Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

An Experimental Study on SiO2-ND Hybrid Nanofluid: Thermal Conductivity, Viscosity, and Stability with New Forecast Models

Author(s): Gökberk Yalçın*, Semiha Öztuna, Ahmet Selim Dalkılıç*, Santiphap Nakkaew and Somchai Wongwises

Volume 18, Issue 4, 2022

Published on: 11 January, 2022

Page: [520 - 534] Pages: 15

DOI: 10.2174/1573413718666220111103031

Price: $65

Abstract

Objective: In the present investigation, thermal conductivity and viscosity properties of water-based SiO2-ND hybrid nanofluid were measured, experimentally.

Methods: Nanofluids were prepared by using a two-step method and with three different (0.5%, 0.75%, and 1%) concentrations. Every concentration had three different SiO2-ND mixtures (50% SiO2 - 50% ND, 33% SiO2 - 66% ND, 66% SiO2 - 33% ND).

Results: The most stable sample was measured as -33.4 mV. Measurements of viscosity and thermal conductivity were done from 20°C to 60°C at every 10°C. Thermal conductivity data were measured by thermal conductivity analyzer and viscosity data were measured by tube viscometer. The highest thermal conductivity enhancement was measured for 1% SiO2 0.33: ND 0.66 at 40°C and the highest relative dynamic viscosity was calculated as 4.19 for 1% SiO2 0.33: ND 0.66 at 40°C. A comparison table is also given to show the zeta potential values-concentration relations.

Conclusion: Finally, two different correlations for predicting thermal conductivity and viscosity were proposed for practical usage.

Keywords: Hybrid nanofluids, SiO2, ND, thermal conductivity, viscosity, stability, thermophysical properties of nanofluids.

Graphical Abstract

[1]
Sundar, L.S.; Venkata Ramana, E.; Graça, M.P.F.; Singh, M.K.; Sousa, A.C.M. Nanodiamond-Fe3O4 nanofluids: Preparation and measurement of viscosity, electrical and thermal conductivities. Int. Commun. Heat Mass Transf., 2016, 73, 62-74.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.02.013]
[2]
Sharma, D.; Pandey, K.M.; Debbarma, A.; Choubey, G. Numerical investigation of heat transfer enhancement of SiO2-water based nanofluids in light water nuclear reactor. Mater. Today: Proc., 2017, 4(9), 10118-10122.
[3]
Hu, Y.; Li, H.; He, Y.; Liu, Z.; Zhao, Y. Effect of nanoparticle size and concentration on boiling performance of SiO2 nanofluid. Int. J. Heat Mass Transf., 2017, 107, 820-828.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.11.090]
[4]
Yan, S.; Wang, F.; Shi, Z.G.; Tian, R. Heat transfer property of SiO2/water nanofluid flow inside solar collector vacuum tubes. Appl. Therm. Eng., 2017, 118, 385-391.
[http://dx.doi.org/10.1016/j.applthermaleng.2017.02.108]
[5]
Sundar, L.S.; Hortiguela, M.J.; Singh, M.K.; Sousa, A.C.M. Thermal conductivity and viscosity of water based nanodiamond (ND) nanofluids: An experimental study. Int. Commun. Heat Mass Transf., 2016, 76, 245-255.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.05.025]
[6]
Yeganeh, M.; Shahtahmasebi, N.; Kompany, A.; Goharshadi, E.K.; Youssefi, A.; Šiller, L. Volume fraction and temperature variations of the effective thermal conductivity of nanodiamond fluids in deionized water. Int. J. Heat Mass Transf., 2010, 53(15-16), 3186-3192.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.03.008]
[7]
Hamid, K.A.; Azmi, W.H.; Nabil, M.F.; Mamat, R.; Sharma, K.V. Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. Int. J. Heat Mass Transf., 2018, 116, 1143-1152.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.09.087]
[8]
Moldoveanu, G.M.; Ibanescu, C.; Danu, M.; Minea, A.A. Viscosity estimation of Al2O3, SiO2 nanofluids and their hybrid: An experimental study. J. Mol. Liq., 2018, 253, 188-196.
[http://dx.doi.org/10.1016/j.molliq.2018.01.061]
[9]
Sundar, L.S.; Irurueta, G.O.; Venkata Ramana, E.; Singh, M.K.; Sousa, A.C.M. Thermal conductivity and viscosity of hybrid nanfluids prepared with magnetic nanodiamond-cobalt oxide (ND-Co3O4) nanocomposite. Case Studies Thermal Eng., 2016, 7, 66-77.
[http://dx.doi.org/10.1016/j.csite.2016.03.001]
[10]
Yang, L.; Xu, J.; Du, K.; Zhang, X. Recent developments on viscosity and thermal conductivity of nanofluids. Powder Technol., 2017, 317, 348-369.
[http://dx.doi.org/10.1016/j.powtec.2017.04.061]
[11]
Ahmadi, M.H. Precise smart model for estimating dynamic viscosity of SiO2/ethylene glycol–water nanofluid. Eng. Appl. Comput. Fluid Mech., 2019, 13, 1095-1105.
[http://dx.doi.org/10.1080/19942060.2019.1668303]
[12]
Nabil, M.F.; Azmi, W.H.; Abdul Hamid, K.; Mamat, R.; Hagos, F.Y. An experimental study on the thermal conductivity and dynamic viscosity of TiO2-SiO2 nanofluids in water: Ethylene glycol mixture. Int. Commun. Heat Mass Transf., 2017, 86, 181-189.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.05.024]
[13]
Moldoveanu, G.M.; Huminic, G.; Minea, A.A.; Huminic, A. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int. J. Heat Mass Transf., 2018, 127, 450-457.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.024]
[14]
Minea, A. Hybrid nanofluids based on Al2O3, TiO2 and SiO2: Numerical evaluation of different approaches. Int. J. Heat Mass Transf., 2017, 104, 852-860.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.012]
[15]
Taherialekouhi, R.; Rasouli, S.; Khosravi, A. An experimental study on stability and thermal conductivity of water-graphene oxide/aluminum oxide nanoparticles as a cooling hybrid nanofluid. Int. J. Heat Mass Transf., 2019, 145, 118751.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118751]
[16]
Dalkılıç, A.S.; Yalçın, G.; Küçükyıldırım, B.O.; Öztuna, S.; Akdoğan Eker, A.; Jumpholkul, C.; Nakkaew, S.; Wongwises, S. Experimental study on the thermal conductivity of water-based CNT-SiO2 hybrid nanofluids. Int. Commun. Heat Mass Transf., 2018, 99, 18-25.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.10.002]
[17]
Sajid, M.U.; Ali, H.M. Thermal conductivity of hybrid nanofluids: A critical review. Int. J. Heat Mass Transf., 2018, 126, 211-234.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.05.021]
[18]
Huminic, G.; Huminic, A. Hybrid nanofluids for heat transfer applications – A state-of-the-art review. Int. J. Heat Mass Transf., 2018, 125, 82-103.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.059]
[19]
Gupta, M. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J. Clean. Prod., 2018, 190, 169-192.
[http://dx.doi.org/10.1016/j.jclepro.2018.04.146]
[20]
Sharma, K.; Tiwari, A.K.; Dixit, A.R. Rheological behaviour of nanofluids: A review. Renew. Sustain. Energy Rev., 2016, 53, 779-791.
[http://dx.doi.org/10.1016/j.rser.2015.09.033]
[21]
Hamzah, M.H.; Sidik, N.A.C.; Ken, T.L.; Mamat, R.; Najafi, G. Factors affecting the performance of hybrid nanofluids: A comprehensive review. Int. J. Heat Mass Transf., 2017, 115, 630-646.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.07.021]
[22]
Pak, C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. Int. J., 1998, 11(2), 151-170.
[http://dx.doi.org/10.1080/08916159808946559]
[23]
Maxwell, J.C. Electricity and Magnetism; Clarendon Press: Oxford, 1873.
[24]
Keyvani, M.; Afrand, M.; Toghraie, D.; Reiszadeh, M. An experimental study on the thermal conductivity of cerium oxide/ethylene glycol nanofluid: Developing a new correlation. J. Mol. Liq., 2018, 266, 211-217.
[http://dx.doi.org/10.1016/j.molliq.2018.06.010]
[25]
Karimipour, A.; Ghasemi, S.; Darvanjooghi, M.H.K.; Abdollahi, A. A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method. Int. Commun. Heat Mass Transf., 2018, 92, 90-99.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.02.002]
[26]
Li, C.C. Thermal conductivity of liquid mixtures. AIChE J., 1976, 22, 927-930.
[http://dx.doi.org/10.1002/aic.690220520]
[27]
El Bécaye Maïga, S.; Palm, S.J.; Nguyen, C.T.; Roy, G.; Galanis, N. Heat transfer enhancement by using nanofluids in forced convection flows. Int. J. Heat Fluid Flow, 2005, 26, 530-546.
[http://dx.doi.org/10.1016/j.ijheatfluidflow.2005.02.004]
[28]
Einstein, A. Investigations on the Theory of the Brownian Movement; Courier Corporation, 1956.
[29]
Batchelor, G.K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech., 1977, 83, 97-117.
[http://dx.doi.org/10.1017/S0022112077001062]
[30]
Brinkman, H.C. The viscosity of concentrated suspensions and solution. J. Chem. Phys., 1952, 20(4), 571-581.
[http://dx.doi.org/10.1063/1.1700493]
[31]
Vand, V. Theory of viscosity of concentrated suspensions. Nature, 1945, 155, 364-365.
[http://dx.doi.org/10.1038/155364b0]
[32]
Guo, S.S.; Luo, Z.Y.; Tao, W.; Zhao, J.F.; Cen, K.F. Viscosity of monodisperse silica nanofluids. Bull. Chin. Ceram. Soc., 2006, 25(5), 52-55.
[33]
de Castro, C.A.N.; Vieira, S.I.C.; Lourenço, M.J.; Murshed, S.M.S. Understanding stability, measurements, and mechanisms of Thermal conductivity of Nanofluids. J. Nanofluids, 2017, 6, 804-811.
[http://dx.doi.org/10.1166/jon.2017.1388]
[34]
Ilyas, S.U.; Pendyala, R.; Marneni, N. Stability of Nanofluids; Engineering Applications of Nanotechnology, 2017, pp. 1-31.
[35]
Shah, S.N.A.; Shahabuddin, S.; Sabri, M.F.M.; Salleh, M.F.M.; Ali, M.A.; Hayat, N.; Sidik, N.A.C.; Samykano, M.; Saidur, R. Experimental investigation on stability, thermal conductivity and rheological properties of rGO/ethylene glycol based nanofluids. Int. J. Heat Mass Transf., 2020, 150, 118981.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118981]
[36]
Suganthi, K.S.; Rajan, K.S. Temperature induced changes in ZnO-water nanofluid: Zeta potential, size distribution and viscosity profiles. Int. J. Heat Mass Transf., 2012, 55, 7969-7980.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.08.032]
[37]
Le Ba, T.; Alkurdi, A.Q.; Lukács, I.E.; Molnár, J.; Wongwises, S.; Gróf, G.; Szilágyi, I.M. A novel experimental study on the rheological properties and thermal conductivity of halloysite nanofluids. Nanomaterials (Basel), 2020, 10(9), 1-14.
[http://dx.doi.org/10.3390/nano10091834] [PMID: 32937934]
[38]
Gallego, A.; Cacua, K.; Herrera, B.; Cabaleiro, D.; Piñeiro, M.M.; Lugo, L. Experimental evaluation of the effect in the stability and thermophysical properties of water-Al2O3 based nanofluids using SDBS as dispersant agent. Adv. Powder Technol., 2020, 31, 560-570.
[http://dx.doi.org/10.1016/j.apt.2019.11.012]
[39]
Gulzar, O.; Qayoum, A.; Gupta, R. Experimental study on stability and rheological behaviour of hybrid Al2O3-TiO2 Therminol-55 nanofluids for concentrating solar collectors. Powder Technol., 2019, 352, 436-444.
[http://dx.doi.org/10.1016/j.powtec.2019.04.060]
[40]
Khairul, M.A.; Shah, K.; Doroodchi, E.; Azizian, R.; Moghtaderi, B. Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids. Int. J. Heat Mass Transf., 2016, 98, 778-787.
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.03.079]
[41]
Shah, J.; Ranjan, M.; Sooraj, K.P.; Sonvane, Y.; Gupta, S.K. Surfactant prevented growth and enhanced thermophysical properties of CuO nanofluid. J. Mol. Liq., 2019, 283, 550-557.
[http://dx.doi.org/10.1016/j.molliq.2019.03.127]
[42]
Chang, M.H.; Liu, H.S.; Tai, C.Y. Preparation of copper oxide nanoparticles and its application in nanofluid. Powder Technol., 2011, 207, 378-386.
[http://dx.doi.org/10.1016/j.powtec.2010.11.022]
[43]
Dalkılıç, A.S.; Açıkgöz, Ö.; Küçükyıldırım, B.O.; Eker, A.A.; Lüleci, B.; Jumpholkul, C.; Wongwises, S. Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids. Int. Commun. Heat Mass Transf., 2018, 97, 30-38.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.07.007]
[44]
Sekhar, Y.R.; Sharma, K.V. Study of viscosity and specific heat capacity characteristics of waterbased Al2O3 nanofluids at low particle concentrations. J. Exp. Nanosci., 2015, 10(2), 86-102.
[http://dx.doi.org/10.1080/17458080.2013.796595]
[45]
Mishra, P.C.; Mukherjee, S.; Nayak, S.K.; Panda, A. A brief review on viscosity of nanofluids. Int. Nano Lett., 2014, 4(4), 109-120.
[http://dx.doi.org/10.1007/s40089-014-0126-3]
[46]
Mostafizur, R.M.; Abdul Aziz, A.R.; Saidur, R.; Bhuiyan, M.H.U. Investigation on stability and viscosity of SiO2-CH3OH (methanol) nanofluids. Int. Commun. Heat Mass Transf., 2016, 72, 16-22.
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.01.001]
[47]
Raja, M.; Vijayan, R.; Dineshkumar, P.; Venkatesan, M. Review on nanofluids characterization, heat transfer characteristics and applications. Renew. Sustain. Energy Rev., 2016, 64, 163-173.
[http://dx.doi.org/10.1016/j.rser.2016.05.079]
[50]
Tassaddiq, A. Impact of Cattaneo-Christov heat flux model on MHD hybrid nano-micropolar fluid flow and heat transfer with viscous and joule dissipation effects. Sci. Rep., 2021, 11(1), 67.
[http://dx.doi.org/10.1038/s41598-020-77419-x] [PMID: 33431877]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy