Abstract
Objective: In the present investigation, thermal conductivity and viscosity properties of water-based SiO2-ND hybrid nanofluid were measured, experimentally.
Methods: Nanofluids were prepared by using a two-step method and with three different (0.5%, 0.75%, and 1%) concentrations. Every concentration had three different SiO2-ND mixtures (50% SiO2 - 50% ND, 33% SiO2 - 66% ND, 66% SiO2 - 33% ND).
Results: The most stable sample was measured as -33.4 mV. Measurements of viscosity and thermal conductivity were done from 20°C to 60°C at every 10°C. Thermal conductivity data were measured by thermal conductivity analyzer and viscosity data were measured by tube viscometer. The highest thermal conductivity enhancement was measured for 1% SiO2 0.33: ND 0.66 at 40°C and the highest relative dynamic viscosity was calculated as 4.19 for 1% SiO2 0.33: ND 0.66 at 40°C. A comparison table is also given to show the zeta potential values-concentration relations.
Conclusion: Finally, two different correlations for predicting thermal conductivity and viscosity were proposed for practical usage.
Keywords: Hybrid nanofluids, SiO2, ND, thermal conductivity, viscosity, stability, thermophysical properties of nanofluids.
Graphical Abstract
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.02.013]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.11.090]
[http://dx.doi.org/10.1016/j.applthermaleng.2017.02.108]
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.05.025]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.03.008]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.09.087]
[http://dx.doi.org/10.1016/j.molliq.2018.01.061]
[http://dx.doi.org/10.1016/j.csite.2016.03.001]
[http://dx.doi.org/10.1016/j.powtec.2017.04.061]
[http://dx.doi.org/10.1080/19942060.2019.1668303]
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2017.05.024]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.07.024]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.09.012]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118751]
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.10.002]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.05.021]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.059]
[http://dx.doi.org/10.1016/j.jclepro.2018.04.146]
[http://dx.doi.org/10.1016/j.rser.2015.09.033]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2017.07.021]
[http://dx.doi.org/10.1080/08916159808946559]
[http://dx.doi.org/10.1016/j.molliq.2018.06.010]
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.02.002]
[http://dx.doi.org/10.1002/aic.690220520]
[http://dx.doi.org/10.1016/j.ijheatfluidflow.2005.02.004]
[http://dx.doi.org/10.1017/S0022112077001062]
[http://dx.doi.org/10.1063/1.1700493]
[http://dx.doi.org/10.1038/155364b0]
[http://dx.doi.org/10.1166/jon.2017.1388]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118981]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.08.032]
[http://dx.doi.org/10.3390/nano10091834] [PMID: 32937934]
[http://dx.doi.org/10.1016/j.apt.2019.11.012]
[http://dx.doi.org/10.1016/j.powtec.2019.04.060]
[http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.03.079]
[http://dx.doi.org/10.1016/j.molliq.2019.03.127]
[http://dx.doi.org/10.1016/j.powtec.2010.11.022]
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.07.007]
[http://dx.doi.org/10.1080/17458080.2013.796595]
[http://dx.doi.org/10.1007/s40089-014-0126-3]
[http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.01.001]
[http://dx.doi.org/10.1016/j.rser.2016.05.079]
[http://dx.doi.org/10.1038/s41598-020-77419-x] [PMID: 33431877]