297.
[http://dx.doi.org/10.1039/C0SM00549E]
[33]
Rao, J.; McClements, D.J. Lemon oil solubilization in mixed surfactant solutions: rationalizing microemulsion & nanoemulsion formation. Food Hydrocoll., 2012, 26(1), 268-276.
[http://dx.doi.org/10.1016/j.foodhyd.2011.06.002]
[34]
Sakulku, U.; Nuchuchua, O.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A. Ruktanonchai, >U. Characterization and mosquito repellent activity of citronella oil nanoemulsion. Int. J. Pharm., 2009, 372(1), 105-111.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.029]
[35]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 1-17.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[36]
Duarte, J.L.; Amado, J.R.R.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Ferreira, A.M.; Souto, R.N.P.; Falcão, D.Q.; Carvalho, J.C.T.; Fernandes, C.P. Evaluation of larvicidal activity of a nanoemulsion of Rosmarinus officinalis essential oil. Rev. Bras. Farmacogn., 2015, 25, 189-192.
[http://dx.doi.org/10.1016/j.bjp.2015.02.010]
[37]
Osanloo, M.; Amani, A.; Sereshti, H.; Abai, M.R.; Esmaeili, F.; Sedaghat, M.M. Preparation and optimization nanoemulsion of Tarragon (Artemisia dracunculus) essential oil as effective herbal larvicide against Anopheles stephensi. Ind. Crops Prod., 2017, 109, 214-219.
[http://dx.doi.org/10.1016/j.indcrop.2017.08.037]
[38]
Ishtiaq, F.; Swain, S.; Kumar, S.S. Anopheles stephensi (Asian Malaria Mosquito). Trends Parasitol., 2021, 37(6), 571-572.
[http://dx.doi.org/10.1016/j.pt.2021.03.009] [PMID: 33865712]
[39]
Osanloo, M.; Sereshti, H.; Sedaghat, M.M.; Amani, A. Nanoemulsion of dill essential oil as a green and potent larvicide against Anopheles stephensi. Environ. Sci. Pollut. Res. Int., 2018, 25(7), 6466-6473.
[http://dx.doi.org/10.1007/s11356-017-0822-4] [PMID: 29250730]
[40]
Esmaili, F.; Dehkordi, A.S.; Amoozegar, F.; Osanloo, M. A review on the use of essential oil-based nanoformulations in control of mos-quitoes. Biointerface Res. Appl. Chem., 2021, 11(5), 12516-12529.
[http://dx.doi.org/10.33263/BRIAC115.1251612529]
[41]
Osanloo, M.; Sedaghat, M.M.; Sereshti, H.; Amani, A. Nano-encapsulated tarragon (Artemisia dracunculus) essential oil as a sustained re-lease nano-larvicide. J. Contemp. Med. Sci, 2019, 5, 82-89.
[42]
Nazeer, A.A.; Rajan, H.V.; Vijaykumar, S.D.; Saravanan, M. Evaluation of larvicidal and repellent activity of nanocrystal emulsion synthe-sized from F. glomerata and neem oil against mosquitoes. J. Cluster Sci., 2019, 30, 1649-1661.
[http://dx.doi.org/10.1007/s10876-019-01611-x]
[43]
Osanloo, M.; Sedaghat, M.M.; Sereshti, H.; Rahmani, M.; Saeedi Landi, F.; Amani, A. Chitosan nanocapsules of tarragon essential oil with low cytotoxicity and long-lasting activity as a green nano-larvicide. J. Nanostruct., 2019, 9, 723-735.
[44]
Abedinpour, N.; Ghanbariasad, A.; Taghinezhad, A. Preparation of nanoemulsions of Mentha piperita essential oil and investigation of their cytotoxic effect on human breast cancer lines. Bionanoscience, 2021, 11, 428-436.
[http://dx.doi.org/10.1007/s12668-021-00827-4]
[45]
Kamaraj, C.; Abdul Rahman, A.; Bagavan, A.; Abduz Zahir, A.; Elango, G.; Kandan, P.; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T. Larvicidal efficacy of medicinal plant extracts against Anopheles stephensi and Culex quinquefasciatus (Diptera: Culicidae). Trop. Biomed., 2010, 27(2), 211-219.
[PMID: 20962718]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy