Generic placeholder image

Current Applied Materials

Editor-in-Chief

ISSN (Print): 2666-7312
ISSN (Online): 2666-7339

Research Article

Evaluation of Rare-earth Sesquioxides Nanoparticles as a Bottom-up Strategy Toward the Formation of Functional Structures

Author(s): Silas Cardoso dos Santos*, Orlando Rodrigues Junior and Leticia Lucente Campos

Volume 1, Issue 1, 2022

Published on: 30 March, 2022

Article ID: e110122200128 Pages: 10

DOI: 10.2174/2666731201666220111102037

conference banner
Abstract

Background: The strategy to form functional structures based on powder technology relies on the concept of nanoparticles characteristics. Rare-earth sesquioxides (RE2O3; RE as Y, Tm, Eu) exhibit remarkable properties, and their fields of application include energy, astronomy, environmental, medical, information technology, industry, and materials science. The purpose of this paper is to evaluate the characteristics of RE2O3 nanoparticles as a bottom-up strategy to form functional materials for radiation dosimetry.

Methods: The RE2O3 nanoparticles were characterized by the following techniques: XRD, SEM, PCS, FTIR, ICP, EPR, and zeta potential.

Results: All RE2O3 samples exhibited cubic C-type structure in accordance with the sesquioxide diagram, chemical composition over 99.9 %, monomodal mean particle size distribution, in which d50 value was inferior to 130 nm. Among all samples, only yttrium oxide exhibited an EPR signal, in which the most intense peak was recorded at 358mT and g 1.9701.

Conclusion: Evaluating nanoparticle characteristics is extremely important by considering a bottom-up strategy to form functional materials. The RE2O3 nanoparticles exhibit promising characteristics for application in radiation dosimetry.

Keywords: Rare-earths, sesquioxides, nanoparticles, functional structures, radiation dosimetry, ceramic processing

Graphical Abstract

[1]
Nanoparticle Technology Handbook In: Nano Today. 2007; 2: p. (4)45.
[http://dx.doi.org/10.1016/S1748-0132(07)70119-6]
[2]
Thampi AD, Prasanth MA, Anandu AP, Sneha E, Sasidharan B, Rani S. The effect of nanoparticle additives on the tribological properties of various lubricating oils – Review. Mater Today Proc 2021; 47(15): 4919-24.
[http://dx.doi.org/10.1016/j.matpr.2021.03.664]
[3]
Ortiz-Godoy N, Agredo-Diaz DG, Garzón-Posada AO, Parra Vargas CA, Landínez Téllez DA, Roa-Rojas J. A facile method to produce magnetic nanoparticles and its influence on their magnetic and physical properties. Mater Lett 2021; 293: 129700.
[http://dx.doi.org/10.1016/j.matlet.2021.129700]
[4]
Nofar M, Salehiyan R, Ray SS. Influence of nanoparticles and their selective localization on the structure and properties of polylactide-based blend nanocomposites. Compos, Part B Eng 2021; 215: 108845.
[http://dx.doi.org/10.1016/j.compositesb.2021.108845]
[5]
Fang C, Jing Z, Qin X, et al. Effect of heat treatment of green bodies on the sintering and optical properties of large-size and thick transparent YAG ceramics. Ceram Int 2021; 47: 9606-12.
[http://dx.doi.org/10.1016/j.ceramint.2020.12.097]
[6]
Abou-Elanwar AM, Shirke YM, Kwon SJ, et al. Size effects of carboxylated magnetite nanoparticles on the membrane dehumidification performance. J Environ Chem Eng 2021; 9: 105304.
[http://dx.doi.org/10.1016/j.jece.2021.105304]
[7]
Zahmatkesh I, Sheremet M, Yang L, et al. Effect of nanoparticle shape on the performance of thermal systems utilizing nanofluids: A critical review. J Mol Liq 2021; 321: 114430.
[http://dx.doi.org/10.1016/j.molliq.2020.114430]
[8]
Lavker RM, Kaplan N, McMahon KM, et al. Synthetic high-density lipoprotein nanoparticles: Good things in small packages. Ocul Surf 2021; 21: 19-26.
[http://dx.doi.org/10.1016/j.jtos.2021.03.001]
[9]
Giraldo LJ, Diez R, Acevedo S, Cortés FB, Franco CA. The effects of chemical composition of fines and nanoparticles on inhibition of formation damage caused by fines migration: Insights through a simplex-centroid mixture design of experiments. J Petrol Sci Eng 2021; 203: 108494.
[http://dx.doi.org/10.1016/j.petrol.2021.108494]
[10]
Jain A, Wang YG, Guo H. Emergence of relaxor behavior along with enhancement in energy storage performance in light rare-earth doped Ba0.90Ca0.10Ti0.90Zr0.10O3 ceramics. Ceram Int 2021; 47: 10590-602.
[http://dx.doi.org/10.1016/j.ceramint.2020.12.171]
[11]
Bonfante MC, Raspini JP, Fernandes IB, Fernandes S, Campos LMS, Alarcon OE. Achieving sustainable development goals in rare earth magnets production: A review on state of the art and SWOT analysis. Renew Sustain Energy Rev 2021; 137: 110616.
[http://dx.doi.org/10.1016/j.rser.2020.110616]
[12]
Ni S, Chen Q, Gao Y, Guo X, Sun X. Recovery of rare earths from industrial wastewater using extraction-precipitation strategy for resource and environmental concerns. Miner Eng 2020; 151: 106315.
[http://dx.doi.org/10.1016/j.mineng.2020.106315]
[13]
Weng W, Biesiekierski A, Lin J, Li Y, Wen C. Impact of rare earth elements on nanohardness and nanowear properties of beta-type Ti- 24Nb-38Zr-2Mo alloy for medical applications. Materialia (Oxf) 2020; 12: 100772.
[http://dx.doi.org/10.1016/j.mtla.2020.100772]
[14]
Deng S, Prodius D, Nlebedim IC, Huang A, Yih Y, Sutherland JW. A dynamic price model based on supply and demand with application to techno-economic assessments of rare earth element recovery technologies. Sustain Prod Consum 2021; 27: 1718-27.
[http://dx.doi.org/10.1016/j.spc.2021.04.013]
[15]
Costa L, Mirlean N, Johannesson KH. Rare earth elements as tracers of sediment contamination by fertilizer industries in Southern Brazil, Patos Lagoon Estuary. Appl Geochem 2021; 129: 104965.
[http://dx.doi.org/10.1016/j.apgeochem.2021.104965]
[16]
Jakoby M, Beil C, Nazari P, et al. Rare-earth coordination polymers with multimodal luminescence on the nano-, micro-, and milli-second time scales. iScience 2021; 24(3): 102207.
[http://dx.doi.org/10.1016/j.isci.2021.102207] [PMID: 33733068]
[17]
Dushyantha N, Batapola N, Ilankoon IMSK, et al. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol Rev 2020; 122: 103521.
[http://dx.doi.org/10.1016/j.oregeorev.2020.103521]
[18]
Department of the Interior U.S.G.S. Mineral Commodity Summaries A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals 2017. Available from: https://www.commerce. gov/news/reports/2019/06/federal-
[19]
Fabrice M, Fulvio A, Silvia B, et al. Critical Raw Materials and the Circular Economy Background report 2017.
[http://dx.doi.org/10.2760/378123]
[20]
Jung HK, Kim CH, Hong A-R, et al. Luminescent and magnetic properties of cerium-doped yttrium aluminum garnet and yttrium iron garnet composites. Ceram Int 2019; 45: 9846-51.
[http://dx.doi.org/10.1016/j.ceramint.2019.02.023]
[21]
Magdalane CM, Kaviyarasu K, Vijaya JJ, et al. Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/Vis light induced photocatalytic degradation of Rhodamine - B dye for textile engineering application. J Alloys Compd 2017; 727: 1324-37.
[http://dx.doi.org/10.1016/j.jallcom.2017.08.209]
[22]
Ordoñez MFC, Amorim CLG, Krindges I, et al. Microstructure and micro-abrasive wear of sintered yttria containing 316L stainless steel treated by plasma nitriding. Surf Coat Tech 2019; 374: 700-12.
[http://dx.doi.org/10.1016/j.surfcoat.2019.06.002]
[23]
Raj AKV, Rao PP, Sreena TS, Thara TRA. Pigmentary colors from yellow to red in Bi2Ce2O7 by rare earth ion substitutions as possible high NIR reflecting pigments. Dye Pigment 2019; 160: 177-87.
[http://dx.doi.org/10.1016/j.dyepig.2018.08.010]
[24]
Hastir A, Kohli N, Singh RC. Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor. J Phys Chem Solids 2017; 105: 23-34.
[http://dx.doi.org/10.1016/j.jpcs.2017.02.004]
[25]
Zhao F, Liang Y, Lee JB, Hwang SJ. Applications of rare earth Tb3+- Yb3+ Co-doped down-conversion materials for solar cells. Mater Sci Eng B 2019; 248: 114404.
[http://dx.doi.org/10.1016/j.mseb.2019.114404]
[26]
Djamal M, Yuliantini L, Hidayat R, Boonin K, Yasaka P, Kaewkhao J. Glass medium doped rare earth for sensor material. Mater Today Proc 2018; 5: 15126-30.
[http://dx.doi.org/10.1016/j.matpr.2018.04.069]
[27]
Kershi RM. Rare-earth ions as a key influencer on the magnetic, spectroscopic and elastic properties of ErγZn0.2Co0.8Fe2−γO4 nanoparticles. J Alloys Compd 2021; 864: 158114.
[http://dx.doi.org/10.1016/j.jallcom.2020.158114]
[28]
Tscharnuter W. Photon Correlation Spectroscopy in Particle Sizing. 1st ed. United States of America: John Wiley & Sons Ltd 2000.
[http://dx.doi.org/10.1002/9780470027318.a1512]
[29]
Cullity BD. Elements of X-Ray Diffraction Addition Wesley Publication Company, Addison Wesley Publication Company California 1956.
[30]
Hanic F, Hartmanova M, Knab GG, Urusovskaya AA, Bagdasarov KS. Real Structure of Undoped Y2O3 Single-crystals. Acta Crystallogr B 1984; 40: 76-82.
[http://dx.doi.org/10.1107/S0108768184001774]
[31]
Cesaria M, Collins J, Di Bartolo B. On the efficient warm white-light emission from nano-sized Y2O3. J Lumin 2016; 169: 574-80.
[http://dx.doi.org/10.1016/j.jlumin.2015.08.017]
[32]
Zhang L, Jiang DY, Xia JF, Li CX, Zhang N, Li Q. Novel luminescent yttrium oxide nanosheets doped with Eu3+ and Tb3+. RSC Advances 2014; 4: 17648-52.
[http://dx.doi.org/10.1039/c4ra01881h]
[33]
Yavetskiy RP, Baumer VN, Danylenko MI, et al. Transformation-assisted consolidation of Y2O3:Eu3+ nanospheres as a concept to optical nanograined ceramics. Ceram Int 2014; 40: 3561-9.
[http://dx.doi.org/10.1016/j.ceramint.2013.09.072]
[34]
Han X, Feng X, Qi X, Wang X, Li M. The photoluminescent properties of Y2O3:Bi3+, Eu3+, Dy3+ phosphors for white-light-emitting diodes. J Nanosci Nanotechnol 2014; 14(5): 3387-90.
[http://dx.doi.org/10.1166/jnn.2014.8030] [PMID: 24734556]
[35]
Alarcon-Flores G, Garcia-Hipolito M, Aguilar-Frutis M, et al. Luminescent and structural characteristics of Y2O3:TB3+ thin films as a function of substrate temperature. ECS J Solid State Sci Technol 2014; 3: R189-94.
[http://dx.doi.org/10.1149/2.0141410jss]
[36]
Qin X, Ju Y, Bernhard S, Yao N. Flame synthesis of Y2O3:Eu nanophosphors using ethanol as precursor solvents. J Mater Res 2005; 20: 2960-8.
[http://dx.doi.org/10.1557/JMR.2005.0364]
[37]
Gourlaouen V, Schnedecker G, Lejus AM, Boncoeur M, Collongues R. Metastable phases in yttrium oxide plasma spray deposits and their effect on coating properties. Mater Res Bull 1993; 28: 415-25.
[http://dx.doi.org/10.1016/0025-5408(93)90123-U]
[38]
Navrotsky A, Benoist L, Lefebvre H. Direct calorimetric measurement of enthalpies of phase transitions at 2000°–2400°C in Yttria and Zirconia. J Am Ceram Soc 2005; 88: 2942-4.
[http://dx.doi.org/10.1111/j.1551-2916.2005.00506.x]
[39]
Santos SC, Yamagata C, Campos LL, Mello-Castanho SRH. Bio- prototyping and thermoluminescence response of cellular rare earth ceramics. J Eur Ceram Soc 2016; 36: 791-6.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2015.10.024]
[40]
Riener K, Albrecht N, Ziegelmeier S, et al. Influence of particle size distribution and morphology on the properties of the powder feedstock as well as of AlSi10Mg parts produced by laser powder bed fusion (LPBF). Addit Manuf 2020; 34: 101286.
[http://dx.doi.org/10.1016/j.addma.2020.101286]
[41]
Yi BJ, Zhang LQ, Mao ZH, Huang F, Zheng CG. Effect of the particle size on combustion characteristics of pulverized coal in an O-2/CO2 atmosphere. Fuel Process Technol 2014; 128: 17-27.
[http://dx.doi.org/10.1016/j.fuproc.2014.06.025]
[42]
Telegin SV, Kirillova NI, Modin IA, Suleimanov EV. Effect of particle size distribution on functional properties of Ce0.9Y0.1O2-d ceramics. Ceram Int 2021; 47(12): 17316-21.
[http://dx.doi.org/10.1016/j.ceramint.2021.03.043]
[43]
Liu D, Li Y, Lv C, et al. Permeating behaviour of porous SiC ceramics fabricated with different SiC particle sizes. Ceram Int 2021; 47: 5610-6.
[http://dx.doi.org/10.1016/j.ceramint.2020.10.145]
[44]
Minami T, Wang WN, Iskandar F, Okuyama K. Photoluminescence properties of submicrometer phosphors with different crystallite/particle sizes. Jpn J Appl Phys 2008; 47: 7220-3.
[http://dx.doi.org/10.1143/JJAP.47.7220]
[45]
Permin DA, Kurashkin SV, Novikova AV, et al. Synthesis and luminescence properties of Yb-doped Y2O3, Sc2O3 and Lu2O3 solid solutions nanopowders. Opt Mater 2018; 77: 240-5.
[http://dx.doi.org/10.1016/j.optmat.2018.01.041]
[46]
Shivaramu NJ, Lakshminarasappa BN, Nagabhushana KR, Singh F. Synthesis characterization and luminescence studies of gamma irradiated nanocrystalline yttrium oxide. Spectrochim Acta A Mol Biomol Spectrosc 2016; 154: 220-31.
[http://dx.doi.org/10.1016/j.saa.2015.09.019] [PMID: 26529639]
[47]
Carregosa JDC, Grilo JPF, Godoi GS, Macedo DA, Nascimento RM, Oliveira RMPB. Microwave-assisted hydrothermal synthesis of ceria (CeO2): Microstructure, sinterability and electrical properties. Ceram Int 2020; 46: 23271-5.
[http://dx.doi.org/10.1016/j.ceramint.2020.06.021]
[48]
Chan JX, Wong JF, Hassan A, Shrivastava NK, Mohamad Z, Othman N. Green hydrothermal synthesis of high aspect ratio wollastonite nanofibers: Effects of reaction medium, temperature and time. Ceram Int 2020; 46: 22624-34.
[http://dx.doi.org/10.1016/j.ceramint.2020.06.025]
[49]
Tomina VV, Stolyarchuk NV, Katelnikovas A, et al. Preparation and luminescence properties of europium(III)-loaded aminosilica spherical particles. Colloids Surf A Physicochem Eng Asp 2021; 608: 125552.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125552]
[50]
Kawai Y, Yamamoto T. Synthesis of porous carbon hollow particles maintaining their structure using hyper-cross-linked Poly(St-DVB) hollow particles. Adv Powder Technol 2020; 31: 614-20.
[http://dx.doi.org/10.1016/j.apt.2019.11.016]
[51]
Mema I, Wagner EC, van Ommen JR, Padding JT. Fluidization of spherical versus elongated particles - experimental investigation using X- ray tomography. Chem Eng J 2020; 397: 125203.
[http://dx.doi.org/10.1016/j.cej.2020.125203]
[52]
Chang T-H, Lu Y-C, Yang M-J, Huang J-W, Chang L. Multibranched flower-like ZnO particles from eco-friendly hydrothermal synthesis as green antimicrobials in agriculture. J Clean Prod 2020; 262: 121342.
[http://dx.doi.org/10.1016/j.jclepro.2020.121342]
[53]
Nandi S, Sommerville L, Nellenbach K, et al. Platelet-like particles improve fibrin network properties in a hemophilic model of provisional matrix structural defects. J Colloid Interface Sci 2020; 577: 406-18.
[http://dx.doi.org/10.1016/j.jcis.2020.05.088] [PMID: 32502667]
[54]
Okada S, Takagi K, Ozaki K. Synthesis of submicron-sized acicular goethite and platelet-like hematite particles and dependence of magnetic properties of α-Fe particles on their shape and size. Mater Chem Phys 2016; 171: 171-7.
[http://dx.doi.org/10.1016/j.matchemphys.2016.01.002]
[55]
Dupont A, Largeteau A, Parent C, Le Garrec B, Heintz JM. Influence of the yttria powder morphology on its densification ability. J Eur Ceram Soc 2005; 25: 2097-103.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2005.03.016]
[56]
Faithful DB, Johnson SM, Mccolm IJ. Infrared-spectra of lanthanide sesquioxides. Rev Chim Miner 1973; 10: 291-302.
[57]
Lakshminarasappa BN, Shivaramu NJ, Nagabhushana KR, Singh F. Synthesis characterization and luminescence studies of 100 MeV Si8+ ion irradiated sol gel derived nanocrystalline Y2O3. Nucl. Instruments Methods Phys. Res. Sect. B-Beam Interact. with Mater. Atoms 2014; 329: 40-7.
[http://dx.doi.org/10.1016/j.nimb.2014.02.128]
[58]
Hari Krishna R, Nagabhushana BM, Nagabhushana H, et al. Auto-ignition based synthesis of Y2O3 for photo- and thermo-luminescent applications. J Alloys Compd 2014; 585: 129-37.
[http://dx.doi.org/10.1016/j.jallcom.2013.09.037]
[59]
Mangalaraja RV, Mouzon J, Hedström P, Camurri CP, Ananthakumar S, Odén M. Microwave assisted combustion synthesis of nanocrystalline yttria and its powder characteristics. Powder Technol 2009; 191: 309-14.
[http://dx.doi.org/10.1016/j.powtec.2008.10.019]
[60]
Ahmed F, Kumar S, Arshi N, Anwar MS, Koo BH, Lee CG. Doping effects of Co2+ ions on structural and magnetic properties of ZnO nanoparticles. Microelectron Eng 2012; 89: 129-32.
[http://dx.doi.org/10.1016/j.mee.2011.03.149]
[61]
Mu Q, Wang Y. A simple method to prepare Ln(OH)3 (Ln = La, Sm, Tb, Eu, and Gd) nanorods using CTAB micelle solution and their room temperature photoluminescence properties. J Alloys Compd 2011; 509: 2060-5.
[http://dx.doi.org/10.1016/j.jallcom.2010.10.141]
[62]
Cui F, Zhang J, Cui T, et al. A facile solution-phase approach to the synthesis of luminescent europium methacrylate nanowires and their thermal conversion into europium oxide nanotubes. Nanotechnology 2008; 19(6): 065607.
[http://dx.doi.org/10.1088/0957-4484/19/6/065607] [PMID: 21730705]
[63]
Wang S, Gu F, Li C, Lü M. Synthesis of Mesoporous Eu2O3 Microspindles. Cryst Growth Des 2007; 7: 2670-4.
[http://dx.doi.org/10.1021/cg070111a]
[64]
Bordun OM, Dmitruk VV. Luminescence centers in thin films of yttrium oxide and yttrium-aluminum garnet activated with bismuth. J Appl Spectrosc 2008; 75: 208-13.
[http://dx.doi.org/10.1007/s10812-008-9029-2]
[65]
Osipov VV, Rasuleva AV, Solomonov VI. Luminescence of pure yttria. Opt Spectrosc 2008; 105: 524-30.
[http://dx.doi.org/10.1134/S0030400X08100068]
[66]
Santos SC, Acchar W, Yamagata C, Mello-Castanho S. Yttria nettings by colloidal processing. J Eur Ceram Soc 2014; 34: 2509-17.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2014.03.006]

© 2024 Bentham Science Publishers | Privacy Policy