Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Synthesis, Biological Screening and Docking Study of Some Novel Pyrazolopyrano[ 2,3-B]quinolin Derivatives as Potent Antibacterial Agents

Author(s): Hamideh Emtiazi*, Ali Salari Sharif and Mina Ardestani

Volume 18, Issue 5, 2022

Published on: 16 February, 2022

Article ID: e060122200070 Pages: 8

DOI: 10.2174/1573407218666220106122432

Price: $65

Abstract

Background: Pyranopyrazoles have a variety of biological activities and can be obtained by various starting materials and synthetic methods. Also, pyrazolopyrano[2,3-b]quinolins that contain pyranopyrazole moiety have some biological activities such as anti-acetylcholinesterase and anti-butyrylcholinesterase activity. In this research, our objective is to prepare pyranopyrazole compounds and pyrazolopyrano[2,3-b]quinolins in a simple way and then evaluate their antibacterial effect.

Methods: In this study, pyrano[2,3-c]pyrazole derivatives have been synthesized by condensing malononitrile, aromatic aldehydes, and 3-methyl-1-phenyl-2-pyrazolin-5-one in the presence of magnesium perchlorate as a catalyst. Then we prepared pyrazolopyrano[2,3-b]quinolins via subsequent Friedlander reaction between cyclohexanone and the obtained pyrano[2,3-c]pyrazoles. Also, the antimicrobial activity of the synthesized pyrazolopyrano[2,3-b]quinolins against Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli was measured. Then we studied molecular docking of them to find the predicted compounds' interactions and binding energy with DNA-gyrase with the AutoDock 4.2 software.

Results: Pyrazolopyrano[2,3-b]quinolins were synthesized in the optimized conditions. Evaluation of their antibacterial activities showed that these compounds have moderate to good antibacterial activities against four bacteria species. Also molecular docking tests of docked compounds showed a strong bonding interaction with DNA-Gyrase and had been docked into the intercalation place of DNA of DNA-gyrase complex. The molecule bonded to the DNA stabilized by the H bonds, hydrophobic interactions, and π-π interaction.

Conclusion: We have developed an efficient and one-pot ecofriendly protocol for the synthesis of some novel pyrano[2,3-c]pyrazol derivatives and pyrazolopyrano[2,3-b]quinolins under simple conditions and then tested them for their antibacterial activities. Also, we studied molecular docking of them. These compounds showed moderate to good inhibitory action.

Keywords: Antibacterial, binding energy, docking studies, magnesium perchlorate, pyrano[2, 3-c]pyrazole, pyrazolopyrano[ 2, 3-b]quinolin.

Graphical Abstract

[1]
Katritzky, A.R.; Jug, K.; Oniciu, D.C. Quantitative measures of aromaticity for mono-, bi-, and tricyclic penta- and hexaatomic heteroaromatic ring systems and their interrelationships. Chem. Rev., 2001, 101(5), 1421-1449.
[http://dx.doi.org/10.1021/cr990327m] [PMID: 11710227]
[2]
Zaki, M.E.A.; Morsy, E.M.; Abdel-Motti, F.M.; Abdel-Megeid, F.M.E. The behaviour of ethyl 1-acetyl-4-aryl-5-cyano-3-methyi-1,4-dihydropyrano[2,3-c]pyrazol-6-ylimidoformate towards nucleophiles. Heterocycl. Commun., 2004, 10, 97-102.
[http://dx.doi.org/10.1515/HC.2004.10.1.97]
[3]
Kuo, S.C.; Huang, L.J.; Nakamura, H. Studies on heterocyclic compounds. 6. Synthesis and analgesic and antiinflammatory activities of 3,4-dimethylpyrano[2,3-c]pyrazol-6-one derivatives. J. Med. Chem., 1984, 27(4), 539-544.
[http://dx.doi.org/10.1021/jm00370a020] [PMID: 6708056]
[4]
Mistry, P.T.; Kamdar, N.R.; Haveliwala, D.D.; Patel, S.K. Synthesis, characterization, and in vitro biological studies of some novel pyran fused pyrimidone derivatives. J. Heterocycl. Chem., 2012, 49, 349-357.
[http://dx.doi.org/10.1002/jhet.700]
[5]
Reddy, G.M.; Garcia, J.R.; Zyryanov, G.V.; Sravya, G.; Reddy, N.B. Pyranopyrazoles as efficient antimicrobial agents: Green, one pot and multicomponent approach. Bioorg. Chem., 2019, 82, 324-331.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.035] [PMID: 30415166]
[6]
Ramiz, M.M.M.; Abdel Hafiz, I.S.; Abdel Reheim, M.A.M.; Gaber, H.M. Pyrazolones as building blocks in heterocyclic synthesis: synthesis of new pyrazolopyran, pyrazolopyridazine and pyrazole derivatives of expected antifungicidal activity. J. Chin. Chem. Soc. (Taipei), 2012, 59, 72-80.
[http://dx.doi.org/10.1002/jccs.201100194]
[7]
Foloppe, N.; Fisher, L.M.; Howes, R.; Potter, A.; Robertson, A.G.S.; Surgenor, A.E. Identification of chemically diverse Chk1 inhibitors by receptor-based virtual screening. Bioorg. Med. Chem., 2006, 14(14), 4792-4802.
[http://dx.doi.org/10.1016/j.bmc.2006.03.021] [PMID: 16574416]
[8]
Zaki, M.E.A.; Soliman, H.A.; Hiekal, O.A.; Rashad, A.E. Pyrazolopyranopyrimidines as a class of anti-inflammatory agents. Z. Naturforsch. C J. Biosci., 2006, 61(1-2), 1-5.
[http://dx.doi.org/10.1515/znc-2006-1-201] [PMID: 16610208]
[9]
Otto, H.H. Synthesis of some 4H-pyrano(2.3-c)pyrazoles (author’s transl). Arch. Pharm. (Weinheim), 1974, 307(6), 444-447.
[http://dx.doi.org/10.1002/ardp.19743070609] [PMID: 4841522]
[10]
Shrivas, P.; Pandey, R.; Zodape, S.; Wankhade, A.; Pratap, U. Green synthesis of pyranopyrazoles via biocatalytic one-pot Knoevenagel condensation–Michael-type addition–heterocyclization cascade in non-aqueous media. Res. Chem. Intermed., 2020, 46, 2805-2816.
[http://dx.doi.org/10.1007/s11164-020-04122-x]
[11]
Maheswari, C.S.; Tamilselvi, C.S.; Ramesh, R.; Lalitha, A. An organocatalytic cascade synthesis of diverse 1H-pyrazolo[1,2-b]phthalazine-2- carboxamide,1H-Pyrazolo[1,2-b]phthalazine, 4H-Pyrano[2,3-c]pyrazole and 4H-Benzo[g]chromenes via multicomponent reactions. Org. Prep. Proced. Int., 2020, 52, 22-36.
[http://dx.doi.org/10.1080/00304948.2019.1693241]
[12]
Tayade, Y.A.; Dalal, D.S. β-cyclodextrin as a supramolecular catalyst for the synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10- dione derivatives in water. Catal. Lett., 2017, 147, 1411-1421.
[http://dx.doi.org/10.1007/s10562-017-2032-6]
[13]
Rana, N.K.; Jha, R.K.; Joshi, H.; Singh, V.K. Enantioselective access to tetrahydropyrano[2,3-c]pyrazoles via anorgano catalytic domino Michael-hydroalkoxylation reaction. Tetrahedron Lett., 2017, 58, 2135-2139.
[http://dx.doi.org/10.1016/j.tetlet.2017.04.059]
[14]
Dalal, K.S.; Tayade, Y.A.; Wagh, Y.B.; Trivedi, D.R.; Dalal, D.S.; Chaudhari, B.L. Bovine serum albumin catalyzed one-pot, three-component synthesis of dihydropyrano[2,3-c]pyrazole derivatives in aqueous ethanol. RSC Advances, 2016, 18, 1-25.
[http://dx.doi.org/10.1039/C5RA13014J]
[15]
Khoobi, M.; Ghanoni, F.; Nadri, H.; Moradi, A.; Pirali Hamedani, M.; Homayouni Moghadam, F.; Emami, S.; Vosooghi, M.; Zadmard, R.; Foroumadi, A.; Shafiee, A. New tetracyclic tacrine analogs containing pyrano[2,3-c]pyrazole: Efficient synthesis, biological assessment and docking simulation study. Eur. J. Med. Chem., 2015, 89, 296-303.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.049] [PMID: 25462245]
[16]
Mahdavi, M.; Saeedi, M.; Gholamnia, L.; Jeddi, S.A.B.; Sabourian, R.; Shafiee, A.; Foroumadi, A.; Akbarzadeh, T. Synthesis of novel tacrine analogs as acetylcholinesterase inhibitors. J. Heterocycl. Chem., 2016, 54(1), 384-390.
[17]
Chioua, M.; Pérez-Peña, J.; García-Font, N.; Moraleda, I.; Iriepa, I.; Soriano, E.; Marco-Contelles, J.; Oset-Gasque, M.J. Pyranopyrazolotacrines as nonneurotoxic, Aβ-anti-aggregating and neuroprotective agents for Alzheimer’s disease. Future Med. Chem., 2015, 7(7), 845-855.
[http://dx.doi.org/10.4155/fmc.15.41] [PMID: 26061104]
[18]
Pourabdi, B.L.; Khoobi, B.L.; Nadri, H.; Moradi, A.; Homayouni Moghadam, B.L.; Emami, S.; Mojtahedi, M.M.; Haririan, I.; Forootanfar, H.; Ameri, A.; Foroumadi, A.; Shafiee, A. Synthesis and structure-activity relationship study of tacrine-basedpyrano[2,3-c]pyrazoles targeting AChE/BuChE and 15-LOX. Eur. J. Med. Chem., 2016, 123, 298-308.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.043] [PMID: 27484515]
[19]
Mirjalili, B.B.F.; Bamoniri, A.; Amrollahi, M.A.; Emtiazi, H. Mg(ClO4)2: An efficient catalyst for the synthesis of 1,3,5-trisubstituted pyrazoles. Dig. J. Nanomater. Biostruct., 2010, 5, 897.
[20]
Amrollahi, M.A.; Mirjalili, B.B.F.; Emtiazi, H. Mg(ClO4)2 catalyzed preparation of 1-amidoalkyl-2-naphthols under solvent-free conditions. J. Chem. Sci., 2013, 125, 561-566.
[http://dx.doi.org/10.1007/s12039-013-0406-x]
[21]
Emtiazi, H.; Amrollahi, M.A. An efficient and rapid access to the synthesis of tetrahydrochromeno[4,3-b]chromene-6,8-dione derivatives by magnesium perchlorate. S. Afr. J. Chem., 2014, 67, 175-179.
[22]
Emtiazi, H.; Amrollahi, M.A. Magnesium perchlorate catalyzed preparation of xanthenediones under solvent-free conditions. Rev. Roum. Chim., 2017, 62, 43-47.
[23]
Gwaram, N.S.; Ali, H.M.; Khaledi, H.; Abdulla, M.A.; Hadi, A.H.A.; Lin, T.K.; Ching, C.L.; Ooi, C.L. Antibacterial evaluation of some Schiff bases derived from 2-acetylpyridine and their metal complexes. Molecules, 2012, 17(5), 5952-5971.
[http://dx.doi.org/10.3390/molecules17055952] [PMID: 22609786]
[24]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and autodocktools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[25]
Chan, P.F.; Srikannathasan, V.; Huang, J.; Cui, H.; Fosberry, A.P.; Gu, M.; Hann, M.M.; Hibbs, M.; Homes, P.; Ingraham, K.; Pizzollo, J.; Shen, C.; Shillings, A.J.; Spitzfaden, C.E.; Tanner, R.; Theobald, A.J.; Stavenger, R.A.; Bax, B.D.; Gwynn, M.N. Structural basis of DNA gyrase inhibition by antibacterial QPT-1, anticancer drug etoposide and moxifloxacin. Nat. Commun., 2015, 6, 10048.
[http://dx.doi.org/10.1038/ncomms10048] [PMID: 26640131]
[26]
Cosconati, S.; Forli, S.; Perryman, A.L.; Harris, R.; Goodsell, D.S.; Olson, A.J. Virtual screening with autoDock: Theory and practice. Expert Opin. Drug Discov., 2010, 5(6), 597-607.
[http://dx.doi.org/10.1517/17460441.2010.484460] [PMID: 21532931]
[27]
Studio, D.; Insight, I. Accelrys Software Inc; San Diego, CA, 2009, p. 9212.
[28]
Kiyani, H.; Samimi, H.A.; Ghorbani, F.; Esmaieli, S. One-pot, four-component synthesis of pyrano[2,3-c]pyrazoles catalyzed by sodium benzoate in aqueous medium. Curr. Chem. Lett, 2013, 2, 197-206.
[http://dx.doi.org/10.5267/j.ccl.2013.07.002]
[29]
Wu, M.; Feng, Q.; Wan, D.; Jinya, M. Ctacl as catalyst for four- component,one-pot synthesis of pyranopyrazole derivatives in aqueous medium. Synth. Commun., 2013, 43, 1721-1726.
[http://dx.doi.org/10.1080/00397911.2012.666315]
[30]
Abhinav, B.; Dinesh, C.; Alpana, A.; Pratyush, K.; Shrikant, M. Green synthesis of pyranopyrazole using microwave assisted techniques. Biol. Pharm. Sci, 2020, 10, 111-119.
[http://dx.doi.org/10.30574/gscbps.2020.10.2.0026]
[31]
Lu, H.Y.; Li, J.J.; Zhang, Z.H. ZrOCl2. 8H2O: A highly efficient catalyst for the synthesis of 1,8-dioxo-octahydroxanthene derivatives under solvent-free conditions. Appl. Organomet. Chem., 2009, 23, 165-169.
[http://dx.doi.org/10.1002/aoc.1488]
[32]
Mamaghani, M.; Hossein Nia, R.; Shirini, F.; Tabatabaeian, Kh.; Rassa, M. An efficient and eco-friendly synthesis and evaluation of antibactrial activity of pyrano[2,3-c]pyrazole derivatives. Med. Chem. Res., 2015, 24, 1916-1926.
[http://dx.doi.org/10.1007/s00044-014-1271-y]
[33]
Emami, L.; Zamani, L.; Sabet, R.; Zomorodian, K.; Rezaei, Z.; Faghih, Z.; Shahbazi, Y.; Khabnadideh, S. Molecular docking and antimicrobial evaluation of some novel pyrano[2,3-C] pyrazole derivatives. Trends Pharmacol. Sci., 2020, 6, 113-120.
[34]
Mohammadi ziarani, Gh.; Nouri, F.; Rahimifard, M.; Badiei, A.; Abolhassani soorki, A. One-pot synthesis of pyrano[2,3-c]pyrazoles using sba-15-pr-nh2 and their antimicrobial activities. Rev. Roum. Chim., 2015, 60, 331-337.
[35]
Gholami Dehbalaei, M.; Foroughifar, N.; Pasdar, H.; Khajeh-Amiri, A.; Foroughifar, N.; Alikarami, M. Choline chloride based thiourea catalyzed highly efficient, eco-friendly synthesis and anti-bacterial evaluation of some new 6-amino-4-aryl-2,4-dihydro-3- phenyl pyrano [2,3-c] pyrazole-5-carbonitrile derivatives. Res. Chem. Intermed., 2017, 43, 3035-3051.
[http://dx.doi.org/10.1007/s11164-016-2810-6]
[36]
Maddila, S.; Gorle, S.; Seshadri, N.; Lavanya, P.; Jonnalagadda, S.B. Synthesis, antibacterial and antifungal activity of novel benzothiazole pyrimidine derivatives. Arab. J. Chem., 2016, 9, 681-687.
[http://dx.doi.org/10.1016/j.arabjc.2013.04.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy