Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

General Research Article

Combined Effect of Zinc Oxide Nanoparticles and Low Electric Field in Growth Suppression of Some Free-living Pathogens

Author(s): Mamdouh M. Shawki*, Marwa M. Eltarahony and Maisa E. Moustafa

Volume 18, Issue 4, 2022

Page: [535 - 544] Pages: 10

DOI: 10.2174/1573413717666211026151538

Price: $65

conference banner
Abstract

Background: The re-emergence of infectious diseases and the increasing rate of the appearance of many antibiotic-resistant strains are major public health concerns. Zinc oxide nanoparticles (ZnO-NPs) have a great antibacterial effect. Few reports stated the antibacterial effect of low electric field (LEF).

Objective: The paper aimed to study the antibacterial effect of LEF at low frequency and investigate the antibacterial effectiveness of using LEF in synergy with ZnO-NPs.

Methods: Pseudomonas aeruginosa and Staphylococcus aureus were examined as models for Gramnegative and Gram-positive bacteria, respectively. The bacterial suspension was exposed to different concentrations of Zn-NPs ranging from 100-1600 μg/ml or 2 V/cm, 500 Hz AC electric field for 5 min. ZnO-NPs were prepared and characterized by UV-Vis spectroscopy, XRD, FTIR, TEM, and SEM. The combined effect of LEF exposure with each ZnO-NPs concentration was assessed.

Results: 1600 μg/ml ZnO-NPs cause 41.93% and 48.15% death, LEF produces 20.88% and 28.03% death, and the synergetic effect causes 50.41% and 70.27% death for P. aeruginosa and S. aureus, respectively. The death percentages were correlated with DNA concentration and deformation, reactive oxygen species concentration, and ultrastructure changes.

Conclusions: LEF has antibacterial properties and can be used in combination with ZnO-NPs to increase its lethal effect.

Keywords: Low electric field, ZnO nanoparticles, antimicrobial activity, DNA concentration and deformation, reactive oxygen species concentration, ultrastructure changes.

« Previous
Graphical Abstract

[1]
Desselberger, U. Emerging and re-emerging infectious diseases. J. Infect., 2000, 40(1), 3-15.
[http://dx.doi.org/10.1053/jinf.1999.0624] [PMID: 10762105]
[2]
Stover, C.K.; Pham, X.Q.; Erwin, A.L.; Mizoguchi, S.D.; Warrener, P.; Hickey, M.J.; Brinkman, F.S.; Hufnagle, W.O.; Kowalik, D.J.; Lagrou, M.; Garber, R.L.; Goltry, L.; Tolentino, E.; Westbrock-Wadman, S.; Yuan, Y.; Brody, L.L.; Coulter, S.N.; Folger, K.R.; Kas, A.; Larbig, K.; Lim, R.; Smith, K.; Spencer, D.; Wong, G.K.; Wu, Z.; Paulsen, I.T.; Reizer, J.; Saier, M.H.; Hancock, R.E.; Lory, S.; Olson, M.V. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 2000, 406(6799), 959-964.
[http://dx.doi.org/10.1038/35023079] [PMID: 10984043]
[3]
Seo, K.S.; Bohach, G.A. Staphylococcus aureus. In: Food Microbiology: Fundamentals and Frontiers, 4th ed; Doyle, M.P.; Buchanan, R.L., Eds.; ASM Press: Washington, D.C, 2013; pp. 547-593.
[4]
De Souza, R.C.; Haberbeck, L.U.; Riella, H.G.; Ribeiro, D.H.; Carciofi, B.A. Antibacterial activity of zinc oxide nanoparticles synthesized by solochemical process. Braz. J. Chem. Eng., 2019, 36(2), 885-893.
[http://dx.doi.org/10.1590/0104-6632.20190362s20180027]
[5]
de Planque, M.R.; Aghdaei, S.; Roose, T.; Morgan, H. Electrophysiological characterization of membrane disruption by nanoparticles. ACS Nano, 2011, 5(5), 3599-3606.
[http://dx.doi.org/10.1021/nn103320j] [PMID: 21517083]
[6]
Jacobson, K.H.; Gunsolus, I.L.; Kuech, T.R.; Troiano, J.M.; Melby, E.S.; Lohse, S.E.; Hu, D.; Chrisler, W.B.; Murphy, C.J.; Orr, G.; Geiger, F.M.; Haynes, C.L.; Pedersen, J.A. Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes. Environ. Sci. Technol., 2015, 49(17), 10642-10650.
[http://dx.doi.org/10.1021/acs.est.5b01841] [PMID: 26207769]
[7]
Arakha, M.; Saleem, M.; Mallick, B.C.; Jha, S. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Sci. Rep., 2015, 5, 9578.
[http://dx.doi.org/10.1038/srep09578] [PMID: 25873247]
[8]
Lopes, D.D.; Brown, K.H.; Guinard, J.X. Sensory trial to assess the acceptability of zinc fortificants added to iron-fortified wheat products. J. Food Sci., 2002, 67, 461-465.
[http://dx.doi.org/10.1111/j.1365-2621.2002.tb11429.x]
[9]
Siddiqi, K.S.; Ur Rahman, A.; Tajuddin, ; Husen, A. Tajuddin, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res. Lett., 2018, 13(1), 141.
[http://dx.doi.org/10.1186/s11671-018-2532-3] [PMID: 29740719]
[10]
Antov, Y.; Barbul, A.; Korenstein, R. Electroendocytosis: stimulation of adsorptive and fluid-phase uptake by pulsed low electric fields. Exp. Cell Res., 2004, 297(2), 348-362.
[http://dx.doi.org/10.1016/j.yexcr.2004.03.027] [PMID: 15212939]
[11]
Barbul, A.; Antov, Y.; Rosenberg, Y.; Korenstein, R. Enhanced delivery of macromolecules into cells by electroendocytosis. Methods Mol. Biol., 2009, 480, 141-150.
[http://dx.doi.org/10.1007/978-1-59745-429-2_10] [PMID: 19085126]
[12]
Mirzaii, M.; Alfi, A.; Kasaeian, A.; Norozi, P.; Nasiri, M.; Darban, D. Antibacterial effect of alternating current against Staphylococcus aureus and Pseudomonas aeroginosa. Russian Open Med. J., 2015, 4(2)
[http://dx.doi.org/10.15275/rusomj.2015.0203]
[13]
Beek, W.J.; Wienk, M.M.; Kemerink, M.; Yang, X.; Janssen, R.A. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B, 2005, 109(19), 9505-9516.
[http://dx.doi.org/10.1021/jp050745x] [PMID: 16852143]
[14]
Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: from nanodots to nanorods. Angew. Chem. Int. Ed., 2002, 41(7), 1188-1191.
[http://dx.doi.org/10.1002/1521-3773(20020402)41:7<1188:AID-ANIE1188>3.0.CO;2-5] [PMID: 12491255]
[15]
Teanpaisan, R.; Kawsud, P.; Pahumunto, N.; Puripattanavong, J. Screening for antibacterial and antibiofilm activity in Thai medicinal plant extracts against oral microorganisms. J. Tradit. Complement. Med., 2016, 7(2), 172-177.
[http://dx.doi.org/10.1016/j.jtcme.2016.06.007] [PMID: 28417087]
[16]
Eltarahony, M.; Zaki, S.; Kheiralla, Z.; Abd-El-Haleem, D. Isolation, characterization and identification of nitrate reductase producing bacteria. Int. J. Recent Sci. Res., 2015, 6, 7225-7233.
[17]
Antonoglou, O.; Giannousi, K.; Arvanitidis, J.; Mourdikoudis, S.; Pantazaki, A.; Dendrinou-Samara, C. Elucidation of one step synthesis of PEGylated CuFe bimetallic nanoparticles. Antimicrobial activity of CuFe@PEG vs Cu@PEG. J. Inorg. Biochem., 2017, 177, 159-170.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.09.014] [PMID: 28964993]
[18]
Alavi, M.; Karimi, N. Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2, TiO2–Ag, Ag–Cu and Cu–Ag nanocomposites against multi-drug-resistant bacteria. Artificial cells, nanomedicine, and biotechnology, 2018, 46(Sup 3), 399-413.
[19]
Jayarambabu, N.; Kumari, S.; Rao, K.V.; Prabhu, Y.T. Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. Int. J. Curr. Eng. Technol., 2014, 4(5), 3411-3416.
[20]
Khan, S.T.; Ahmad, J.; Ahamed, M.; Musarrat, J.; Al-Khedhairy, A.A. Zinc oxide and titanium dioxide nanoparticles induce oxidative stress, inhibit growth, and attenuate biofilm formation activity of Streptococcus mitis. Eur. J. Biochem., 2016, 21(3), 295-303.
[http://dx.doi.org/10.1007/s00775-016-1339-x] [PMID: 26837748]
[21]
Tiwari, V.; Mishra, N.; Gadani, K.; Solanki, P.S.; Shah, N.A.; Tiwari, M. Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol., 2018, 9, 1218.
[http://dx.doi.org/10.3389/fmicb.2018.01218] [PMID: 29928271]
[22]
Hao, Y.M.; Lou, S.Y.; Zhou, S.M.; Yuan, R.J.; Zhu, G.Y.; Li, N. Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles. Nanoscale Res. Lett., 2012, 7(1), 100.
[http://dx.doi.org/10.1186/1556-276X-7-100] [PMID: 22296968]
[23]
Pati, R.; Mehta, R.K.; Mohanty, S.; Padhi, A.; Sengupta, M.; Vaseeharan, B.; Goswami, C.; Sonawane, A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine, 2014, 10(6), 1195-1208.
[http://dx.doi.org/10.1016/j.nano.2014.02.012] [PMID: 24607937]
[24]
Jan, T.; Iqbal, J.; Ismail, M.; Zakaullah, M.; Naqvi, S.H.; Badshah, N. Sn doping induced enhancement in the activity of ZnO nanostructures against antibiotic resistant S. aureus bacteria. Int. J. Nanomedicine, 2013, 8, 3679-3687.
[http://dx.doi.org/10.2147/IJN.S45439] [PMID: 24109181]
[25]
Aleaghil, S.; Fattahy, E.; Baei, B.; Saghali, M.; Bagheri, H.; Javid, N. Antibacterial activity of Zinc oxide nanoparticles on Staphylococcus aureus. Int. J. Adv. Biotechnol. Res., 2016, 7(3), 1569-1575.
[26]
Krishnamurthi, V.R.; Rogers, A.; Peifer, J.; Niyonshuti, I.I.; Chen, J.; Wang, Y. Microampere electric current causes bacterial membrane damage and two-way leakage in a short period of time. Appl. Environ. Microbiol., 2020, 86(16), e01015-e01020.
[http://dx.doi.org/10.1128/AEM.01015-20] [PMID: 32561580]
[27]
Greenwood, D.; O’Grady, F. Scanning electron microscopy of Staphyloccus aureus exposed to some common anti-staphylococcal agents. J. Gen. Microbiol., 1972, 70(2), 263-270.
[http://dx.doi.org/10.1099/00221287-70-2-263] [PMID: 4483215]
[28]
Rosenberg, M.; Visnapuu, M.; Vija, H.; Kisand, V.; Kasemets, K.; Kahru, A.; Ivask, A. Selective antibiofilm properties and biocompatibility of nano-ZnO and nano-ZnO/Ag coated surfaces. Sci. Rep., 2020, 10(1), 13478.
[http://dx.doi.org/10.1038/s41598-020-70169-w] [PMID: 32778787]
[29]
Abd EL-Tawab. A.; Abo El-Roos, N.; El-Gendy, A.A. Effect of zinc oxide nanoparticles on Staphylococcus aureus isolated from cowsʼ mastitic milk. Benha Vet. Med. J., 2018, 35(1), 30-41.
[http://dx.doi.org/10.21608/bvmj.2018.35946]
[30]
Antov, Y.; Barbul, A.; Mantsur, H.; Korenstein, R. Electroendocytosis: exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys. J., 2005, 88(3), 2206-2223.
[http://dx.doi.org/10.1529/biophysj.104.051268] [PMID: 15556977]
[31]
Ben-Dov, N.; Korenstein, R. Enhancement of cell membrane invaginations, vesiculation and uptake of macromolecules by protonation of the cell surface. PLoS One, 2012, 7(4), e35204.
[http://dx.doi.org/10.1371/journal.pone.0035204] [PMID: 22558127]
[32]
Froughreyhani, M.; Salemmilani, A.; Mozafari, A.; Hosein-Soroush, M. Effect of electric currents on antibacterial effect of chlorhexidine against Entrococcus faecalis biofilm: An in vitro study. J. Clin. Exp. Dent., 2018, 10(12), e1223-e1229.
[http://dx.doi.org/10.4317/jced.55369] [PMID: 30697382]
[33]
Doan, K.N.; Lai, D.Q.; Le, P.T. Inactivation of E. coli O157: H7 by ohmic heating at different frequencies and temperatures in buffer and pomelo juice. Chem. Eng. Trans., 2020, 78, 475-480.
[34]
Raghunath, A.; Perumal, E. Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int. J. Antimicrob. Agents, 2017, 49(2), 137-152.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.11.011] [PMID: 28089172]
[35]
Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; Jimenez de Aberasturi, D.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol., 2012, 30(10), 499-511.
[http://dx.doi.org/10.1016/j.tibtech.2012.06.004] [PMID: 22884769]
[36]
Goswami, G.; Boruah, H.; Gautom, T.; Hazarika, D.J.; Barooah, M.; Boro, R.C. Chemically synthesized silver nanoparticles as cell lysis agent for bacterial genomic DNA isolation. Adv. Natl. Sci. Nanosci. Nanotechnol., 2017, 8(4), 045015.
[http://dx.doi.org/10.1088/2043-6254/aa92ba]
[37]
Alizadeh, V.; Golestani, E.B.; Amjady, F. Genomic effect of silver nanoparticles in Staphylococcus aureus bacteria. J. Water Environ. Nanotechnol., 2018, 3(1), 51-57.
[38]
Dong, Y.; Zhu, H.; Shen, Y.; Zhang, W.; Zhang, L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS One, 2019, 14(9), e0222322.
[http://dx.doi.org/10.1371/journal.pone.0222322] [PMID: 31518380]
[39]
Valle, A.; Zanardini, E.; Abbruscato, P.; Argenzio, P.; Lustrato, G.; Ranalli, G.; Sorlini, C. Effects of low electric current (LEC) treatment on pure bacterial cultures. J. Appl. Microbiol., 2007, 103(5), 1376-1385.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03374.x] [PMID: 17953548]
[40]
Torres, C.; Castaneda, L.; Martinez, R. Evolution of the optical response in a nanostructured fluorine doped zinc oxide thin film. Semicond. Sci. Technol., 2012, 27, 115016.
[http://dx.doi.org/10.1088/0268-1242/27/11/115016]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy