Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Comparative Assessment of Polyherbal Formulation and Mucuna pruriens Extract as Neuroprotectant by Using MPTP Screening Mouse Model of Parkinson’s Disease

Author(s): Amit Kishor Srivastava*, Arif Naseer and Amresh Gupta

Volume 18, Issue 7, 2022

Published on: 05 April, 2022

Article ID: e130122200194 Pages: 9

DOI: 10.2174/1573407218666220113094323

Price: $65

Abstract

Background: The main aim of the study was to compare the neuroprotective potential of Polyherbal Formulation (PHF) with that of an extract of a well-reported anti-parkinson plant, i.e., Mucuna pruriens.

Methods: Different PHF combinations (PHFs) were formulated by using hydro-alcoholic extracts and were tested for neuroprotective potential against Mucuna pruriens extract (MPE). In the experimental study, 30 albino mice (Swiss strain, 35-45g) were grouped into Control, MPTP, MPTP+ MPE, MPTP+PHFs, MPTP+ L-DOPA groups. Experimental mice were given PHFs and MPE (50 mg/kg body wt.) by intraperitoneal routes. MPTP (1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine) was given orally for 2 weeks with prior use of PHFs and MPE 20 mg/kg body wt. for 2 weeks. After treatment, a neurobehavioral study was performed as well as neurochemical parameters were evaluated.

Results: The results showed that polyherbal formulation improved the performance of the dopaminergic neurons in the substantia nigra region of the brain compared to MPE with respect to MPTP intoxication. A significant reduction was found in spontaneous locomotor activity and rotarod activity in MPTP treated mice in contrast with the control group, in whom these activities were restored by MPTP+MPE and MPTP+PHF1; however, this contrasted with the standard L-Dopa treatment group. This improvement was observed to be significantly better in the MPTP+PHF1 treated group compared to the treatment group of MPTP+MPE. The changes in different parameters occurred after the MPTP treatment. These changes were observed in the levels of malondialdehyde (MDA), conjugated dienes (CD), superoxide dismutase (SOD), and catalase.

Conclusion: The study concluded that PHF treatment promotes significant neurogenesis, reduces apoptosis, promotes antioxidant capacity, and restores dopamine levels. PHF contains numerous classes of chemical constituents, which show a synergistic effect for better therapeutic remuneration and neuroprotection compared to the single chemical entity L-DOPA, which is a well-known chemical constituent present in MPE.

Keywords: Substantia nigra, parkinson’s disease, poly-herbal formulation, mucuna pruriens, spontaneous locomotor activity.

Graphical Abstract

[1]
Johnson, S.L.; Park, H.Y.; DaSilva, N.A.; Vattem, D.A.; Ma, H.; Seeram, N.P. Levodopa reduced Mucuna pruriens seed extract shows neuroprotective effects against Parkinson’s disease in murine microglia and human neuroblastoma cells, caenorhabditis elegans, and drosophila melanogaster. Nutrients, 2018, 10(9), 1-14.
[http://dx.doi.org/10.3390/nu10091139] [PMID: 30131460]
[2]
Bhatnagar, M.; Goel, I.; Roy, T.; Shukla, S.D.; Khurana, S. Complete Comparison Display (CCD) evaluation of ethanol extracts of Centella asiatica and withania somnifera shows that they can non-synergistically ameliorate biochemical and behavioural damages in MPTP induced Parkinson’s model of mice. PLoS One, 2017, 12(5), e0177254.
[http://dx.doi.org/10.1371/journal.pone.0177254] [PMID: 28510600]
[3]
Rao, S.S.; Hofmann, L.A.; Shakil, A. Parkinson’s disease: diagnosis and treatment. Am. Fam. Physician, 2006, 74(12), 2046-2054.
[PMID: 17186710]
[4]
Banjari, I.; Marček, T.; Tomić, S.; Waisundara, V.Y. Forestalling the epidemics of Parkinson’s disease through plant-based remedies. Front. Nutr., 2018, 5, 95.
[http://dx.doi.org/10.3389/fnut.2018.00095] [PMID: 30425989]
[5]
DeMaagd, G; Philip, A Parkinson’s disease and its management, Part 1: disease entity, risk factors, pathophysiology, clinical presentation, and diagnosis. J. formul. manag., 2015, 40, 504-532.
[6]
Zesiewicz, T.A.; Evatt, M.L. Potential influences of complementary therapy on motor and non-motor complications in Parkinson’s disease. CNS Drugs, 2009, 23(10), 817-835.
[http://dx.doi.org/10.2165/11310860-000000000-00000] [PMID: 19739693]
[7]
Manyam, B.V.; Sánchez-Ramos, J.R. Traditional and complementary therapies in Parkinson’s disease. Adv. Neurol., 1999, 80, 565-574.
[PMID: 10410773]
[8]
Blandini, F.; Therese, M. MPTP mouse models of Parkinson’s disease. J Parkinsons., 1999, 1, 19-33.
[9]
Marini, A.M.; Lipsky, R.H.; Schwartz, J.P.; Kopin, I.J. Accumulation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in cultured cerebellar astrocytes. J. Neurochem., 1992, 58(4), 1250-1258.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb11336.x] [PMID: 1548462]
[10]
Lau, Y.S.; Fung, Y.K.; Trobough, K.L.; Cashman, J.R.; Wilson, J.A. Depletion of striatal dopamine by the N-oxide of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Neurotoxicology, 1991, 12(2), 189-199.
[PMID: 1956580]
[11]
Singh, B.; Pandey, S.; Yadav, S.K.; Verma, R.; Singh, S.P.; Mahdi, A.A. Role of ethanolic extract of Bacopa monnieri against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mice model via inhibition of apoptotic pathways of dopaminergic neurons. Brain Res. Bull., 2017, 135, 120-128.
[http://dx.doi.org/10.1016/j.brainresbull.2017.10.007] [PMID: 29032054]
[12]
Yazdani, U.; German, D.C.; Liang, C.L.; Manzino, L.; Sonsalla, P.K.; Zeevalk, G.D. Rat model of Parkinson’s disease: chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+). Exp. Neurol., 2006, 200(1), 172-183.
[http://dx.doi.org/10.1016/j.expneurol.2006.02.002] [PMID: 16546169]
[13]
Srivastav, S.; Fatima, M.; Mondal, A.C. Important medicinal herbs in Parkinson’s disease pharmacotherapy. Biomed. Pharmacother., 2017, 92, 856-863.
[http://dx.doi.org/10.1016/j.biopha.2017.05.137] [PMID: 28599249]
[14]
Ramsay, R.R.; Dadgar, J.; Trevor, A.; Singer, T.P. Energy-driven uptake of N-methyl-4-phenylpyridine by brain mitochondria mediates the neurotoxicity of MPTP. Life Sci., 1986, 39(7), 581-588.
[http://dx.doi.org/10.1016/0024-3205(86)90037-8] [PMID: 3488484]
[15]
Solari, P.; Maccioni, R.; Marotta, R.; Catelani, T.; Debellis, D.; Baroli, B.; Peddio, S.; Muroni, P.; Kasture, S.; Solla, P.; Stoffolano, J.G., Jr; Liscia, A. The imbalance of serotonergic circuitry impairing the crop supercontractile muscle activity and the mitochondrial morphology of PD PINK1B9Drosophila melanogaster are rescued by Mucuna pruriens. J. Insect Physiol., 2018, 111, 32-40.
[http://dx.doi.org/10.1016/j.jinsphys.2018.10.007] [PMID: 30393142]
[16]
Chan, P.; DeLanney, L.E.; Irwin, I.; Langston, J.W.; Di Monte, D. Rapid ATP loss caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mouse brain. J. Neurochem., 1991, 57(1), 348-351.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb02134.x] [PMID: 2051170]
[17]
Cilia, R.; Laguna, J.; Cassani, E.; Cereda, E.; Pozzi, N.G.; Isaias, I.U.; Contin, M.; Barichella, M.; Pezzoli, G. Mucuna pruriens in Parkinson disease: A double-blind, randomized, controlled, crossover study. Neurology, 2017, 89(5), 432-438.
[http://dx.doi.org/10.1212/WNL.0000000000004175] [PMID: 28679598]
[18]
Katzenschlager, R.; Evans, A.; Manson, A.; Patsalos, P.N.; Ratnaraj, N.; Watt, H.; Timmermann, L.; Van der Giessen, R.; Lees, A.J. Mucuna pruriens in Parkinson’s disease: a double blind clinical and pharmacological study. J. Neurol. Neurosurg. Psychiatry, 2004, 75(12), 1672-1677.
[http://dx.doi.org/10.1136/jnnp.2003.028761] [PMID: 15548480]
[19]
Tripathi, Y.B.; Upadhyay, A.K. Effect of the alcohol extract of the seeds of Mucuna pruriens on free radicals and oxidative stress in albino rats. Phytother. Res., 2002, 16(6), 534-538.
[http://dx.doi.org/10.1002/ptr.962] [PMID: 12237810]
[20]
Yadav, S.K.; Rai, S.N.; Singh, S.P. Mucuna pruriens reduces inducible nitric oxide synthase expression in Parkinsonian mice model. J. Chem. Neuroanat., 2017, 80, 1-10.
[http://dx.doi.org/10.1016/j.jchemneu.2016.11.009] [PMID: 27919828]
[21]
Bhattacharya, S.K.; Satyan, K.S.; Ghosal, S. Antioxidant activity of glycowithanolides from Withania somnifera. Indian J. Exp. Biol., 1997, 35(3), 236-239.
[PMID: 9332168]
[22]
Francescaelena, D.R.; Marotta, R.; Poddighe, S.; Talani, G.; Catelani, T. Functional and morphological correlates in the drosophila LRRK2 loss-of-function model of Parkinson disease: drug effects of Withania somnifera (Dunal). PLoS One, 2016, 4, 1-16.
[23]
Sood, A.; Kumar, A.; Dhawan, D.K.; Sandhir, R. Propensity of withania somnifera to attenuate behavioural, biochemical, and histological alterations in experimental model of stroke. Cell. Mol. Neurobiol., 2016, 36(7), 1123-1138.
[http://dx.doi.org/10.1007/s10571-015-0305-4] [PMID: 26718711]
[24]
Pawar, S.S.; Jadhav, M.G.; Deokar, T.G. Study of phytochemical screening, physicochemical analysis and antimicrobial activity of Bacopa monnieri (L) extracts. Int. J. Pharma Clin. Res., 2016, 8, 1222-1229.
[25]
Goswami, S.; Saoji, A.; Kumar, N.; Thawani, V.; Tiwari, M.T. Effect of Bacopa monnieri on cognitive functions in Alzheimer’s disease patients. Int. J. Collaborat. Res. Int. Med. Public. Health., 2011, 3, 285-293.
[26]
Jayashri, S.; Jolly, C.I. Phytochemical antibacterial and pharmacological investigations on Mamordica chirantia and Emblica officinalis. Indian J. Pharm. Sci., 1993, 1, 6-13.
[27]
Upadhyay, P.; Sadhu, A.; Singh, P.K.; Agrawal, A.; Ilango, K.; Purohit, S.; Dubey, G.P. Revalidation of the neuroprotective effects of a United States patented polyherbal formulation on scopolamine induced learning and memory impairment in rats. Biomed. Pharmacother., 2018, 97, 1046-1052.
[http://dx.doi.org/10.1016/j.biopha.2017.11.008] [PMID: 29136783]
[28]
Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(1), 1-10.
[PMID: 22238476]
[29]
Banothu, V.; Neelagiri, C.; Adepally, U.; Lingam, J.; Bommareddy, K. Phytochemical screening and evaluation of in vitro antioxidant and antimicrobial activities of the indigenous medicinal plant Albizia odoratissima. Pharm. Biol., 2017, 55(1), 1155-1161.
[http://dx.doi.org/10.1080/13880209.2017.1291694] [PMID: 28219296]
[30]
Kasture, S.; Pontis, S.; Pinna, A.; Schintu, N.; Spina, L.; Longoni, R.; Simola, N.; Ballero, M.; Morelli, M. Assessment of symptomatic and neuroprotective efficacy of Mucuna pruriens seed extract in rodent model of Parkinson’s disease. Neurotox. Res., 2009, 15(2), 111-122.
[http://dx.doi.org/10.1007/s12640-009-9011-7] [PMID: 19384573]
[31]
Gibrat, C.; Saint-Pierre, M.; Bousquet, M.; Lévesque, D.; Rouillard, C.; Cicchetti, F. Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and α-synuclein inclusions. J. Neurochem., 2009, 109(5), 1469-1482.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06072.x] [PMID: 19457163]
[32]
Ali, M.M.; Mathur, N.; Chandra, S.V. Effect of chronic cadmium exposure on locomotor behaviour of rats. Indian J. Exp. Biol., 1990, 28(7), 653-656.
[PMID: 2272652]
[33]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[34]
Khanna, V.K.; Husain, R.; Seth, P.K. Effect of protein malnutrition on the neurobehavioural toxicity of styrene in young rats. J. Appl. Toxicol., 1994, 14(5), 351-356.
[http://dx.doi.org/10.1002/jat.2550140506] [PMID: 7822684]
[35]
Srivastava, P.; Yadav, R.S. Efficacy of natural compounds in neurodegenerative disorders, in: the benefits of natural products for neurodegenerative diseases. Adv. Neurobiol., 2016, 12, 107-123.
[http://dx.doi.org/10.1007/978-3-319-28383-8_7] [PMID: 27651251]
[36]
Sharma, M.; Gupta, R.; Khajuria, R.K.; Mallubhotla, S.; Ahuja, A. Bacoside biosynthesis during in vitro shoot multiplication in Bacopa monnieri (L.) Wettst. grown in Growtek and air lift bioreactor. Indian J. Biotechnol., 2015, 14, 547-551.
[37]
Bhatia, G.; Dhuna, V.; Dhuna, K.; Kaur, M.; Singh, J. Bacopa monnieri extracts prevent hydrogen peroxide-induced oxidative damage in a cellular model of neuroblastoma IMR32 cells. Chin. J. Nat. Med., 2017, 15(11), 834-846.
[http://dx.doi.org/10.1016/S1875-5364(18)30017-7] [PMID: 29329610]
[38]
Nicklas, W.J.; Vyas, I.; Heikkila, R.E. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci., 1985, 36(26), 2503-2508.
[http://dx.doi.org/10.1016/0024-3205(85)90146-8] [PMID: 2861548]
[39]
Chaturvedi, R.K.; Shukla, S.; Seth, K.; Chauhan, S.; Sinha, C.; Shukla, Y.; Agrawal, A.K. Neuroprotective and neurorescue effect of black tea extract in 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Neurobiol. Dis., 2006, 22(2), 421-434.
[http://dx.doi.org/10.1016/j.nbd.2005.12.008] [PMID: 16480889]
[40]
Mishra, A.; Mishra, A.K.; Jha, S. Effect of traditional medicine brahmi vati and bacoside A-rich fraction of Bacopa monnieri on acute pentylenetetrzole-induced seizures, amphetamine-induced model of schizophrenia, and scopolamine-induced memory loss in laboratory animals. Epilepsy Behav., 2018, 80, 144-151.
[http://dx.doi.org/10.1016/j.yebeh.2017.12.040] [PMID: 29414544]
[41]
Sharma, M.L.; Chandokhe, N.; Ghatak, B.J.; Jamwal, K.S.; Gupta, O.P.; Singh, G.B.; Ali, M.M.; Thakur, R.S.; Handa, K.L.; Rao, P.R.; Jamwal, P.S.; Sareen, Y.K. Pharmacological screening of Indian medicinal plants. Indian J. Exp. Biol., 1978, 16(2), 228-240.
[PMID: 680819]
[42]
Misra, L.; Wagner, H. Extraction of bioactive principles from Mucuna pruriens seeds. Indian J. Biochem. Biophys., 2007, 44(1), 56-60.
[PMID: 17385342]
[43]
Shukla, K.K.; Mahdi, A.A.; Ahmad, M.K.; Jaiswar, S.P.; Shankwar, S.N.; Tiwari, S.C. Mucuna pruriens reduces stress and improves the quality of semen in infertile men. Evid. Based Complement. Alternat. Med., 2010, 7(1), 137-144.
[http://dx.doi.org/10.1093/ecam/nem171] [PMID: 18955292]
[44]
Kwon, H.J.; Jung, H.Y.; Hahn, K.R.; Kim, W.; Kim, J.W.; Yoo, D.Y.; Yoon, Y.S.; Hwang, I.K.; Kim, D.W. Bacopa monnieri extract improves novel object recognition, cell proliferation, neuroblast differentiation, brain-derived neurotrophic factor, and phosphorylation of cAMP response element-binding protein in the dentate gyrus. Lab. Anim. Res., 2018, 34(4), 239-247.
[http://dx.doi.org/10.5625/lar.2018.34.4.239] [PMID: 30671111]
[45]
Soumyanath, A.; Denne, T.; Hiller, A.; Ramachandran, S.; Shinto, L. Analysis of levodopa content in commercial Mucuna pruriens products using high-performance liquid chromatography with fluorescence detection. J. Altern. Complement. Med., 2018, 24(2), 182-186.
[http://dx.doi.org/10.1089/acm.2017.0054] [PMID: 28922612]
[46]
Fidalgo, C.; Ko, W.K.; Tronci, E.; Li, Q.; Stancampiano, R.; Chuan, Q.; Bezard, E.; Carta, M. Effect of serotonin transporter blockade on L-DOPA-induced dyskinesia in animal models of Parkinson’s disease. Neuroscience, 2015, 298(9), 389-396.
[http://dx.doi.org/10.1016/j.neuroscience.2015.04.027] [PMID: 25907446]
[47]
Aznavour, N.; Cendres-Bozzi, C.; Lemoine, L.; Buda, C.; Sastre, J.P.; Mincheva, Z.; Zimmer, L.; Lin, J.S. MPTP animal model of Parkinsonism: dopamine cell death or only tyrosine hydroxylase impairment? A study using PET imaging, autoradiography, and immunohistochemistry in the cat. CNS Neurosci. Ther., 2012, 18(11), 934-941.
[http://dx.doi.org/10.1111/cns.12009] [PMID: 23106974]
[48]
Agrawal, A.K.; Chaturvedi, R.K.; Shukla, S.; Seth, K.; Chauhan, S.; Ahmad, A.; Seth, P.K. Restorative potential of dopaminergic grafts in presence of antioxidants in rat model of Parkinson’s disease. J. Chem. Neuroanat., 2004, 28(4), 253-264.
[http://dx.doi.org/10.1016/j.jchemneu.2004.08.001] [PMID: 15531136]
[49]
Singh, B.; Pandey, S.; Verma, R.; Ansari, J.A.; Mahdi, A.A. Comparative evaluation of extract of Bacopa monnieri and Mucuna pruriens as neuroprotectant in MPTP model of Parkinson’s disease. Indian J. Exp. Biol., 2016, 54(11), 758-766.
[PMID: 30179419]
[50]
Song, M.K.; Lee, J.H.; Kim, J.; Kim, J.H.; Hwang, S.; Kim, Y.S.; Kim, Y.J. Neuroprotective effect of NXP031 in the MPTP-induced Parkinson’s disease model. Neurosci. Lett., 2021, 740, 135425.
[http://dx.doi.org/10.1016/j.neulet.2020.135425] [PMID: 33075422]
[51]
Percário, S.; da Silva Barbosa, A.; Varela, E.L.P.; Gomes, A.R.Q.; Ferreira, M.E.S.; de Nazaré Araújo Moreira, T.; Dolabela, M.F. Oxidative stress in Parkinson’s disease: Potential benefits of antioxidant supplementation. Oxid. Med. Cell. Longev., 2020, 2020, 2360872.
[http://dx.doi.org/10.1155/2020/2360872] [PMID: 33101584]
[52]
Ikram, M.; Park, T.J.; Ali, T.; Kim, M.O. Antioxidant and neuroprotective effects of caffeine against Alzheimer’s and Parkinson’s disease: Insight into the Role of Nrf-2 and A2AR signaling. Antioxidants, 2020, 9(9), 902.
[http://dx.doi.org/10.3390/antiox9090902] [PMID: 32971922]
[53]
Hatziagapiou, K.; Kakouri, E.; Lambrou, G.I.; Bethanis, K.; Tarantilis, P.A. Antioxidant properties of Crocus Sativus L. and its constituents and relevance to neurodegenerative diseases; focus on Alzheimer’s and Parkinson’s Disease. Curr. Neuropharmacol., 2019, 17(4), 377-402.
[http://dx.doi.org/10.2174/1570159X16666180321095705] [PMID: 29564976]
[54]
Trist, B.G.; Hare, D.J.; Double, K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell, 2019, 18(6), e13031.
[http://dx.doi.org/10.1111/acel.13031] [PMID: 31432604]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy